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Example A2-15 The final cadence—the merging of set classes 4-1 (0123) and
4-21 (0246) within the tritone B—E.

There each voice enters in turn, outlining the T,, form of 4-21 [Bb,C,D,E]. é:w: the
cello finally brings in its Bb, the other voices crash back in. Now the entire space
between Bb and E has been filled in. The chromatic tetrachord 4-1 (0123) and the
whole-tone tetrachord 4-21 (0246) are merged in this final sonority. The two princi-
pal set classes of the passage thus are developed, progress from one to the other,
define a large-scale shift in pitch location, and ultimately merge into a single caden-
tial sonority.
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Chapter 3
Some Additional Relationships

Common Tones under Transposition (T)

When a pitch-class set is transposed or inverted, its content will change entirely, par-
tially, or not at all. Tones held in common between two different members of the
same set class can provide an important musical continuity. Conversely, an absence
of common tones may emphasize the contrast between two different members of the
same set class.

When you transpose a pitch-class set by interval n, the number of common
tones will be equal to the number of times the interval n occurs in the set (with
one exception, to be discussed later). If a set contains three occurrences of interval
class 2, for example, there will be three common tones at T, or T, (see Example 3-1a).
The major scale contains six instances of interval class 5, so there will bé six com-
mon tones when the scale is transposed up or down by five semitones (T, or T,). (See
Example 3-1b.)
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Example 3—-1 Common tones under transposition.
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To understand why it works this way, concentrate on the mappings involved.
When a set is transposed at T, each member of the set maps onto a note that lies n
semitones higher. If two of the notes in the set were n semitones apart to begin with,
transposing by n semitones maps one of the notes onto the other, producing one com-
mon tone. That mapping will happen as many times as there are occurrences of inter-
val n in the set. In other words, for every occurrence of a given interval n, there will
be one common tone under T ..

For example, consider the operation T, applied to [4,5,7,8], a member of set
class 4-3 (0134). There are two occurrences of interval class 3 in the set, between 4
and 7 and between 5 and 8. As a result, when the set is transposed up three semitones,
the 4 maps onto the 7 and the 5 maps onto the 8. Similarly, when it is transposed down
three semitones (T,), the 8 maps onto the 5 and the 7 onto the 4 (see Figure 3-1).

VRN Ts £ N\ To
4,5, 7, 8]----»1[7, 8, 10, 11] (4,5 7, 8] ----- > [1, 2, 4, 5]
N </

Figure 3-1

The tritone (interval class 6) is an exception. Because the tritone maps onto
itself under transposition at T, each occurrence of interval class 6 in a set will create
two common tones when the set is transposed at T,. For example, consider [4,9,10], a
member of set class 3—5 (016). It contains a single tritone. When the set is transposed
at T, the 4 maps onto the 10 and the 10 simultaneously maps back onto the 4. As a
result, both the 4 and the 10 are held in common at T (see Figure 3-2).

£ N T
[4, 9, 10] ---»[10, 3, 4]

Figure 3-2

To figure out quickly how many common tones a set will have at any transposi-
tion level, just look at its interval-class vector. The vector tells you how many times
each interval class occurs in any set, which also tells you how many common tones
there will be under T_ for any value of n. Set 4-3 (0134), for example, has the vector
212100, and will therefore retain two common tones at T, (or T,,) and T, (or T,) and
a single common tone at T, (or T,,) and T, (or Ty). It will retain no common tones at

T,, T, or T,. These results will hold for all members of the set class. Notice, E,

Example 3-2, how Stravinsky uses common tones in a passage from Agon to create a
chain of members of set class 4-3, linked by their common tones. Transposition at T,
produces one common tone, while transposition at T,, and T, produces two common
tones each. The overall motion, T, produces no common tones because the set being
transposed contains no i6s.

The interval-class vector for the major scale, set class 7-35 (013568T), is
254361. Notice that it has a different number of occurrences of each interval class. As
a result, it will have a different number of common tones at each transpositional level
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[G, Ab, Bb, B] [Bb, B, Db, D]

[Ab, A, B, C]

[E,E G, Ab]

Example 3-2 A chain of members of set class 4-3 (0134) (Stravinsky, Agon).
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[1,3,6,9]

1+1=2

3+3=6 Each of these sums represents
6+6=0 one common tone.

9+9=6

Figure 3-5

For each of these sums, there will be one common tone under T I for that value of n.

We can compile all of these sums for [1,3,6,9] into what we will call an index
vector, remembering that the sums of different elements will yield two common
tones, while the sums of elements with themselves will yield one common tone. For
each of the twelve possible values of n, we can list the number of common tones
under T [ (see Figure 3-6).

n= 0 8 9 10 11
3 022 O

1 2 3 4 5 6 7
no. of common tones: 0122022

Figure 3-6

The largest number of common tones, three, is retained at T,l, which maps the 3 and
the 9 onto each other and the 6 onto itself. Two common tones are retained at T,1, T,[,
T(L T.L, T, and T, I; one common tone is retained at T,I. No common tones are
retained at T|L, T,I, T,I, or T, I, because the sums 1, 5, 8, and 11 cannot be produced
by adding members of [1,3,6,9] either to each other or to themselves. The number of
comumon tones under T I for every value of n can be read from the vector.

A simpler way to figure out the number of common tones under T T s to con-
struct an addition table. Write the set along the vertical and horizontal axes and add
as indicated. Such an addition table for [3,4,7,8] is shown in Figure 3-7.

3 4 7 8
6 7 10 11
7 811 O
10 11 2 3
11 0 3 4
Figure 3-7

This table neatly performs all of the additions required; it adds each element to each .

other element twice and adds each element to itself once. As a result, each occurrence
of a number inside the table represents a single common tone. The number 11 occurs
four times, so there will be four common tones at T I; the number 3 occurs twice, so
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there will be two common tones at T,I; and so on. It is easy to rearrange this informa-
tion in the form of an index vector, or simply to read it directly from the table.

This addition table has another advantage—it shows not only how many tones
will be held in common under T I, but also which ones. Each index number in the
table lies at the intersection of two tones. Those are the tones mapped onto one another
by that index number. In the table in Figure 37, for example, 10 occurs at the inter-
section of 3 and 7; 3 and 7 are thus held in common at T, l. Similarly, 8 occurs in the
table at the intersection of 4 with itself, so 4 will be held in common at ﬁm.

Appendix 2 lists index vectors for the prime-form of each set class and for the
set related by T, to the prime form. Unlike the interval vector, the index vector is not
the same for every member of a set class. Fortunately, once you know the index vec-
tor for the prime form and for its T, the index vectors for all the remaining members
can be deduced easily from the simple rules given in Appendix 2. The interval-class
vectors in Appendix 1 and the index vectors in Appendix 2 should enable you to find
the number of common tones any pitch-class set will retain under T, or T I for any
values of n.

Common tones under T_ and T I can be an important source of musical conti-
nuity. Example 3-3 contains the first ten measures of the third of Webern’s
Movements for String Quartet, Op. 5, a composition that makes intensive use of set
class 3-3 (014).

Six pairs of 3-3s are marked on the score. Look first at the T -related pairs.
The transposition levels used, 8 and 11, produce one common tone each, as we know
from the interval-class vector of 3-3: 101100. And notice the special treatment this
common tone receives in each case—it is always retained in exactly the same regis-
ter. The common pitch class is expressed as a common pitch. )

The same thing is true of the T I-related pair in measure 3. The index vector for
the first set, [8,9,0], is 100012102200; the index vector for the second set, [0,3,4], is
100220121000. You could discover that either by simply doing an addition table for
the sets, as discussed earlier, or by looking up the vectors in Appendix 2 (and per-
forming the proper rotations). Both index vectors show that each of these sets holds
one common tone at Tl. Since they are related by TI, that means they will share a
single pitch class. That common tone is C, which is retained here not only in the same
register but in the same instrument. In measure 9, the two T,I-related forms of 3-3
share two common tones, C and Eb. Notice how Webern arranges these notes to sound
together simultaneously. He thus uses common tones under both T, and T I to create
smooth, continuous voice leading as the music progresses among the members of set
class 3-3 (014). o

Inversional Symmetry

Some set classes contain sets that can map entirely onto themselves under inversion.
Such set classes are said to be inversionally symmetrical and, of the 220 set classes
listed in Appendix 1, seventy-nine have this property. The index vector for a set with
this property will have an entry equal to the number of notes in the set.
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Sets that are inversionally symmetrical can be written so that the intervals read-
ing from left to right are the same as the intervals reading from right to left. Usually,
but not always, this intervallic palindrome will be apparent when the set is written in
normal form. Occasionally, a note has to be written twice to capture the modular
wraparound (see Figure 3-8).
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m m ,m m - i i i i a.-E Schoenberg’s Orchestra Piece Op. 16, No. 3 begins with the five note chord
E) B B H - S JB b . . . y .
a a a RIS R = 3 mill Hir. m « displayed around a pitch-class clockface in Example 3—4A (the musical score can be
Hmnvw}wa Muﬂu s mﬁ 3 F & LR U LS found back in Example 2-3). The symmetry of the chord should be apparent—each
\ = - Pl 4 note of the chord has an inversional partner also within the chord, and the E balances
= 3 Z 3 I Hing itself as a center of symmetry. It would be easy to write such a chord so as to realize
= g A A its symmetry in pitch space: the three chords in Example 3—4B arrange those five
L { pitch classes so that they describe the same pitch intervals reading from bottom to top
as they do from top to bottom. These three chords are pitch symmetrical—they
are symmetrical in register and their pitch intervals form a palindrome. Any sym-
metrical pitch-class set can be arranged symmetrically in pitch space. But that is
not what Schoenberg did. His actual chord, shown in Example 3-4C, is pitch-class
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Example 3—-4 Inversional symmetry: A) Schoenberg’s chord written on a pitch-class
clockface; B) three hypothetical pitch symmetrical arrangements; C) Schoenberg’s
actual arrangement—symmetry of pitch class, not pitch.

symmetrical, but not pitch symmetrical. The inversional symmetry is still there—
every note in the chord has its inversional partner also in the chord—but it is felt only
in the more abstract pitch-class space, not in the more concrete, immediate pitch
space.

The melody by Boulez in Example 3-5 is based entirely on sets that are inver-

sionally symmetrical.

[A, C#, D, E, F]

[GH, A Bb, C, CH, D] [F, F$, G, G}, A _ ,
= s (J=52) —= W= 104
—% e ®
La rou ge au. bord
[A, Bb, C, CH] [CH, D, E, F]

Example 3-5 Inversionally symmetrical sets (Boulez, Le Marteau sans Maitre,
“L’ Artisanat furieux,” mm. 6-9, vocal part).

Some of these are arranged pitch-symmetrically, but most are not. Compare, for
example, the two forms of sc4-3 (0134): [A, Bb, C, Ci] at the beginning of the
melody and [Ct, D, E, F] at the end. The first one is asymmetrical in pitch space (the
Bb would have had to be an octave lower to make it pitch symmetrical), while the sec-
ond is pitch symmetrical—its pitch intervals are the same reading from bottom to top
as from top to bottom.

While inversional symmetry is an important compositional resource generally,
it can play a particularly decisive role when the symmetry is realized in pitch space.
Any member of set class 3—1 (012), for example, is abstractly symmetrical no matter
how it is deployed, but its symmetry can be dramatically reinforced by the arrange-
ment of the notes in register. See, for example, how Varese arranges the set [C, Ct, D]
at the beginning of Hyperprism (Example 3-6).
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Example 3-6 Pitch symmetry (Varese, Hyperprism, mm. 1-12, percussion parts omitted).

C! enters in a middle register in the tenor trombone, soon reinforced by horns. At the
end of measure 4, D comes in twenty-three semitones below and then, in measure 12,
the low D is balanced symmetrically by the high C, 23 semitones above the middle
Ci. A vast pitch space is articulated symmetrically, a,nd the symmetry is reinforced
by the grace notes in measure 4 (involving the F four semitones above Ct) and the
quick embellishment in measure 11 (involving the A four semitones below Ct). In
this passage, Ct is literally the central tone. The role of inversional symmetry in
establishing a sense of pitch centricity is a topic to which we will return in Chapter 4.
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Like set classes that are transpositionally symmetrical, those that are inversion-
ally symmetrical can be easily identified in Appendix 1. In the middle column, the
number after the comma measures the degree of inversional symmetry—it tells the
number of inversional levels that map a set onto itself. Many sets cannot map onto
themselves under inversion, and thus have a degree of inversional symmetry that is 0.
Some sets can map onto themselves at one or more than one inversion levels. The set
3-6 (024), for example, has a degree of symmetry of (1, 1). It maps onto itself at one
transpositional level (T,) and one inversional level (in this case, T,I). The most sym-
metrical set of all is the whole-tone scale; it maps onto itself at six transpositional and
six inversional levels.

Inversional symmetry is a reasonably common property, but inversional sym-
metry at more than one level is rare—only the eleven set classes listed in Figure 3-10
have that property.

Degree of

inversional

symmetry
3-12(048) 3 9-12 (01245689T)
4-9 (0167) 2 8-9 (01236789)
4-25 (0268) 2 8-25 (0124678T)
4-28 (0369) 4 8-28 (0134679T)
6-7 (012678) 2
6-20 (014589) 3
6-35 (02468T) 6

Figure 3-10

It is interesting to compare this list with the list of transpositionally symmetrical sets
in Figure 3-3. Virtually all of the set classes that are transpositionally symmetrical
are also inversionally symmetrical at more than one level (6-30 is the only excep-
tion), and every set class that is inversionally symmetrical at more than one level is
also transpositionally symmetrical. And, as noted earlier, set classes with one or both
of these properties have often proven attractive to composers, including the aug-
mented triad (3—12), the diminished seventh chord (4-28), and the hexatonic (6-20),
whole-tone (6-35), and octatonic (8-28) scales.

The greater the number of operations that map a set onto itself, the smaller the
number of distinct sets in the set class. Most set classes have a degree of symmetry of
(1,0) and contain twenty-four distinct sets. For all set classes, dividing the number of
self-mapping operations into twenty-four will give you the number of sets in the set

class. Let’s use the prime-form of set 4-9 (0167) as an example to see why this is so. -

The set-class 4-9 has a degree of symmetry of (2,2). The four operations that map it
onto itself are T, T, T,I, and T,1. (This can be figured out by looking at the interval-
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class and index vectors.) Now consider another member of this set class, [1,2,7,8].
This is simultaneously T, T,, T,1, and T,I of [0,1,6,7]. Each member of the set class
can be created by four different operations:

[0,1,6,7] Ty Te, TL T,
[1,2,7,8] T,, T, T,L, Tyl
[2,3,8,9] T, Ty Ty, T,
[3,4,9,10] T, Ty, T,L T, I
[4510,11] T, T, T T,I
5,6,11,0] Ty, T, TL T L

But there are only twenty-four possible operations in all—twelve values of n for T,
and twelve values of n for T I. As a result, twenty-four divided by the number of
operations that will produce each member of the set class equals the number of dis-
tinct members of the set class. In this case, twenty-four divided by four equals six,
and set-class 4-9 has only six members.

Z-Relation

Any two sets related by transposition or inversion must have the same interval-class
content. The converse, however, is not true. There are several pairs of sets (one pair of
tetrachords and octachords, three pairs of pentachords and septachords, and fifteen
pairs of hexachords) that have the same interval-class content, but are not related to
each other by either transposition or inversion and thus are not members of the sarhe
set class. Sets that have the same interval content but are not transpositions or inver-
sions of each other are called Z-related sets, and the relationship between them is the
Z-relation:. (The Z stands for “zygotic,” meaning “twinned.”)

Sets in the Z-relation will sound similar because they have the same interval-
class content, but they won’t be as closely related to each other as sets that are mem-
bers of the same set class. If the members of a set class are like siblings within a
tightly knit nuclear family, then Z-related sets are like first cousins.

Composers have been particularly interested in the two “all-interval” tetra-
chords: 4-Z15 (0146) and 4-Z29 (0137). They are called all-interval tetrachords
because, as suggested by their shared interval-class vector, 111111, both tetrachords
contain one occurrence of each of the six interval classes. Example 3—7 contains two
passages from Elliott Carter’s String Quartet No. 2. In the first passage (Example
3-7A), the second violin plays two 3s (E-G and F~Ab) while the viola plays two 6s
(C-Ft and E—A)—in this quartet Carter often differentiates instruments in this way
by assigning each a distinctive interval. The vertical combination of those intervals
produces either 4-Z15 or 4-Z29. In the second passage (Example 3-7B), a form of
4-715 is stated melodically in the second violin while the other three instruments
combine to create a form of 4-729.
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Example 3—-7 The Z-relation (Carter, String Quartet No. 2).

In Example 3-8, the familiar beginning of the first of Schoenberg’s Piano
Pieces, Op. 11, the Z-relation creates a strong connection between the opening six-
note melody and the left-hand accompanimental figure that follows.

Any set with a Z in its name has a Z-correspondent, another set with a different
prime form but the same interval vector. On the set list in Appendix 1, the Z-related
hexachords are listed across from one another, but you will have to look through the
list for the Z-related sets of other sizes.
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Example 3-8 The Z-relation (Schoenberg, Piano Piece, Op. 11, No. 1).

Complement Relation

For any set, the pitch classes it excludes constitute its complement. The complement
of the set [3,6,7], for example, is [8,9,10,11,0,1,2,4,5]. Any set and its complement,
taken together, will contain all twelve pitch classes. For any set containing n ele-
ments, its complement will contain 12 — n elements.

There is an important intervallic similarity between a set and its complement.
You might think that whatever intervals a set has lots of, its complement will have
few of, and vice versa. It turns out, however, that a set and its complement always
have a proportional distribution of intervals. For complementary sets, the difference
in the number of occurrences of each interval is equal to the difference between the
size of the sets (except for the tritone, in which case the former will be half the latter).
If a tetrachord has the interval-class vector 021030, its eight-note complement will
have the vector 465472. The eight-note set has four more of everything (except for
the tritone, of which it has two more). The larger set is like an expanded version of its
smaller complement.

Because interval content is not changed by transposition or inversion, this
intervallic relationship remains in force even when the sets are transposed or in-
verted. Thus, even if the sets are not literally complementary (i.e., one contains the
notes excluded by the other), the intervallic relationship still holds so long as the sets
are abstractly complementary (i.e., members of complement-related set classes). For
example, [0,1,2] and [0,1,2,3,4,5,6,7,8] are not literal complements of each other. In
fact, all the members of the first set are contained in the second. However, they are
members of complement-related set classes and thus have a similar distribution of
intervals. Complement-related sets do not have as much in common as transposition-
ally or inversionally related sets, but they do have a similar sound because of the sim-
ilarity of their interval content.

The affinity of complement-related set classes extends beyond their intervallic
content. Complement-related set classes always have the same degree of symmetry
and thus the same number of sets in the class. If set X is Z-related to set Y, then the
complement of X will be Z-related to the complement of Y. There are the same num-
ber of trichord- and nonachord-classes (12), of tetrachord- and octachord-classes



94 Some Additional Relationships

(29), and of pentachord- and septachord-classes (38) (hexachords will be discussed
later). In each of these ways, sets and set classes resemble their complements.

The complement relation is particularly important in any music in which the
twelve pitch classes are circulating relatively freely and in which the aggregate (a
collection containing all twelve pitch classes) is an important structural unit.
Consider the relatively common situation at the beginning of Schoenberg’s String
Quartet No. 3, where a melody (here divided between first violin and cello) is accom-
panied by an ostinato that contains all the pitch classes excluded by the melody
(Example 3-9).
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Example 3-9 Complementary sets in melody and accompaniment (Schoenberg,
String Quartet No. 3).
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The melody and the accompaniment have a similar sound because they contain a
similar distribution of intervals.

The final four-note chord of the second of Schoenberg’s Little Piano Pieces,
Op. 19, is a form of 4-19 (0148), a set prominent throughout that piece and common
in much of Schoenberg’s music (Example 3-10).

4-19 (0148)
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Example 3-10 The complement relation (Schoenberg, Little Piano Piece, Op. 19, No. 2).

The last eight notes of the piece (which, of course, include that final four-note chord)
are a form of 8-19 (01245689), the complementary set class. Compare the interval-
class vectors of these two sets: the vector for 4-19 is 101310 and the vector for 8-19
is 545752. Both sets are particularly rich in interval class 4. In fact, no four- or eight-
note set contains more 4s than these do. And notice how prominently the 4s are fea-
tured in the music. Because of the complement relation, the final four-note chord
sounds similar to the larger eight-note collection of which it is a part.

The list of sets in Appendix 1 is arranged to make it easy to see the complement
relation. Complementary set classes are always listed right across from one another.
If you look up 4-19 (0148) and 8-19 (01245689), you will see that this is so. As a
further aid, the names of complementary sets always have the same number follow-
ing the dash. Thus, 4-19 and 8-19 are complements of each other, as are 3-6 and
9-6, 5-Z12 and 7-Z12, and so on. These features of the list make it very easy to look
up large sets. Say you have a nine-note set that you want to find on the list. You could
put it in prime-form and look it up, but that would be a time-consuming operation
since the set is so big. It is far easier to take the three notes excluded by the nine-note
set and put them in the prime-form, then look up that trichord on the list—the prime-
form of the original nine-note set will be directly across from it.

You may notice that there are some sets, exclusively hexachords, that have
nothing written across from them. Hexachords like that are self-complementary—
they and their complements are members of the same set class. For a simple example,
consider the hexachord [2,3,4,5,6,7]. Its complement is [8,9,10,11,0,1]. But both of
these sets are members of set class 6-1 (012345). In other words, self-complementary
hexachords are those that can map onto their complements under either T, or T L.

If a hexachord is not self-complementary, then it must be Z-related to its com-
plement. Remember that, with complementary sets, the difference in the number of
occurrences of any interval is equal to the difference in the size of the two sets. But a
hexachord is exactly the same size as its complement. As a result, a hexachord
always has exactly the same interval content as its complement. If it is also related to
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its complement by T_or T I, then it is self-complementary. If not, then it is Z-related
to its complement. The hexachords on the list are thus either written with nothing
across from them or they are written across from their Z-correspondents. This inter-
vallic relationship between complementary hexachords is extremely important for
twelve-tone music, and we will discuss it further in subsequent chapters.

Subset and Superset Relations

If set X is included in set Y, then X is a subset of Y and Y is a superset of X. A set of n
elements will contain 2" (2 to the nth power) subsets. A five-note set, for example,
will contain the following subsets: the null set (a set containing no elements), five
one-note sets, ten two-note sets (these are also called intervals), ten three-note sets,
five four-note sets, and one five-note set (the original set itself). That makes a total of
23 (2 to the 5th power) or thirty-two subsets. The null set, the one-note sets, and the
set itself will usually not be of particular interest as subsets. Even so, that still leaves
lots of subsets to be considered (2" — (n + 2)), and naturally, the bigger the set the
more numerous the subsets.

In order not to be overwhelmed by the possibilities, there are two things to bear
in mind. First, some of the subsets may be members of the same set class. Consider set
class 4-25 (0268), for example, which is something of an extreme case. As Figure
3~11 shows, all of its three-note subsets are members of the same set class, 3-8 (026).

The set Its subsets Their set-names and prime forms
\qu,mu — 3-8(026)
~Z—16,8,0] 3-8 (026)
2 O 1502 —————— 3-8 29)
[0,2,6] ——— 3-8 (026)
Figure 3-11

Most set classes are not as restricted in their subset content as this one, but there is
often some redundancy.

To get a complete picture of the subset content of a set, it may be useful to con-
struct an inclusion lattice, which lists all of the subsets of a given set as well as the
subsets of those subsets. Figure 3—12 contains an inclusion lattice for set-class 6-20

6-20 (014589)

5-21 (01458)

N

4-7 (0145) 4-17 (0347) 4-19 (0148) 4-20 (0158)

| o s

3-3(014) 3-4 (015) 3-11 (037) 3-12 (048)
. Figure 3-12
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(014589), a set class also known as the hexatonic collection (to be discussed in
Chapter 4). All six of the five-note subsets of 6-20 are members of set-class 5-21.
The five four-note subsets of 5-21 in turn represent four different tetrachord classes,
and these contain certain trichord classes as their subsets.

The final six-note chord of Schoenberg’s Op. 19, No. 2 (discussed earlier with
reference to Example 3-10), is a member of set-class 6-20—see Example 3-11.
Schoenberg has arranged the chord so that its highest and lowest four notes represent
set-class 4—19 and its highest and lowest three notes are augmented triads (set-class
3-12). Comparing the music in Example 3—11 with the inclusion lattice in Figure
3-12 gives a sense of what Schoenberg did in relation to what he might have done.

n

) #| _vm

h——¢ a1

Example 311 Set-class 6-20 (014589) arranged to project two forms of set-class
4-19 (0148) as registral subsets (Schoenberg, Little Piano Piece, Op. 19, No. 2).

That brings us to the second important limitation on the otherwise vast world
of subsets and supersets: only a small number will be musically significant in any
specific musical context. Like any six-note set, the final sonority of Schoenberg’s
Little Piano Piece contains many subsets, but only a small number of those can be
heard as meaningful musical groupings, identified by shared register or articulation.
For example, it makes no musical sense to combine the G in the middle register with
the top three notes—F#, Bb, D—even though that combination creates another form
of set class 4-19 (0148). Those four notes simply don’t belong together musically.
With the same final six-note sonority, Schoenberg could have grouped G, F¥, Bb, and
D together, but chose not to. Similarly, he could have revoiced the sonority to empha-
size subsets that were members of set classes other than 4-19, but again he chose not
to. The subsets of a set are a kind of abstract musical potential; the composer chooses
which to emphasize and which to repress.

As with the complement relation, the subset/superset relation can be either lit-
eral or abstract. Set X is a literal subset of Set Y if all of the notes of X are contained
in Y. Set X is the abstract subset of Set Y if any transposed or inverted form of X is
contained in Y, that is, if any member the set class that contains X is found among the
subsets of Y. [E, E, G] is the literal subset of [Ct, D, E, F, G]. The T transposition of
[E, F, G, [A, Bb, C], is not a literal subset of [Ct, D, E, F, G]. But the set-class that
contains it, 3-2 (013), can be found among the literal subsets of [C}, D, E, F, G]—
both [Ct, D, E] and [E, F, G] represent it. So [A, Bb, C] is an abstract, not a literal,
subset of [C}, D, E, F, G]. In the same abstract sense, we would say that set-class 3—2
is a subset of set-class 5-10.
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In both the literal and abstract senses, these “inclusion” relations are not as
strong as many of the relationships discussed earlier, like the Z-relation or the comple-
ment relation, but can still be musically interesting. Smaller collections can frequently
be heard combining into larger ones and larger collections dividing into smaller ones.

Transpositional Combination

The process of combining smaller sets to form larger ones and dividing larger sets into
smaller ones is particularly interesting when the smaller sets are related by inversion or
transposition. We have already discussed inversional symmetry. Any time you combine
two sets related by inversion, you get a set that is inversionally symmetrical. Con-
versely, any inversionally symmetrical set can be divided into at least one pair of inver-
sionally related subsets. Transpositional combination (TC) is the combination of a set
with one or more transpositions of itself to create a larger set. The larger set, which can
then be divided into two or more subsets related by transposition, is said to have the TC
property, and sets with this property have often proven of interest to composers.

In Example 3-12, from Stravinsky’s Symphony of Psalms, the bass part (cellos
and contrabasses) begins with ip3, F-Ab.
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Example 3-12 Transpositional combination (Stravinsky, Symphony of Psalms,
first movement).
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Another ip3, E-G, follows immediately a semitone lower. That combination of two
3s a semitone apart is written 3*1, where the asterisk stands for “transposed by.” One
also could think of the figure as two semitones (E-F and G-Ab) related at T, or 1*3.
Either way, that combination of 1 and 3 produces a form of sc4-3 (0134). The same
combination produces a different member of the same set class, [Bb, B, Ct, D] in the
alto voice (oboes and english horn). These two tetrachords, created by transpositional
combination, are themselves combined at T to create an eight-note set. We can sum-
marize the process as: (3*1) * 6. In other words, a 3 is transposed by 1, and the result-
ing tetrachord is transposed at T,. The passage can thus be built up from its smallest
components through transpositional combination.

Contour Relations

Throughout this book thus far we have focused on pitches, pitch classes, and their
intervals. We have explored ways that lines and sets of pitches and pitch classes can
move through and be related in pitch-space and pitch-class space. And the relation-
ships have been, in some cases, quite abstract. As listeners, we may sometimes find it
easier to attend to the general shapes of music, its motions up and down, higher and
lower. These are aspects of musical contour. To make sense of musical contour, we
do not need to know the exact notes and intervals; we only need to know which notes
are higher and which are lower.

Compare three four-note fragments from a melody from Crawford’s String
Quartet (see Example 3-13).
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Example 3-13 A recurring contour-segment (CSEG) (Crawford, String Quartet,
first movement, mm. 6-7).

The fragments are intervallically distinct, and represent three different set classes.
But their contours are the same. Each begins on its second-highest note, continues
with its lowest and its second-lowest notes, and concludes on its highest note. In
Example 3-13, that contour is represented as a string of numbers enclosed within
angle-brackets: <2013>. The notes in each fragment are assigned a number based on
their relative position in the fragment. 0 is assigned to the lowest note, 1 to the next-
lowest, and so on. The highest note will always have a numerical value that is 1 less
than the number of different notes in the fragment. The numbers are then arranged, in
order, to describe the musical contour. <2013> is a contour segment, or CSEG, and
this intervallically varied melody is unified, in part, by three presentations of that
single CSEG. ;
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At the end of the movement, the second violin has a varied version of the same
melody (see Example 3-14).
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Example 3-14 Members of a CSEG-class (Crawford, String Quartet, first move-
ment, mm. 72-75).

The notes are different, but the same CSEG, <2013> is represented three times
(Example 3-14a). The CSEG created by the four notes beginning on D is <1320>
(Example 3-14b). <2013> and <1320> are related by inversion. The highest note in
one is replaced by the lowest note in the other, the second-highest by the second-
lowest, and so on. They are mirror images of each other. And just as when we com-
pare two lines of pitch classes, the numbers in the corresponding order positions
always add up to the same sum, in this case 3. One additional CSEG, <0231>, occurs
twice (Example 3-14c). <0231> and <1320> are retrograde-related—each is the
same as the other written backwards. Similarly, <0231> and <2013> are related by
retrograde-inversion—each is the inverted and backwards version of the other.

Like pitch-class sets, CSEGs can be gathered into CSEG-classes. CSEGs
related by inversion, retrograde, or retrograde-inversion belong to the same CSEG-
class. The three CSEGs of Example 3-14, and one more that is not shown, <3102>,
are the four members of a single CSEG-class. Crawford’s violin melody seems to be
interested in the reshaping of this basic shape. Of the four members of this CSEG-
class, we select the one that begins on the lowest note to act as prime form. Crawford’s
melodic fragments all belong to the CSEG-class with prime-form <0231>.

The CSEG-classes for CSEGs of three and four notes are listed in Figure 3-13
(the CSEG-classes proliferate rapidly after that). Approaching contour in this way
permits us to discuss musical shapes and gestures with clarity, but without having to
rely on more difficult discriminations of pitches, pitch-classes, and their intervals.
Contour can be particularly revealing, however, when studied in relationship to pitch
and pitch class. There, it becomes possible to discuss similarities of shape in the pre-
sentation of different set classes and, conversely, the divergent shapes given to mem-
bers of the same set class. .

Contour can also be useful in talking about musical elements other than pitch.
In Example 3-15, a measure from a piano piece by Stockhausen, the right-hand
melody (D7-Ct6-C5-G5) and its dynamics (fff—ff-pp—p) can both be understood as
expressing CSEG <3201>. Just as the pitches move from highest to second-highest
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Name Prime-form

3-1 <012>

3-2 <021>

4-1 <0123>
4-2 <0132>
4-3 <0213>
4-4 <0231>
4-5 <0312>
4-6 <0321>
4-7 <1032>
4-8 <1302>

Figure 3-13

to lowest to second-lowest, the dynamics move from loudest to second-loudest to
softest to second-softest. The pitch contour and the dynamic contour are the same.

Example 3-15 Same contour, CSEG <3201>, expressed in both pitch and dynam-
ics (Stockhausen, Klavierstiick I1, m. 14).

Contour can be particularly valuable as a way of talking about music that is
indefinite as to pitch, like a lot of experimental music written since 1950. Example
3-16 shows the opening of Morton Feldman’s Projection No. 1 for Solo Cello. The
dotted lines function as batlines, and each measure contains four beats (at a tempo of
beat = 72). Each square or rectangle indicates a musical event, and the duration of the
event is shown by the length of the rectangles, which last for between one and five
beats in this passage. There are three different timbres indicated (diamond = harmonics;
P = pizzicato; A = arco) and, within each timbre, relative pitch is indicated by the ver-
tical position of the square or rectangle. The first three pizzicato notes, for example,
fall in a middle register, a low register, and then a high register—they thus describe
CSEG <102>. Now consider the temporal distance between the pizzicato notes: four
beats from the first note to the second; one beat from the second to the third; and eight
beats from the third to the fourth. That durational contour also can be described by
CSEG <102>: a medium duration followed by a short duration and then a long dura-
tion. Similar kinds of patterning can be found elsewhere in the piece, structuring the
pitches and the durations both independently and in relation to each other.
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Example 3-16 Same contour, CSEG <102> expressed by both pitch and duration
(Feldman, Projection No. 1 for Solo Cello).

A complete piece by John Cage is shown in Example 3—17. The piece consists
of four events, indicated by dots, and these occur at the times indicated below the
graphics—the first two events occur between thirty-six and sixty seconds after the
beginning of the piece and the third and fourth events occur between 1:24 and 1:36.
The first two events are to be played in some way that does not involve the piano (that
is the meaning of the letter A, for “auxiliary sounds”) while the last two events are to
be played in the interior of a piano (I stands for “interior”’). Beyond that, each of the
four events is characterized by four qualities: (1) duration, measured by proximity to
the dotted line labeled D; (2) dynamics, measured by position between the solid lines
marked soft and loud; (3) pitch, measured by distance from the dotted line labeled F,
which indicates the lowest frequencies; and (4) timbre, measured by distance from
the line marked T, which indicates the woiom.ﬁ possible overtones. Within each of
those four domains, the four events of the piece describe a particular contour:

Durations: <1230> Dynamics: <1302> Pitch: <3201> Timbre <2031>

All are different, which may suggest the structural heterogeneity of this work, its
resistance to analytical coherence. By contrast, the dynamic and timbre contours are
inversions of each other, that is, the louder the note the least rich in overtones, and the
richer in overtones the softer. That may suggest some degree of coordination among
the dimensions. Either way, contour provides a useful vantage point for apprehend-
ing the piece. 2

Example 3-17 Contours of duration, dynamics, pitch, and timbre (Cage, For Paul
Taylor and Anita Dencks).
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Composing-Out

To organize the larger musical spans and draw together notes that may be separated
in time, composers of post-tonal music sometimes enlarge the motives of the musical
surface and project them over significant musical distances. This musical procedure
is sometimes called composing-out—we would say that a motive from the musical
surface is composed-out at a deeper level of structure (other related terms are
“enlargement,” “concealed repetition,” “motivic parallelism,” “nesting,” and “self-
similarity”).

Example 3-18 shows the first four vocal phrases of a song by Webern. The
melody begins with four notes: D-Db—E>—Gb. The same notes, in the same order, are
composed-out as the first notes of the four vocal phrases (Example 3—18A). A some-
what more subtle kind of composing-out involves the last four notes of the first
phrase: F-Ab—E-Bb (Example 3-18B). These return, reordered and transposed at T,
in the last notes of the four vocal phrases. The boundary notes at the beginning and
ends of phrases thus compose-out the notes and intervals of the musical surface.
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Example 3-18 Composing-out (Webern, Song, Op. 3, No. 1).
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In the aria from Thea Musgrave’s Mary Queen of Scots shown in Example
3-19, the accompaniment consists of a single chord, E—~A-D, which is transposed
downward and then back up to its starting point. The same three notes, although in
different order and registral arrangement, are also stated as the long notes within the
vocal line. Two additional statements of the same set class—3-5 (016)—may be
found within the vocal line, and these are indicated in Example 3—19. In this way, the
notes of a harmony are composed-out melodically over the span of an entire phrase.
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Example 3-19 Composing-out (Musgrave, Mary, Queen of Scots, excerpt from Act III).

Example 3-20 reproduces the first section of the first of Schoenberg’s Piano
Pieces, Op. 11, a passage we have already looked at several times. We noted previ-
ously the extent to which set class 3-3 (014) pervades the musical surface. Example
3-20 shows two large-scale statements of the same set class, one in the upper voice
and one in the bass. As we observed in Chapter 2, the three melodic high points,
B-G-Gi, constitute a large-scale statement of set class 3-3. These three pitches,
widely separated in time, are associated by their shared register and contour position.
Furthermore, these are the same three pitches with which the piece began.

A similar thing happens in the bass. The left-hand part begins with two chords
(measures 2-3); the bass notes are Gb and Bb. After contrasting material, two more
chords are heard at the end of the section (measures 10-11); the bass notes now are
Gb and G. That final G completes a large-scale statement of another form of set class
3-3. These three pitches, G—Bb—G, are associated by their shared register and articu-
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Example 3-20 Large-scale statements, in soprano and bass, of set class 3-3 (014)
(Schoenberg, Piano Piece, Op. 11, No. 1).

lation. Like the large-scale melodic statement, this large-scale bass statement draws
together and unifies this section of music.

Linear projections of this kind may extend over very large spans of music,
including entire pieces. Stravinsky’s ballet Les Noces (The Wedding) begins with the
melody in Example 3-21a, which consists of [B, D, E] (the grace note Ft is
excluded). At the beginning of the third scene of the ballet, that set is transposed two
semitones higher and repeated with extraordinary insistence (Example 3-21b). The
ballet concludes with a protracted coda that consists of slow, obsessive repetitions of
still another transposition of the original fragment, now five semitones below the
original: [G#, B, Ct] (Example 3-21c). The large-scale progression, one that spans
the entire ballet, thus composes-out the intervallic shape of the original motive
(Example 3-21d). Here is composing-out over a truly monumental span!
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Example 3-21 Composing-out (Stravinsky, Les Noces).
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One useful way of describing the voice leading of post-tonal music involves attend-
ing to the pitch-class counterpoint created by transposition and inversion. As we have
seen, transposition and inversion involve mapping notes from one set to the next.
Those mappings can be understood to comprise post-tonal voices, which move
through the musical texture.
In Example 3-22, from a song by Webern, the boxed chords are all members of
set-class 3-5 (016).
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Example 3-22 Transformational voice leading (Webern, Songs, Op. 14, “Die
Sonne,” mm. 23-24).

The horizontal and diagonal lines trace the pitch-class mappings induced by the
specified operations. Three voices move through the progression. One begins on E
and moves down to the bottom of the third chord before returning to its original posi-
tion in the highest register. The middle and lowest voices also move through the
chords and return to their original position at the end. The second level of the analysis
simplifies the five-chord progression into two inversional moves, each of which
exchanges the vocal part with the lowest sounding part. Finally, the third level
describes the progression as the transposition at T, (actually a pitch transposition
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down four semitones) of the first chord onto the last chord. At each level, the har-
monies are bound together by the motions of the voices.

The passage in Example 3-23, from Webern’s Movements for String Quartet,
Op. 5, No. 3, consists of groups of two or three chords, all members of set-class 3-3
(014), interspersed with canonic interjections.
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Example 3-23 Transformational voice leading (Webern, Movements for String
Quartet, Op. 5, No. 3, mm. 1-8).

The instrumentation and registration of the chords reflects their voice leading to a
remarkable degree, exclusively so in the first violin, and one with one brief voice
crossing in the second violin and viola.

The second level of the analysis isolates one chord from each group of chords:
the first chord from the first group and the last chord in each group thereafter. The
intervals of transposition—T, T,, and T,—are the same as the intervals contained
within set-class 3-3 (014), which is the chord being transposed. The voice leading
thus follows a motivic path. ]

Another movement from the same piece also involves a progression of chords
in the upper three instruments (see Example 3-24). These six chords represent three
different set classes: the first and second chords are related by transposition, as are
the third, fourth, and fifth chords. The analytical problem is to connect the second
chord to the third and the fifth chord to the sixth. In a situation like this, it may be use-
ful to imagine that the chords are almost-but-not-quite related by transposition (or
inversion). In the progression from the second chord to the third, we can describe the

relationship as a quasi-T, or a fuzzy-T,: three of the voices deviate from T,, but they .

do so as little as possible, by only a semitone each (Example 3-24a). In moving from
the fifth chord to the sixth, the deviation from an actual transposition is even
smaller—only one voice is off, and.it’s off by only one semitone. Transpositions (or
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Example 3-24 Transformational voice leading, with fuzzy transposition (Webern,
Movements for String Quartet, Op. 5, No. 5).

inversions) that are a bit off are designated with an asterisk and the amount of the
deviation, known as the offset, is indicated in parentheses. In the voice leading, actual
mappings are shown with a solid line, fuzzy mappings with a dotted line.

In this passage, the individual transpositional moves combine to create a single,
larger transpositional move: from the first chord to the last is a fuzzy-transposition
at *T, with an extremely small offset of only two semitones (Example 3-24b). The
progression as a whole, embracing members of three different set classes, can thus be
heard as a single, unified gesture, with clear, parallel voice leading.

Of course, the voice leading does not have to be parallel. In the passage shown
in Example 3-25, there are five chords representing four different set classes. The
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fuzzy transpositions and inversions that connect the chords produce a voice leading
in which the voices cross.
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Example 3-25 Transformational voice leading, with fuzzy transposition and inversion
(Sessions, Piano Sonata, first movement).

Atonal Pitch Space

In discussing voice leading, we were talking about actual sets of pitch classes and the
ways in which individual notes in one set move onto individual notes in another. It is
also possible to talk more abstractly about the voice leading between and among set
classes. Given a set belonging to one set class, we might ask how much semitonal
adjustment would be necessary to turn it into a member of a different set class.

As an example, take the trichord [G, A, B], a member of sc(024). Let’s see
what happens if we adjust each of its notes, in turn, either up or down by semitone.
We would get six different trichords representing three different set classes:

[Gt, A, B] = (013)
[Fi, A, B] = (025)
[G, Ab, B] = (014)
[G, Bb, B] = (014)
[G, A, Bb] = (013)
[G, A, C] = (025)
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In general terms, we can say that sc(024) is offset by a distance of only one
voice-leading semitone from sc(013), sc(014), and sc(025). If we applied the same

procedure to all of the trichord-classes, we would end up with a map like the one in
Example 3-26.

Example 3-26 Voice-leading space for trichords.

In this voice-leading space, the trichords are shown in relative proximity to each
other. The closer two trichords are on the map, the less semitonal distance there is
between them. Each line on the map represents one semitone of offset (that is, one
semitone of voice-leading adjustment or voice-leading distance), and the distances
accumulate in a consistent way. From (012), one semitone of offset will take you to
(013), two semitones of offset will take you to (014) or (024), three semitones of off-
set will take you to (015) or (025), and so on, up to the maximum of six semitones of
offset between (012) and (048).

As the size of the sets increases, it becomes harder to represent the space on
a two-dimensional page. But the trichordal map in Example 3-26 suggests the
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possibility of understanding a passage of music as a journey through a voice _om&:m
space defined by semitonal offset—sometimes the moves will be to nearby destina-
tions, involving only a small amount of adjustment; other times the music may make
large harmonic leaps.
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