
APPROVED: 

David Bard-Schwarz, Major Professor 
Andrew May, Minor Professor 
Thomas Sovík, Committee Member 
Frank Heidlberger, Chair of the Department 

of Music History, Theory, and 
Ethnomusicology 

Benjamin Brand, Director of Graduate 
Studies 

James C. Scott, Dean of the College of 
Music 

Costas Tsatsoulis, Interim Dean of the 
Toulouse Graduate School 

ALGORITHMIC MUSIC ANALYSIS: A C ASE STUDY OF A PRELUDE 

FROM DAVID COPE’S “FROM DARKNESS, LIGHT” 

Reiner Krämer, B.M., M.M. 

Dissertation Prepar ed for the Degree of 

DOCTOR OF P HILOSOPHY 

UNIVERSITY OF  NORTH TEXAS 

May  2015 



Krämer, Reiner. Algorithmic Music Analysis: A Case Study of a Prelude from 

David Cope’s “From Darkness, Light.” Doctor of Philosophy (Music Theory), May 2015, 

433 pp., 16 tables, 57 figures, 125 examples, bibliography, 278 titles. 

The use of algorithms in compositional practice has been in use for centuries. 

With the advent of computers, formalized procedures have become an important part of 

computer music. David Cope is an American composer that has pioneered systems that 

make use of artificial intelligence programming techniques. In this dissertation one of 

David Cope’s compositions that was generated with one of his processes is examined 

in detail. A general timeline of algorithmic compositional practice is outlined from a 

historical perspective, and realized in the Common Lisp programming language as a 

musicological tool. David Cope’s compositional output is summarized with an 

explanation of what types of systems he has utilized in the analyses of other 

composers’ music, and the composition of his own music.  

Twentieth century analyses techniques are formalized within Common Lisp as 

algorithmic analyses tools. The tools are then combined with techniques developed 

within other computational music analyses tools, and applied toward the analysis of 

Cope’s prelude. A traditional music theory analysis of the composition is provided, and 

outcomes of computational analyses augment the traditional analysis. The outcome of 

the computational analyses, or algorithmic analyses, is represented in statistical data, 

and corresponding probabilities. From the resulting data sets part of a machine-learning 

technique algorithm devises semantic networks. The semantic networks represent 

chord succession and voice leading rules that underlie the framework of Cope’s 

prelude. 



Copyright 2015 

by 

Reiner Krämer  

ii 



ACKNOWLEDGEMENTS 

All musical and code examples in this dissertation that were authored, co-written, 

or composed by David Cope, are used with his permission. 

iii 



TABLE OF CONTENTS 

Page 

ACKNOWLEDGEMENTS ............................................................................................... iii 

LIST OF TABLES ............................................................................................................ vi 

LIST OF FIGURES ......................................................................................................... vii 

LIST OF EXAMPLES ...................................................................................................... x 

LIST OF ABBREVIATIONS ........................................................................................... xvi 

CHAPTER 1 INTRODUCTION ........................................................................................ 1 

1.1  Overview .................................................................................................... 1 

1.2 Running Code Example in Clozure CL ...................................................... 7 

CHAPTER 2 ALGORITHMS ......................................................................................... 11 

2.1 What is an Algorithm? .............................................................................. 11 

CHAPTER 3 ALGORITHMIC PRACTICE IN MUSIC .................................................... 23 

3.1 Introduction .............................................................................................. 23 

3.2 Before the Twentieth Century .................................................................. 24 

3.3 Algorithmic Practice in the Twentieth Century ......................................... 86 

CHAPTER 4 DAVID COPE ......................................................................................... 108 

4.1 On David Cope ...................................................................................... 108 

4.2 Emmy ..................................................................................................... 121 

4.3 Emily Howell .......................................................................................... 140 

4.4 Cope’s Algorithmic Analyses ................................................................. 156 

CHAPTER 5 ALGORITHMIC ANALYSIS .................................................................... 158 

5.1 Brief History ........................................................................................... 158 

iv 



5.2 Current Systems .................................................................................... 160 

5.3 Set Theory Analysis ............................................................................... 163 

CHAPTER 6 ANALYSIS .............................................................................................. 195 

6.1 General Remarks ................................................................................... 195 

6.2 FDL-1 ..................................................................................................... 200 

6.3 Future Analysis Directions ..................................................................... 347 

CHAPTER 7 CONCLUSION ....................................................................................... 371 

APPENDIX A SCORES ............................................................................................... 379 

APPENDIX B CODE EXAMPLES ............................................................................... 398 

BIBLIOGRAPHY ......................................................................................................... 413 

v 



LIST OF TABLES 

Page 

Table 3-1:  Guido's vowel array assignment algorithm (Guido-1) .............................. 28 

Table 3-2:  Matrix from lines 4-8 ................................................................................ 52 

Table 3-4:  Josquin's Missa Hercules Dux Ferrariae subject ..................................... 56 

Table 3-5:  Soggetto Cavato pitch-vowel assignment ................................................ 56 

Table 4-1:  David Cope works .................................................................................. 114 

Table 4-2:  Miscellaneous writings ........................................................................... 119 

Table 4-3:  Published music of Emmy ...................................................................... 136 

Table 4-4:  Works completed with the aid of Emily Howell ....................................... 156 

Table 5-1:  SC differences ....................................................................................... 183 

Table 6-1:  Chord successions in FDL-1 .................................................................. 209 

Table 6-2:  SC Succession probabilities and rules in FDL-1 .................................... 332 

Table 6-3:  PCST0 succession rules - FDL-1 background ....................................... 334 

Table 6-4:  PCS succession rules - FDL-1 middleground ........................................ 337 

Table 6-5:  PCCs from strands succession rules - FDL-1 middleground ................. 341 

Table 6-6:  PC voice-leading derived from reassembled PCCs ............................... 342 

Table 6-7: PC voice-leading rules - FDL-1 foreground ............................................ 345 

vi 



LIST OF FIGURES 

Page 

Figure 1-1: Clozure CL listening window ................................................................... 8 

Figure 1-2: Typing functions directly into the REPL .................................................. 9 

Figure 1-3: Evaluating an expression at the REPL ................................................... 9 

Figure 1-4: Opening a .lisp file and evaluating a function from script at the REPL . 10 

Figure 3-1: Guido-1 algorithm represented in modern notation .............................. 29 

Figure 3-2: Guido-2 algorithm applied to a line of text ............................................ 29 

Figure 3-3: Guido's second algorithm outcome ....................................................... 32 

Figure 3-4: Detractor est - Talea ............................................................................. 40 

Figure 3-5: Detractor est - Color ............................................................................. 40 

Figure 3-6: Detractor est - tenor, Talea and Color combined .................................. 41 

Figure 3-7: Guillaume Machaut's Ma fin, first 20 measures, tenor .......................... 45 

Figure 3-8: Guillaume Machaut's Ma fin, following 20 mm. retrograde (tenor) ........ 46 

Figure 3-9: Gradual Benedicta ................................................................................ 48 

Figure 3-10:  Versus Omnis curet homo .................................................................... 49 

Figure 3-11:  Musical acrostics - Ut queant laxis ....................................................... 57 

Figure 3-12:  Kepler's seven "melodies." ................................................................... 59 

Figure 4-1: Associative network showing learned voice-leading procedures ........ 154 

Figure 4-2: Associate network showing chord successions .................................. 155 

Figure 5-1: Input/Output Formats .......................................................................... 162 

Figure 6-1: Algorithmic shorthand notation of BWV 846a ..................................... 198 

Figure 6-2: BWV 846a as blocked chords ............................................................. 199 

vii 



Figure 6-3: BWV 846b, M. 1 - repetition as ornamentation ................................... 202 

Figure 6-4: BWV 846b, M. 1 - stretched ................................................................ 203 

Figure 6-5: BWV 846b, M. 1 - arpeggio integration, octave displacement & slice . 203 

Figure 6-6: BWV 846b, M. 1 - final transformations .............................................. 204 

Figure 6-7: Chord-A .............................................................................................. 205 

Figure 6-8: Chained FDL-1 algorithm .................................................................... 208 

Figure 6-9: Pitch space histogram of FDL-1, sorted by MIDI ................................ 220 

Figure 6-10:  Pitch space histogram of FDL-1, sorted by count ............................... 221 

Figure 6-11:  PC histogram FDL-1, sorted by PCs .................................................. 225 

Figure 6-12:  PC histogram FDL-1, sorted by count ................................................ 227 

Figure 6-13:  Compressed chord voice-leading graph ............................................. 273 

Figure 6-14:  One-to-one chord reduction graph ...................................................... 282 

Figure 6-15:  Graphed zeroed strands ..................................................................... 284 

Figure 6-16:  SC semantic network - FDL-1 background ......................................... 333 

Figure 6-17:  PCST0 semantic network - FDL-1 background .................................. 335 

Figure 6-18:  PCS semantic network - FDL-1 middleground .................................... 340 

Figure 6-19:  Semantic network - PC voice-leading - FDL-1 middleground ............. 344 

Figure 6-20:  Semantic network PC voice-leading rules - FDL-1 foreground ........... 346 

Figure 6-21:  WPC Prelude 15 in G Major (mm. 1-20) ............................................. 349 

Figure 6-22:  WPC Prelude 26 in C Minor (mm. 1-6) ............................................... 349 

Figure 6-23:  WPC Prelude 44 in A Minor (mm. 1-15) ............................................. 350 

Figure 6-24:  WTC Prelude 1 in C Major (mm. 1-8) ................................................. 350 

Figure 6-25:  WTC Prelude in C Minor (mm. 1-6) .................................................... 351 

viii 



Figure 6-26:  Praeambulum, BWV 924 (mm. 1-6) .................................................... 351 

Figure 6-27:  Prelude, BWV 999 (mm. 1-12) ............................................................ 352 

Figure 6-28:  Prelude, BWV 1007 (mm. 1-8) ............................................................ 352 

Figure 6-29:  Andante sostenuto - After Beethoven (mm. 1-16) .............................. 353 

Figure 6-30:  Adagio sostenuto - Sonata 14 - Beethoven (mm. 1-6) ........................ 353 

Figure 6-31:  MIDI pitch histogram from CSV .......................................................... 358 

Figure 6-32:  Histogram of note count from CSV ..................................................... 359 

Figure 6-33:  Clustered histogram of FDL-1, and WPC Prelude 26 ......................... 365 

ix 

Figure A-1:      Ma fin est mon commencement............................................................ 380 

Figure A-2:      BWV 1087: Verschiedene Canones über die ersten acht 
      Fundamental-Noten vorheriger Arie.................................................... 382 

Figure A-3:     From Darkness, Light: I. Prelude - Emily Howell (David Cope)........... 383 

Figure A-4:     Prelude 26 in C Minor from the Well-Programmed Clavier - Emmy... .391 

Figure A-5:     BWV 846b - Prelude 1 in C Major from the Well-Tempered Clavier - 
     J. S. Bach.......................................................... ..................................396 



LIST OF EXAMPLES 

Page 

Example 2-1:  Euclidian algorithm in pseudo code .................................................... 17 

Example 2-2:  Parsing the Euclidian algorithm in pseudo code ................................. 17 

Example 2-3:  Euclidian algorithm in Lisp .................................................................. 18 

Example 2-4:  Traced recursion of the euclid function in Common Lisp .................... 19 

Example 3-1:  Guido’s Micrologus algorithm 2 in Lisp ............................................... 31 

Example 3-2:  Guido's Micrologus algorithm 1 & 3 in Common Lisp ......................... 34 

Example 3-3:  Outcome of Example 3-2 .................................................................... 36 

Example 3-4:  Isorhythmic algorithm in Lisp .............................................................. 42 

Example 3-5:  Outcome of Example 3-4 .................................................................... 44 

Example 3-6:  Retrograde algorithm .......................................................................... 47 

Example 3-7:  Inversion algorithm (as seen in Figure 3-9) ........................................ 52 

Example 3-8:  Outcome of the inversion algorithm .................................................... 54 

Example 3-9:  Transposition ...................................................................................... 68 

Example 3-10:  Augmentation and diminution ............................................................. 69 

Example 3-11:  Steinhaus-Johnson-Trotter permutations algorithm in Common Lisp . 73 

Example 3-12:  The 24 permutations of PCC {0, 3, 7, T} ............................................. 74 

Example 3-13:  Creating a random tone row from a PCC ........................................... 89 

Example 3-14:  Six 12-tone series generated with the Fisher-Yates algorithm ........... 90 

Example 3-15: Generating Schoenberg's 48 forms .................................................... 92 

Example 3-16:  Outcome of Example 3-15 .................................................................. 96 

Example 4-1:  Cope's intervallic inversion function in current Common Lisp ........... 123 

x 



Example 4-2:  A simple semantic network in Common Lisp .................................... 147 

Example 4-3:  Sentences exchanged between Apprentice and user ...................... 149 

Example 4-4:  Nodes and weighed edges produced by Apprentice ........................ 149 

Example 4-5:  Sentences exchanged between Apprentice and user in German ..... 150 

Example 4-6:  Nodes with weighed edges in German ............................................. 151 

Example 4-7:  Monophonic musical conversation with Apprentice ......................... 152 

Example 4-8:  Notes with weighted voice-leading ................................................... 153 

Example 4-9:  Node/edge weights from a harmonic conversation ........................... 155 

Example 5-1:  Musical event representation as summarized in Virtual Music ......... 163 

Example 5-2:  Set-Theory-Functions.lisp library global variables ............................ 165 

Example 5-3:  The utility safe-sort function in Set-Theory-Functions.lisp ................ 165 

Example 5-4:  Finding a complementary set ........................................................... 167 

Example 5-5:  Transposition in Set-Theory-Functions.lisp ...................................... 168 

Example 5-6:  Inversion in Set-Theory-Functions.lisp ............................................. 169 

Example 5-7:  CPP-Forms ....................................................................................... 170 

Example 5-8:  Finding rotations - normal form ......................................................... 171 

Example 5-9:  Finding intervals between first and last pitches in rotated PCCs ...... 172 

Example 5-10:  List of keys (Intervals) from previous example ................................. 173 

Example 5-11:  Finding the smallest key from a group of sets .................................. 173 

Example 5-12:  Finding rotations with duplicate keys ................................................ 174 

Example 5-13:  Finding the interval from first PC to second to last PC ..................... 175 

Example 5-14:  Pulling all subroutines together to find normal form .......................... 176 

Example 5-15:  Normal form ...................................................................................... 177 

xi 



Example 5-16:  Normal form T0 in Set-Theory-Functions.lisp ................................... 178 

Example 5-17:  Finding all transpositions of a PCC................................................... 179 

Example 5-18:  Finding all inversions of a PCC ........................................................ 180 

Example 5-19:  Prime form in Set-Theory-Functions.lisp .......................................... 181 

Example 5-20:  Finding interval vectors ..................................................................... 183 

Example 5-21:  Enumerating interval types in a set................................................... 184 

Example 5-22:  Interval vectors in Set-Theory-Functions.lisp .................................... 185 

Example 5-23:  Calculating transpositional relationships between two sets .............. 186 

Example 5-24:  Calculating index sums between PCs .............................................. 188 

Example 5-25:  Calculating inversional relationships between Two PCCs ................ 189 

Example 5-26:  Batch processing relationships ......................................................... 192 

Example 6-1:  Counting pitches in a composition .................................................... 213 

Example 6-2:  Finding the range of a composition .................................................. 215 

Example 6-3:  Pitch space range of FDL-1 .............................................................. 216 

Example 6-4:  Generating data for a pitch space histogram in Common Lisp ......... 218 

Example 6-5:  Creating a PC histogram in Common Lisp ....................................... 223 

Example 6-6:  Analysis prototype - global variable bindings .................................... 231 

Example 6-7:  Analysis prototype - counting measures ........................................... 234 

Example 6-8:  Analysis prototype - selecting a part ................................................. 236 

Example 6-9:  Analysis prototype - grouping musical events by measure numbers 239 

Example 6-10:  Analysis prototype - selecting a measure range ............................... 242 

Example 6-11:  Selected m. 1 - MIDI representation ................................................. 244 

Example 6-12:  Analysis prototype - segmentation patterns ...................................... 246 

xii 



Example 6-13:  Choosing pitches without rhythmic or durational values ................... 251 

Example 6-14:  Building the compression notation .................................................... 254 

Example 6-15:  Labeling all chords in FDL-1 with set theory functions ...................... 257 

Example 6-16:  Programmatic set theory analysis of FDL-1 ...................................... 268 

Example 6-17:  Plotting compressed chord data ....................................................... 270 

Example 6-18:  PC content of *pitches-music-set* .................................................... 274 

Example 6-19:  MIDI pitch content of *pitches-music-set* ......................................... 275 

Example 6-20:  Creating voice-leading strands ......................................................... 276 

Example 6-21:  Strands via the create-strands function ............................................ 277 

Example 6-22:  Generating unique strands ............................................................... 278 

Example 6-23:  Re-assembling chord succession from vertical reduction ................. 279 

Example 6-24:  One-to-one vertical chord reduction ................................................. 280 

Example 6-25:  Abbreviated CSV list of vertical one-to-one chord reduction ............ 281 

Example 6-26:  Zeroed strands ................................................................................. 283 

Example 6-27:  CSV formatted zeroed strands ......................................................... 284 

Example 6-28:  Global variables in Learn-Rules.lisp ................................................. 286 

Example 6-29:  Analyzing chord successions and voice-leading .............................. 287 

Example 6-30:  PCCS parameter .............................................................................. 290 

Example 6-31:  Chord-succession rules .................................................................... 290 

Example 6-32:  Creating data sets in order to generate voice-leading rules ............. 292 

Example 6-33:  Normal form PCCs data set of FDL-1 ............................................... 294 

Example 6-34:  Building STMs from chord successions ............................................ 296 

Example 6-35:  Converting STMs to semantic networks ........................................... 298 

xiii 



Example 6-36:  Set class succession rules in FDL-1 ................................................. 298 

Example 6-37:  *reduced-strands* from Example 6-22 .............................................. 299 

Example 6-38:  Generating voice-leading rules for PCs ............................................ 302 

Example 6-39:  PC voice-leading rules in FDL-1 ....................................................... 305 

Example 6-40:  PCS relationships ............................................................................. 306 

Example 6-41:  All transpositionally related PCS in FDL-1 at the REPL .................... 307 

Example 6-42:  All inversionally related PCS in FDL-1 at the REPL ......................... 308 

Example 6-43:  Declaring global variables and re-formatting data ............................ 310 

Example 6-44:  Building the .dot file - nodes ............................................................. 313 

Example 6-45:  Building the .dot file - edges ............................................................. 315 

Example 6-46:  Assembling the .dot file .................................................................... 317 

Example 6-47:  Generating a .pdf file from the .dot file at command line from Lisp ... 318 

Example 6-48:  Voice-leading probabilities table ....................................................... 322 

Example 6-49:  Chord succession probabilities tables .............................................. 327 

Example 6-50:  First items in an analysis script ......................................................... 354 

Example 6-51:  Loading desired libraries into an analysis script ............................... 355 

Example 6-52:  Loading a score into an analysis script ............................................. 355 

Example 6-53:  Content of the *score* variable in an analysis script ......................... 356 

Example 6-54:  Assigning a pitch count ..................................................................... 356 

Example 6-55:  Finding the pitch space range .......................................................... 356 

Example 6-56:  Ambitus information of Prelude 26 ................................................... 356 

Example 6-57:  Adding the *ps-histogram* to the analysis script .............................. 357 

Example 6-58:  *ps-histogram* plot pair list ............................................................... 358 

xiv 



Example 6-59:  Integrating the *pc-histogram* into the analysis script ...................... 360 

Example 6-60:  ASCII PC histogram ordered by PCs................................................ 361 

Example 6-61:  ASCII PC histogram ordered by PC count ........................................ 361 

Example 6-62:  Building a clustered histogram of two compositions ......................... 363 

Example 6-63:  Clustered histogram represented in a key/value pair list .................. 365 

Example 6-64:  Label PCCs in WPC Prelude 26 ....................................................... 367 

Example 6-65:  PCCs labels of WPC Prelude 26 ...................................................... 370 

xv 

Example B-1:  Glassworks Input Code ..................................................................... 399 

Example B-2:  Glassworks Output Code .................................................................. 400 

Example B-3:  Loading MIDI library and MIDI data.................................................. 401 

Example B-4:  MIDI-Input.lisp.................................................................................. 403 

Example B-5:  ATN Generator from Computers and Musical Style......................... 411 



LIST OF ABBREVIATIONS 

AI Artificial intelligence 

AIT Algorithmic information theory 

AC The Algorithmic Composer 

ACY Algorithmic cycle 

ALICE Algorithmically integrated composing rnvironment 

ATN Augmented transition network 

ATNs Augmented transition networks 

b. beat 

bb. beats 

C4 Middle C is specified as C4, either lower case or upper case 

CAC Computer assisted composition 

CGM Computer generated music 

CMMC Computer Models of Musical Creativity 

CMS Computers and Musical Style 

CMJ Computer Music Journal 

CPP Common practice period 

CSV Comma separated value(s) 

EMI Experiments in Musical Intelligence 

FDL From Darkness, Light 

FDL-1(-6)  From, Darkness Light, 1. Prelude, etc. 

HMMs  Hidden Markov models 

HS  Hidden Structure 

xvi 



IDE 

IRCAM 

Integrated development environment 

Institut de Recherche et Coordination Acoustique/Musique 

m. 

MAIT 

MIDI 

ML 

measure 

Musical algorithmic information theory 

Musical instrument digital interface 

Machine learning 

mm. 

NC 

NLP 

p 

measures 

Navajo cycle 

Natural language 

processing Probability 

PC Pitch class (or pc in code examples) 

PCs Pitch classes 

PCC 

PCCs 

Pitch class collection, unordered collection of pitches (or pcc in code 

examples), represented as {3, 1, 2} 

Plural of PCC 

PCS Pitch class cet, ordered collection of pitches, or normal form, 
represented as [1, 2, 3] 

PCSC Pitch class set collections 

PCST0 Pitch class set, ordered collection of pitches transposed to 0, 
represented as [0 1 2] 

PTC Post tonal cycle 

SC 

SCs 

SCC 

STM 

Set class, represented as (0 1 2) 

Plural of SC 

Set class collection, represented as ((0 1 2) (0 3 6) (0 3 7)) 

State transition matrix 

xvii 



q 

REPL 

RN 

SAIL 

SARA 

VM 

WPC 

quarter 

Read–eval(uate)–print loop 

Roman numeral 

Stanford Artificial Intelligence Laboratory 

Simple analytic recombinancy algorithm 

Virtual Music 

The Well-Programmed Clavier 

xviii 



 1 

CHAPTER 1

INTRODUCTION 

The problem with music theorists is that they generate 
papers (theories) only once every five years or so, when 
they should be concentrating on intelligent systems that can 
come up with a theory every five minutes. 

Marvin Minsky 

1.1. Overview 

The vast and ever expanding field of computer music is comprised of several 

different disciplines or dimensions. One of these dimensions is the generation of 

unexplored timbres or sounds (sound synthesis, sampling, sound art – with its 

corresponding geneses in the practices of electroacoustic music). The dimension is 

known as computer generated music (CGM). Another aspect is the interactivity of 

musicians with computer programs (interactive computer music), such as modern music 

software creation environments like MaxMSP, PureData, ChucK, OpenMusic, or PWGL 

that either augment, enhance or extend instrumental sounds, or algorithmically generate 

musical reactions to what is being played by a musician or a group of musicians.1 An 

additional feature expresses itself in cross-disciplinary or hybridized interactivity 

(connecting musical gestures and computational devices, such as smart phones, tablet 

computers, three dimensional cameras, or circuit bent non-computerized apparati in 

1 Electroacoustic principles that lead to the expansion of timbre are created in these software 
environments, and connect the timbres to actions of the computer, or “traditional” musician. Generally, 
music created with these software environments falls under the auspice of CGM, but increasingly is 
incorporating elements of CAC. 
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conjunction with single-board programmable micro-controllers to animations, dance, or 

robotics). Another dimension is computer-assisted composition (CAC) that utilizes 

complex conditional, probabilistic, chaos, fractal, set theory, Markov analysis, cellular 

automata, artificial life, fuzzy logic, pattern matching, learning, and/or genetic algorithms 

to manipulate data for sonification purposes.2 All of these differentiations of computer 

music practice present extraordinary challenges to mathematicians, scientists, computer 

scientists, engineers, composers, musicologists or music theorists alike. The 

dissertation focuses on CAC in respect to music theory. 

The practice of music theory closely associates with CAC. The development of 

sets of rules occupies a central spot within CAC. These sets of rules are known also in 

the field of mathematics and computer science as algorithms.3 Therefore, CAC is 

grounded in the practice of algorithmic composition. CAC shares algorithmic procedures 

with music theory, which are an essential part of music theoretical discourse for 

centuries.  

Chapter 1 is the introduction to the dissertation, provides an overview, and shows 

how to run the code examples. Chapter 2 of this dissertation examines what constitutes 

an algorithm from a computer science, and mathematical perspective, along with code 

examples, while chapter 3 examines algorithmic procedures as applicable to 

composition and music theory. Further, chapter 3 studies sets of rules that have existed 
                                            

2 Miller Puckette finds the CAC acronym cumbersome and alludes to a preference for CAO, 
derived from the French “Composition Assistée par Ordinateur.” Miller Puckette, "Preface," in The Om 
Composer's Book, ed. Carlos Agon, Gérard Assayag, and Jean Bresson, (Paris: Editions DELATOUR 
FRANCE/Ircam-Centre Pompidou, 2006), ix.  

3 David Cope, Techniques of the Contemporary Composer (New York: Schirmer Books, 1997), 
192. 
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throughout the history of music theory and which of these sets of rules actually are 

classifiable as algorithms or algorithmic procedures. The study is accompanied by code 

examples of algorithms that were created and in use during the style periods of 

antiquity, the Middle Ages, the Renaissance, the baroque, the classical, the romantic, 

and the twentieth century. Particular attention is paid to how algorithmic practice has 

influenced music within the twentieth century and the beginning of the twenty-first 

century in the third segment. Furthermore, the chapter contextualizes CAC from its 

inception following the period after World War II to present practice, its role in computer 

music, and the emergence of AI in CAC.  

The musical nucleus of this discourse is a prelude that comes from a set of three 

preludes and fugues titled “From Darkness, Light” written by the American composer 

David Cope and his “co-conspirator” Emily Howell.4 Cope is a composer that forms a 

symbiotic relationship between the compositional process and music theory. In addition, 

he is considered one of the composers on the forefront of algorithmic composition in the 

United States. David Cope can be regarded as a composer who writes music (and 

computer programs) directly with the assistance or music theory, i.e. detailed music 

analyses. Cope substantiates his practice through numerous interviews, journal and 

book publications, and compositions.  

Chapter 4 shows Cope’s evolution as a composer that utilizes CAC. The first 

section provides a short background and biography of the composer. The section also 

                                            
4 Guy Raz and David Cope, "Virtual Composer Creates New Music", NPR 

http://www.npr.org/templates/story/story.php?storyId=113719483 (accessed January 2, 2012). “Emily 
Howell” is the name of the computer program David Cope wrote to assist him in the compositional 
process. 
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features a list of compositions and writings by the composer. Cope created many 

different computer programs, written in the Lisp programming language, to solve 

different musical problems, which are discussed chronologically.5 The second section 

examines Cope’s EMI (Experiments in Musical Intelligence), a collection of computer 

programs that analyze any music by a given composer, store the results of their 

analyses in large databases, and then re-create new work of a given composer, by 

recombining the “musical DNA” of patterns stored in the databases.6 The discussion 

leads the reader through Cope’s use of expert systems, his concept of recombinant 

music and signatures, augmented transition networks and SPEAC, association nets, 

proto-ALICE (CUE), and association networks, ALICE and the end of Emmy. Emmy is 

the progenitor of Emily Howell; a computer program with an anthropomorphized name 

that uses an associative network.7 The third section in chapter 4 shows how Emily came 

to be, how an associate networks function, how these networks are different from neural 

nets, and what can be accomplished using associate networks. Additionally, a brief 

summary on future CAC projects by David Cope is provided. The fourth section in 

Chapter 4 illuminates Cope’s approach toward music analysis.  

Chapter 5 creates an overview of different algorithmic music analysis 

approaches. The chapter begins with a brief history. The second section provides 

information on the most commonly used systems currently. The third section provides 
                                            

5 This section also makes the case of why David Cope uses Common Lisp. 

6 Jonathan Mitchell, "Musical DNA", WNYC http://www.radiolab.org/2007/sep/24/musical-dna/ 
(accessed January 2, 2012). 

7 David Cope had to change EMI to Emmy due to a trademark conflict with a record company of 
the same name. 
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algorithms to solve set theory music problems, including procedures that have been 

previously visited in chapter 3, and techniques from the set theory canon. These 

techniques include finding complements of sets, transposition, inversion, normal form, 

prime form, interval vectors, transpositional and inversional relationships, and how to 

creates batch procedures for the aforementioned techniques. 

Chapter 6 unites previously discussed code examples and applies the algorithms 

to analysis problems that arise during the discourse of analyzing FDL-1. Once the 

algorithms have been appropriately applied to the music analysis, the program will be 

“generating rules from itself, rather than imposing user-prescribed rules.”8 The first 

section discusses what a prelude is, and provides an analysis of FDL-1 without the help 

of a computer (traditional analysis). The second section examines how points made 

during the previous analysis can be substantiated and enhanced through algorithmic 

analysis. The section discusses how to count pitches in order to define a pitch space 

and histograms. Further, a chord compression script is introduced that essentially 

creates chord reductions. 

Another aspect explains how to programmatically handle computer 

representations of scores, including segmentation, tailored to FDL-1. Reduction 

algorithms are introduced that create vertical reductions, from which PCCs can be 

programmatically labeled. An additional horizontal reduction scheme is introduced that 

presents how to create voice-leading strands. From the reductions, data sets are 

created for ML purposes. ML is used to establish PCCs succession rules, and voice-
                                            

8 David Cope, Hidden Structure: Music Analysis Using Computers, The Computer Music and 
Digital Audio Series, vol. 23 (Middleton, Wis.: A-R Editions, 2008), xxiii. 
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leading rules of FDL-1. All interrelationships of PCCs are programmatically established. 

With the acquired ML data semantic networks are drawn, and furthermore, chord 

succession and voice-leading probabilities tables are calculated.  

The third section of chapter 6 shows how to break all previously discussed 

scripts into modular components for easier script reuse, via an analysis script. The 

section also postulates what piece may have been used to learn voice-leading and 

chord succession rules by Cope to compose FDL-1. Additionally, the section shows how 

to apply “Big Data” techniques (clustered histograms) to music analysis, and how to 

approach future corpus studies. Chapter 7 summarizes, adds additional conclusions to 

this study, and provides an outlook toward the future. Unless otherwise noted all 

translations in this work are my own. All code examples in this dissertation are original 

unless they have been specifically marked as being David Cope’s, or as being from 

another source. Furthermore, all musical examples in this work have been attributed to 

their composers, whereas all musical examples written by David Cope have been used 

with David Cope’s permission, and all other musical examples are within the public 

domain. 

Since FDL-1 is a composition that was composed by a human composer with the 

aid of an association network computer program, not all structural facets of the 

composition will be exposed through “traditional” music analysis. Instead, I propose the 

use of an algorithmic music analytical computer framework to aid in the analysis of the 

music. This framework is partially based on other previously established frameworks, 

but more importantly is also based on algorithmic techniques used by the composer to 
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create the composition, and on analytical techniques advocated by the composer.9 

However, the purpose of the study is not based on building the framework, but rather on 

the algorithmic thought process that occupied the composer. In order to follow David 

Cope’s algorithmic compositional thought process, all code examples will be thought 

through in Common Lisp, with the idea being that language shapes thought.10 It is 

posited that in this case, the use of a certain programming language, and the 

programmer’s/composer’s understanding of that language, influences the musical 

thoughts and ideas of a composition in the same way as a “pianistic” piece, a 

composition written at the piano, will have certain musical attributes.  

 

1.2. Running Code Example in Clozure CL 

The following instructions are provided for running the code examples of the work 

in OSX 10.8, or larger. If the reader runs other –nix based operating systems, the use of 

Emacs in conjunction with slime and Clozure CL, SBCL, or Clisp is recommended for 

running the code examples at the command line (also possible with OSX). If the reader 

runs a Windows based operating system, LispWorks – personal edition, is 

recommended. Most code examples will work in all the aforementioned environments, 

except when outside programs to generate graphics (.pdfs, digraphs, histograms, etc.) 

                                            
9 The subsequent analytical frameworks are employed: (1) music21 by Michael Scott Cuthbert, 

"Music21: A Toolkit for Computer-Aided Musicology", Massachussetts Institute of Technology 
http://web.mit.edu/music21/ (accessed March 30, 2014). (2) Humdrum. David Huron, "The Humdrum 
Toolkit: Software for Music Research", Ohio State University http://www.musiccog.ohio-
state.edu/Humdrum/ (accessed March 30, 2014). (3) The programming methods described in Cope, 
Hidden Structure: Music Analysis Using Computers. 

10 Lera Boroditsky, "How Language Shapes Thought," Scientific American, February 2011, 63-65. 
In other words, the idea of linguistic relativity may be applicable to programming languages as well.  
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are being used. In these cases the reader should consult online forums for their 

particular setup. 

In OSX 10.8 or higher, the easiest way to run Clozure CL, is to download and 

install the app from Apple’s App Store.11 Alternatively, Clozure CL can also be built from 

source, but please consult the Clozure CL web site for detailed instructions.12 Start 

Clozure CL, once the environment has been successfully installed. Clozure CL’s 

listening window will appear (Figure 1-1).  

 

Figure 1-1: Clozure CL listening window. 

Commands, functions, etc. can be typed directly into the REPL (or read-evaluate-

print-loop, another name for the listener window) as the following screenshot shows 

(Figure 1-2): 

                                            
11 "Clozure CL", Apple, Inc. https://itunes.apple.com/us/app/clozure-cl/id489900618 (accessed 

October 1, 2014). 

12 "Chapter 2. Obtaining, Installing, and Running Clozure CL", Clozure Associates 
http://ccl.clozure.com/manual/chapter2.html (accessed October 1, 2014). 
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Figure 1-2: Typing functions directly into the REPL. 

After a command has been entered into the REPL, and the ENTER, or RETURN 

key has been pushed the typed-in expression is evaluated (the same evaluation can 

also be achieved with the keyboard shortcut of CMD + E, akin to evaluating patches in 

Max, or Pd): 

 

Figure 1-3: Evaluating an expression at the REPL. 

It is most cumbersome to type an entire script into the REPL, so it’s easier to 

create a file that contains variables, functions, macros, objects, etc. that can be 

evaluated partially or as a whole. The next screenshot (Figure 1-4) shows a file, which 

was saved to the hard drive with a .lisp extension. The file contains a script copied and 
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pasted from this dissertation (Example 2-3). 

 

Figure 1-4: Opening a .lisp file and evaluating a function from script at the REPL. 

Two green bars appear around an expression that contains the appropriate 

parentheses. If the green bars do not appear, the cursor can be placed after the last 

parenthesis of an expression, and the green bars will appear (unless there is an 

unbalanced amount of parentheses in the script, i.e. the script has a parenthesis 

missing). Once the cursor has been placed after the expression, and the green bars do 

appear the expression can be evaluated by selecting the keyboard shortcut of CMD + E. 

The entire script file, meaning all expressions enclosed with balanced parentheses 

within a script file, can be evaluated with the keyboard shortcut SHIFT + CMD + E. The 

result of the script can be seen in the listener window. 
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CHAPTER 2  

ALGORITHMS 

 

2.1. What is an Algorithm? 

The French mathematician Jean-Luc Chabert states, “it is not easy to give a 

precise definition of the word ‘algorithm.’”1 A popular notion on the topic is reflected in 

the opinion that an algorithm is deeply entrenched within the field of computer science 

and programming. However, the presumption that an algorithm is dependent on the 

existence of a computer program is false. The mathematical algorithm has long existed 

before any computer program came to be.2 Algorithmic procedure exists independently 

from any particular technology.3 The mathematical historians Boyer and Merzbach 

attribute the first historically recorded algorithms to Mesopotamian mathematicians that 

created a square root process.4 Conceptually, the algorithm “has undergone a long 

evolution: it was not until the twentieth century that a satisfactory formal definition was 

achieved, and ideas about algorithms have evolved further even since then.”5 A basic 

algorithm can be simply defined as a “set of step by step instructions” or “recipe,” which 
                                            

1 Jean-Luc Chabert, "Algorithms," in The Princeton Companion to Mathematics, ed. Timothy 
Gowers, June Barrow-Green, and Imre Leader, (Princeton, New Jersey: Princeton University Press, 
2008), 106. 

2 “Before There Were Computers, There Were Algorithms,” eds. Thomas H. Cormen et al., 
Introduction to Algorithms, 3rd ed. (Cambridge, MA: MIT Press, 2009), xiii. 

3 Évelyne Barbin et al., A History of Algorithms, ed. Jean-Luc Chabert, trans., Chris Weeks (New 
York: Springer Verlag, 1999), 1. 

4 Carl B. Boyer and Uta C. Merzbach, A History of Mathematics, 3rd ed. (Hoboken, New Jersey: 
John Wiley & Sons, Inc., 2011), 16. 

5 Chabert, 106. 
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needs to be completed or followed by an operator or participant.6 

These “recipes, rules, techniques, processes, procedures, methods, etc.” are all 

inclusive within the term algorithm.7 The Chinese term “shu (meaning rule, process or 

stratagem) both for mathematics and in martial arts” existed before the word algorithm.8 

The syllable ju from the anglicized Japanese word ju-jitsu, meaning “‘procedural rules 

for suppleness’ or ‘algorithms for suppleness’,” is derived from the Chinese shu.9 From 

an etymological perspective, the modern term algorithm can be traced to “the Greek 

word ἀρῐθμός (number)” and “the name of the Persian mathematician Abu Jafar 

Muhammad ibn Musa al-Kwarizimi.”10 The Persian mathematician from the ninth 

century wrote a treatise called al-Mukhtasr fi Hisab al-Jabr wa l-Muqabala that “gave us 

the word ‘algebra’ from ‘al-Jabr.’”11 

The treatise was about “the calculation with Indian numerals, which was 

translated into Latin around 1120 AD as ‘Algorismi de numero Indorum,’” and the 

                                            
6 Barbin et al., 1. David Cope calls these algorithms (not dependent on any type of technology) 

“paper algorithms.” Keith Muscutt and David Cope, "Composing with Algorithms: An Interview with David 
Cope," Computer Music Journal 31, no. 3 (2007): 12. 

7 Barbin et al., 2. 

8 Ibid. 

9 Ibid. 

10 Gerhard Nierhaus, Algorithmic Composition (New York: Springer Verlag, 2009), 2. Abu Jafar 
Muhammad ibn Musa al-Kwarizimi (c. 780 - 850) was also an astronomer and geographer, and “a 
member of the House of Wisdom, an academy of scientists in Baghdad.” Kenneth Rosen, Elementary 
Number Theory and Its Applications, 5th ed. (New York: Addison-Wesley, 2005), 55. 

11 Barbin et al., 2. The title of the treatise is sometimes listed as Kitab al jabr w’al-muqabala and 
translates to “Rules of restoration and reduction.” Gareth  Loy, Musimathics, vol. 1 (Cambridge, MA: MIT 
Press, 2006), 462. Boyer and Merzbach go further by explaining that “word ‘al-jabr’ presumably meant 
something like ‘restoration’ or ‘completion’ and seems to refer to the transposition of subtracted terms to 
the other side of an equation; the word ‘muqabalah’ is said to refer to ‘reduction’ or ‘balancing’—that is, 
the cancellation of like terms on opposite sides of the equation.” Boyer and Merzbach, 207. 
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Latinized author’s name was given as “Algorismus.”12 During the Middle Ages, 

mathematical scholars described “the counting tables or abacus methods” as traditional 

calculation practice, and the “new positional notation calculation methods” as algorisms, 

algorismus, or algorithmus.13 During the seventeenth century Gottfried Wilhelm Leibniz 

(1646-1716) posits the notion of an algorithm in his idea of “a universal language that 

would allow one to reduce mathematical proofs to simple computations.”14 The French 

enlightenment period mathematician, mechanician, physicist, philosopher and music 

theorist Jean le Rond d’Alembert (1717-1783), who co-edited the Encyclopédie, ou 

dictionnaire raisonné des sciences, des arts et des métiers with Denis Diderot, defined 

the term algorithm as “terme arabe, employé par quelques Auteurs, & singulierement 

par les Espagnols, pour signifier la pratique de l'Algebre.”15 Further, d’Alembert 

                                            
12 Nierhaus, 2. What we commonly refer to as “Arabic numerals” in fact were the numerals that 

“had been adapted from Indian” mathematical practice, and are called “Arabic numerals,” because the 
treatise by al-Kwarizimi was written in Arabic. Barbin et al., 2. 

13 Barbin et al., 2. The original meaning of algorism from Arabic is “number series.” David Cope, 
The Algorithmic Composer, Computer Music and Digital Audio Series, vol. 16 (Madison, WI: A-R Editions, 
2000), 1. Algorism was mentioned by Abu Jafar Muhammad ibn Musa al-Kwarizimi in his aforementioned 
treatise and “referred only to the rules of performing arithmetic using Hindu Arabic numerals, but evolved 
into ‘algorithm’ by the eighteenth century.” Rosen, 54. 

14 Chabert,  111. Even though the binary system had existed long before Leibniz’s time, Leibniz 
was an important contributor to the formalization of the binary system as it is known and treated in 
mathematics today through the publication of his memoire Explication de l'Arithmétique Binaire from 
1703. Barbin et al., 40. Leibniz’s vision “of the possibility of reducing logic to mechanical operations” is in 
many respects the foundation of modern circuitry. Ibid., 43.  

15 Jean le Rond d'Alembert, "Algorithme", University of Chicago http://artflx.uchicago.edu/cgi-
bin/philologic/getobject.pl?c.0:1216.encyclopedie0311 (accessed October 11, 2012). This phrase is 
translated to “Arab term, used by several authors, and particularly by the Spanish to mean the practice of 
algebra” by Chris Weeks. Barbin et al., 2. In music theory, Jean le Rond d’Alembert is mostly know for his 
treatise titled Eléments de musique théorique et pratique suivant les principes de M. Rameau (1752), 
which primarily synthesized Rameau’s Génération harmonique (1737) and Démonstration du principe de 
l’harmonie (1750) and was one of the “most widely read source for information of Rameau’s theory in 
France and Germany (where it appeared in translation by Marpurg in 1757),” according to Thomas 
Christensen’s biographic entry on d’Alembert in the New Grove Dictionary of Music. However, 
Christensen also critiques d’Alembert’s reductionist opus as being a “disservice to the empirical richness 
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explains, “Ainsi l'on dit l'algorithme des entiers, l'algorithme des fractions, l'algorithme 

des nombres sourds.”16 

The logicians Charles Babbage (1791-1871), George Boole (1815-1864),17 

Friedrich Ludwig Gottlob Frege (1848-1925), and Giuseppe Peano (1858-1932) “tried to 

formalize mathematical reasoning by an ‘algebraization’ of logic” in the nineteenth and 

early twentieth centuries and thereby furthered the idea of an algorithm.18 Chabert 

points to the aforementioned general twentieth century understanding of what the word 

algorithm became to mean, namely “any process of systematic calculation, that is a 

process that could be carried out automatically.”19 The implication here is that the 

process is finite, poses a question and achieves some type of goal.20 

Another attribute of an algorithm can be iteration and recurrence, although not 

                                                                                                                                             
and musical sophistication of Rameau’s theory.” Thomas Christensen, "Alembert, Jean Le Rond D’", 
Grove Music Online. Oxford Music Online. Oxford University Press. 
http://www.oxfordmusiconline.com/subscriber/article/grove/music/07068 (accessed October 12, 2012). 

16 d'Alembert. Chris Weeks translates this phrase to mean “In this sense, we say the algorithm of 
integral calculus, the algorithm of the exponential calculus, the algorithm of sines.” Barbin et al., 2.  

17 Boolean logic is named after Boole and is used today in computer based search engines via 
the Boolean operators of () - grouping words or phrases, AND - a narrowing search containing all words 
separated, OR - a broadening search containing any words separated, and NOT - a narrowing not 
containing included words. Boolean values in programming are either TRUE and/or FALSE in 
combinations of the above-mentioned Boolean operators. 

18 Chabert, 111. 

19 Barbin et al., 2. 

20 The Austrian composer Karlheinz Essl incorporates this conclusion into his definition of the 
word algorithm in stating that it is “a predetermined set of instructions for solving a specific problem in a 
limited number of steps.” Karlheinz Essl, "Algorithmic Composition," in Electronic Music, ed. Nick Collins 
and Julio d'Escriván, (New York: Cambridge University Press, 2007), 107. Charles Dodge further 
underlines this definition that “each step must be defined unambiguously and there must be a definite 
path to the completion of the algorithm.” Charles Dodge and Thomas A. Jerse, Computer Music, 2nd ed. 
(New York: Schirmer Books, 1997), 429. Rowe also explains that algorithms are defined by “a limited 
number of parameters.” Robert Rowe, Machine Musicianship (Cambridge, MA: MIT Press, 2001), 6. 
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required.21 The mathematicians Kurt Friedrich Gödel (1906-1978), Alonzo Church 

(1903-1995), and Stephen Cole Kleen (1909-1994) formulated the idea of the existence 

of mathematical recursive functions in connection with algorithms between 1931-1936.22 

Church’s thesis, also known as the Church-Turing thesis, of the effectively calculable or 

computable function falls within the realm of the recursive functions.23 Alan Turing 

(1912-1954) found that “every function that was computable...was recursive and vice 

versa.”24 Turing’s proof is now known as the Turing Machine, and “functions that are 

computable by Turing machines are precisely those that can be programmed on a 

computer.”25 Furthermore, “recursive functions are the same as Turing-computable 

                                            
21 Barbin et al., 4. The Babylonian square root algorithm (ca. 1,900 BCE)—also known as the 

Babylonian method —already contained an iterative procedure, which is the same algorithm that 
sometimes is attributed “to the Greek scholar Archytas (428-365 BCE) or to Heron of Alexandria (ca. 100 
CE); occasionally, one finds it called Newton’s algorithm.” Boyer and Merzbach, 26. The essence of the 
Babylonian square-root algorithm was learned by Pythagoras in Mesopotamia via the three means, “the 
arithmetic, the geometric, and the subcontrary (later called the harmonic)—and...the ‘golden proportion’ 
relating two of these: the first of two numbers is to their arithmetic mean as their harmonic mean is to the 
second of the numbers.” Ibid., 51.  

22 Chabert,  111. 

23 Ibid., 113. Chabert explains the effectively calculable functions “for any primitive recursive 
function there is an algorithm for computing it. (For example, the operation of primitive recursion can 
usually be realized in a rather direct way as a FOR loop).” Ibid., 112. The Church-Turing thesis is called a 
thesis, since it is “an intuitive notion, actually quite like that of ‘algorithm,’” and “lies in the realm of 
metamathematics.” Ibid., 113. 

24 Ibid. 

25 Ibid. Turing designed the Turing Machine to answer David Hilbert’s (1862-1943) tenth problem 
or Entscheidungsproblem (decision problem) from 1900, and further developed in 1922, which posed 
“whether there was a ‘mechanical process’ by which one could determine whether any given 
mathematical statement could be proved.” Ibid. Also, the Turing Machine actually is not a mechanical 
device, but rather an idea that shows the computability of a function, in other words it is the epitome of an 
algorithm. Goldreich and Wigderson explain what the Turing Machine mathematically does the following 
approach: “A Turing machine converts a sequence of 0s and 1s into another sequence of 0s and 1s. If we 
wish to use mathematical language to discuss this, then we need to give a name to the set of {0,1}-
sequences. To be precise, we consider the set of all finite sequences of 0s and 1s, and we call this set I. 
It is also useful to write In for the set of all {0,1}-sequences of length n. If x is a sequence in I, then we 
write |x| for its length: for instance, if x is the string 0100101, then |x| = 7. To say that a Turing machine 
converts a sequence of 0s and 1s into another such sequence (if it halts) is to say that it naturally defines 
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functions.”26 Thereby, Turing, together with Church, formalized the notion of an 

algorithm.27 

In the 1950s the application of Euclid’s method “for determining the greatest 

common divisor of two integers” was used to explain an algorithm anachronistically, 

since “the calculations involve successive divisions until the remainder becomes zero”28 

Examining Euclid’s algorithm, from his treatise Elements (ca. 300 BCE), of the greatest 

common divisor (GCD), the following GCD recursion theorem can be devised: “For any 

nonnegative integer a and any positive integer b, gcd(a, b) = gcd(b, a mod b).”29 

Cormen expresses the GCD algorithm the following way:30 

 

 

 
                                                                                                                                             
a function from I to I. If M is the Turing machine and fM is the corresponding function, then we say that M 
computes fM...Thus, every function f : I → I gives rise to a computational task, namely that of computing f. 
We say that f is computable if this is possible: that is, if there exists a Turing machine M such that the 
corresponding function fM is equal to f.” Oded Goldreich and Avi Wigderson, "Computational Complexity," 
in The Princeton Companion to Mathematics, ed. Timothy Gowers, June Barrow-Green, and Imre Leader, 
(Princeton, New Jersey: Princeton University Press, 2008), 263. 

26 Chabert, 113. 

27 Goldreich and Wigderson,  262. Church’s logical formalization happened independently from 
Turing and is represented in Church’s conceptualization of λ-calculus. Church’s λ-calculus was used by 
“John McCarthy, the creator of Lisp (and a former student of Church),” who “borrowed lambda notation 
from the lambda calculus and used it for describing functions” in the Lisp programming language. David 
S. Touretzky, Common Lisp: A Gentle Introduction to Symbolic Computation (Menlo Park, California: The 
Benjamin/Cummings Publishing Company,Inc., 1990), G-9. “The formalism for variables in LISP is the 
Church lambda notation.” John McCarthy et al., Lisp 1.5 Programmer's Manual, 2nd ed. (Cambridge, MA: 
MIT Press, 1985), 17. “LISP stands for LISt Processor.” Touretzky, 31. Common Lisp is a dialect of 
McCarthy’s Lisp. 

28 Barbin et al., 4. The Euclidian example is a classic textbook example. 

29 Cormen et al., 934. 

30 Ibid., 935. 
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1. euclid(a, b) 
2. if b == 0 
3. return a 
4. else return euclid(b, a mod b) 

Example 2-1: Euclidian algorithm in pseudo code. 

Cormen then shows what each recursion accomplishes:31 

1. euclid(30,21) = euclid(21,9) 
2.     = euclid(9,3) 
3.     = euclid(3,0) 
4.     = 3 

Example 2-2: Parsing the Euclidian algorithm in pseudo code. 

The greatest common divisor between 30 and 21 is 3. The operation proceeds in 

the following fashion: when value b is 0, or the remainder is 0, return the value a (in this 

case 3); this is the termination of the operation and the recursion stops. Without the 

termination the recursion would continue indefinitely, or until the end of the computers 

memory, in which case the program would create a stack overflow and then terminate, 

or perhaps terminate the operational capability of the entire computer. However, every 

other time, when value b is not 0, the function calls itself, by first inserting value b as the 

new value a, and then inserting the evaluated outcome of the operation value a modulo 

value b as value b into the function. It follows then that in the first cycle of the iteration 

21 is inserted as a, and the outcome of the expression 30 modulo 21 is inserted as b, in 

this case 9 (since 21 fits into 30 once and leaves 9 over, the remainder of the Euclidian 

division). Now, 9 is inserted as the new value a and the evaluation of the operation 21 

modulo 9, or 3, since 9 fits into 21 twice and leaves 3 as the remainder, is inserted as 

value b into the same function anew. From here 3 is inserted into the function as value a 

                                            
31 Ibid. 
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and the operation of 9 modulo 3, or 0, since there is no remainder, is inserted into the 

function as value b. As stated above once value b is 0 the operation stops and returns 

value a, or 3, and no further modulo operation is needed. The GCD algorithm is applied 

in Common Lisp the following way:32 

1. (defun euclid (a b) 
2.   "Recursive function to find greatest common denominator, or GCD." 
3.   (declare (notinline euclid)) 
4.   (if (eq b 0) a 
5.     (euclid b (mod a b)))) 
6.  
7. ; checking the function with provided arguments 
8. (euclid 30 21) 

Example 2-3: Euclidian algorithm in Lisp. 

The euclid function is defined in lines 1-8, which takes two numbers (a and b) 

as arguments. Line 2 includes a documentation text string to describe what the function 

is intended to accomplish. The third line is not necessary for the actual euclid function 

to operate. The declare function ensures that the euclid function cannot be 

redefined later and therefore the entire recursion can be debugged at the REPL. The 

actual recursion of the euclid function is stated in lines 4-5, meaning that if the 

number value b equals 0, then return the number value a, if not pass the number value 

b along with the mod value of a and b as arguments to the top of the euclid function, 

                                            
32 Common Lisp already provides a (gcd a b) built-in function within its language core, but the 

built-in function is probably written very similarly to this example. As can be seen, the Euclidian algorithm 
in Common Lisp is the most efficient representation of the algorithm, since it requires the least amount of 
code in comparison to Cormen’s pseudo code, prose, or the succeeding “modern” JavaScript 
interpretation: 

1. function euclid(a, b) { 
2.  if(b == 0){ 
3.        return Math.abs(a); 
4.      }  
5.  else{ 
6.          return euclid(b, a % b); 
7.      } 
8. } 
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and repeat this procedure until value b indeed is 0. Line 7 shows a comment that is not 

evaluated in the script and serves as a documentation string, while line 8 shows how to 

use the function with two number arguments: (euclid 30 21). Evaluating the 

function results in 3 at the REPL. However, if (trace euclid) is entered at the 

REPL, and then (euclid 30 21) is re-entered at the REPL, the actual steps of the 

recursion operation are shown literally at the REPL (since the declare function was 

used). The following example shows these steps displayed at the REPL: 

0> Calling (EUCLID 30 21)  
 1> Calling (EUCLID 21 9)  
  2> Calling (EUCLID 9 3)  
   3> Calling (EUCLID 3 0)  
   <3 EUCLID returned 3 
  <2 EUCLID returned 3 
 <1 EUCLID returned 3 
<0 EUCLID returned 3 
3 

Example 2-4: Traced recursion of the euclid function in Common Lisp. 

Cormen explains, “the algorithm cannot recurse indefinitely, since the second 

argument strictly decreases in each recursive call and is always nonnegative, and 

therefore, Euclid always terminates with the correct answer.”33 Yet, the algorithm 

recurses, as many times as needed to find the correct answer without having to specify 

how much iteration it requires. Euclid’s algorithm “knows” this automatically.34 In 

                                            
33 Cormen et al., 935. 

34 Automation, thus, is a key feature of an algorithm. Besides using the Euclidian algorithm to 
describe the nature of an algorithm, the algorithm itself can be applied to generating rhythm as has been 
shown by Godfried Toussaint. Godfried T. Toussaint, "The Euclidean Algorithm Generates Traditional 
Musical Rhythms," in Proceedings of BRIDGES: Mathematical Connections in Art, Music, and Science 
(Banff, Alberta, Canada: 2005). 
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addition, “the Pythagoreans thought of musical intervals as involving the process of 

continued subtraction or antanairesis...later formed the basis of Euclid’s algorithm.”35 

There are other criteria that constitute an algorithm. That is why Gareth Loy 

differentiates between algorithms and methodologies.36 He makes this demarcation 

because of the existence of strict orthodoxy surrounding the term algorithm in regards to 

computer science, in particular programming or more specific programming theory from 

the 1960s and 1970s. Donald Knuth set forth that an algorithm must display five 

“important features,” one of which has been previously discussed (finiteness), and 

several additions to the 1950s Euclidian notion.37 These additional characteristics, as 

paraphrased by Loy are definiteness (“each step of an algorithm must be precisely 

defined”), input (“an algorithm has zero or more inputs”), output (“an algorithm has one 

or more outputs, i.e., quantities which have a specific relation to the inputs”), and 

effectiveness (“the operations to be performed in the algorithm must be sufficiently basic 

that they can in principle be done exactly and in a finite length of time”).38 Loy suggests 

that in a strict sense algorithms used by composers are often based on nondeterministic 

methodologies and therefore are not true algorithms from a Knuthian perspective (he 

specifically cites Guido d’Arezzo’s method of assigning pitches to specific vowel 

                                            
35 David J. Benson, Music: A Mathematical Offering (New York: Cambridge University Press, 

2006), 163. Antanairesis means successive subtraction. 

36 Loy, 288. 

37 Donald E.  Knuth, The Art of Computer Programming, ed. Michael A. Harrison and Richard S. 
Varga, 2nd ed., 4 vols., vol. Volume 1 - Fundamental Algorithms (Menlo Park, California: Addison-
Wesley, 1969), 4. 

38 Ibid, 4-10. 
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iterations from Micrologus).39 Loy considers these methodologies “art” rather than 

algorithmic since they not always produce the same result from the same input due to 

arbitrary subjective choices.40 

In regards to algorithmic composition, specific classes of algorithms are utilized 

that not always produce determinate and finite outputs, as in continuous sound 

installations or computer assisted composition programs.41 For example stochastic 

algorithms, based on probabilistic methods, can produce different results from the same 

input and are nonetheless algorithmic in nature.42 Other such algorithms are based on:43 

1. Markov models (“originally developed in the context of language 
processing”). 

2. Generative grammars (“formalisms for the generation of musical 
structure”). 

3. Transition networks (data storage, recombination, Petri nets).  
4. Chaos and self-similarity (“graphical realizations of fractals and other 

aspects of the heterogeneous field of chaos theory”).  
5. Genetic algorithms (application of “quasi-biological procedures in a virtual 

biological environment”). 
6. Cellular automata (“extreme complex behavior...from simple initial rules”). 
7. Neural networks (“generate outputs, whose sequences of note values 

need not necessarily occur in the underlying corpus”). 
8. Artificial intelligence (rule-based systems, logical reasoning, machine 

learning, “different forms of knowledge representation”).  
An algorithm can be defined “as a formalizable and abstracting procedure,”44 and 

                                            
39 Loy, 285-287, 289-290. 

40 Ibid., 290. However, Loy does provide an algorithm for Guido’s Method on p. 291 in form of a 
computer program that uses algorithms. 

41 Nierhaus, 2. 

42 Ibid. 

43 Ibid., 4-5. 

44 Ibid., 2. 
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“due to its rule-based nature...can be expressed as a computer program.”45 In essence, 

from an ontological perspective, many compositional procedures and music theoretical 

concepts, share these traits with mathematical and computational algorithms. The next 

section will look at formalized and abstracting procedures, or algorithms, that have 

existed throughout the history of compositional practice and music theory.

                                            
45 Essl, 108. 
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CHAPTER 3  

ALGORITHMIC PRACTICE IN MUSIC 

 

3.1. Introduction 

While lecturing at the Workshop in Algorithmic Computer Music 2012 

(WACM2012), David Cope boldly proclaimed that any composition that utilizes some 

“set of rules” is inherently an algorithmic composition. Additionally, Cope asserted, “all 

music analysis is algorithmic,” because “it compares musical processes in a work under 

study to a corpus of know rules.”1 The previous section showed how an algorithm is 

defined from a mathematical and computational perspective, and how this definition can 

be applied to music.2 From Cope’s statement it can be deduced that all music theory is 

the creation or reverse engineering of algorithms that help musicians, musicologists, 

music theorists, music aficionados, and other composers better understand the music of 

a composer, but also further propagate a certain compositional style of a composer 

through the use of a defined algorithm.3 Any such algorithm is much more complex than 

the example of Euclid’s algorithm, and it is a collection of many such algorithms that is 

held together by meta algorithms, which then can be interpreted as programs. 

Generally, rounds, hockets, canons, fugues, and variations of traditional music are all 

                                            
1 Cope, Hidden Structure: Music Analysis Using Computers, 7. 

2 Loy’s criticism of the lax use of the term algorithm has been clearly stated. However, since this 
study is on music by David Cope, Cope’s definition will be taken into closer consideration. 

3 The “use of the word algorithm in precomputational analysis also relates to analyses that are 
clearly programmable in some meaningful way.” Cope, Hidden Structure: Music Analysis Using 
Computers, 7. 
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examples of formalizable musical processes.4 

 

3.2. Before the Twentieth Century 

3.2.1. Antiquity 

Rule-based thinking, the introduction of chance operation, and the process of 

automation have been part of musical discourse since the times of antiquity. From a 

music automation perspective, perhaps some of the most ancient music creation 

devices include the Aeolian harps5 and wind chimes,6 “since the outcome of their 

performance, in both case, depends on the direction and amount of wind that nature 

provides unpredictably.”7 The automated devices are the algorithms. Even though the 

musical outcome can be unpredictable, or indeterminate, meaning that the algorithm 

                                            
4 Curtis Roads, The Computer Music Tutorial (Cambridge, MA: MIT Press, 1996), 823. 

5 Aeolian harps are named after the Greek god of wind Αἴολος – Aiolos – and described by 
Battista Porta (1535-1615) in Magiae naturalis (1558), and later by Athanasius Kircher in Phonurgia nova 
(1673). David Cope, Computers and Musical Style, Computer Music and Digital Audio Series, vol. 6 
(Madison, WI: A-R Editions, 1991), 2. 

6 The wind chime or tintinnabulum (Latin - also “bell”) was used by the ancient Romans mostly to 
bring good luck and ward off evil spirits. J. N. Adams, The Regional Diversification of Latin 200 Bc-Ad 600 
(New York: Cambridge University Press, 2008), 321. David Cope collects wind chimes, and at his home 
office he has hundreds of wind chimes suspended from the ceiling. One of Cope’s favorite composers, 
Arvo Pärt (* 1935), uses the derivative tintinnabulation (noun) or tintinnabular/tintinnabuli (adjective) of the 
Latin word tintinnabulum to describe a generative compositional procedure in his own music. Paul Hillier 
describes Pärt’s concept in connection to the composition “Magister Ludi,” the “word refers to the ringing 
of bells, music in which the sound materials are in constant flux, though the overall image is one of stasis, 
of constant recognition.” Paul Hillier, "Arvo Pärt: Magister Ludi," The Musical Times 130, no. 1753 (1989): 
134. John Roeder clearly outlines the algorithmic features of Pärt’s compositional process in his article 
“Transformational Aspects of Arvo Pärt’s Tintinnabuli Music.” John Roeder, "Transformational Aspects of 
Arvo Pärt's Tintinnabuli Music," Journal of Music Theory 55, no. 1 (2011): 1-41. Examples of Pärt’s 
tintinnabular compositions are “Fratres,” “Cantus In Memoriam Benjamin Britten,” “Tabula Rasa,” “Spiegel 
im Spiegel,” etc. David Cope used “Cantus In Memoriam Benjamin Britten” as a listening example at 
WACM2012 and revealed the anecdote of how Pärt composed this piece via a “set of rules” on a piece of 
paper (paper algorithm) on a train, which was later realized by one of Pärt’s assistants. 

7 Cope, Computers and Musical Style, 2.  
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does not depend on an operator, but on wind that may or may not blow, the pitch 

collections of Aeolian harps and wind chimes are finite. 

Another mechanical realization of an algorithm was the Hydraulis, developed by 

the Greek inventor and mathematician Ktesibios (ca.  285-222 BC), who “was 

fascinated by pneumatics and wrote an early treatise on the use of hydraulic systems 

for powering mechanical devices.”8 According to Leoni, “the Hydraulis, used water to 

regulate the air pressure inside an organ,” in which “ a small cistern called the pnigeus 

was turned upside down and placed inside a barrel of water.”9 Further, “a set of pumps 

forced air into pnigeus, forming an air reservoir, and that air was channeled up into the 

organ’s action.”10 

Also from antiquity, the great ancient Greek polymaths, Pythagoras (583-500 

BC), Plato (427-347 BC), Aristotle (384-322 BC) set forth theoretical concepts pertaining 

mostly to the ideas that “were philosophical or mathematical in regard to tuning.”11 

Further, the Pythagorean tradition, to which platonic and neo-platonic thinking belong as 

well, was “primarily concerned with number theory and relationship between music and 

the cosmos.”12 The concept of early automatic music was represented that “music and 

mathematics were not separate studies; an understanding of one was thought to lead 
                                            

8 Stefano A. E. Leoni, "Le Diverse Et Artificiose Machine ... To Make Music," in Yearbook of the 
Artificial Nature, Culture & Technology, ed. Massimo Negrotti and Fumihiko Satofuka, (New York: Peter 
Lang, 2006), 62. 

9 Ibid. 

10 Ibid. 

11 Cope, Hidden Structure: Music Analysis Using Computers, 7. 

12 Thomas J. Mathiesen, "Greek Music Theory," in Western Music Theory, ed. Thomas 
Christensen, (New York: Cambridge University Press, 2002), 114. 
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directly to an understanding of the other.”13 This led to the idea of “music of the 

cosmos.”14 Plato examined the music of the spheres in The Republic and according to 

Cope, “maintained that the universe sings and is constructed in accordance with 

harmony; and he was the first to reduce the motions of the seven heavenly bodies to 

rhythm and song”15 Aristoxenus (355-? BC), to whom another ancient Greek music 

theoretical tradition is attributed – the Aristoxenian tradition – that is based in 

Aristotelian thinking,16 stayed clear from tuning and focused his studies on intervals, 

scales, melody, and consonance, by using “numerical measurements when describing 

musical phenomena.”17 The neo-Platonist Aristides Quintilianus (ca. 200s AD) whose 

treatment of harmonics is “largely Aristoxenian,”18 describes music  “as a numerical art 

connected…directly to mathematics and involved patterns.”19 

 

3.2.2. Middle Ages  

During the early Middle Ages (ninth century), several treatises, namely Musica 

enchiriades, Scolia enchirides, Hucbald’s (ca. 840-930) De harmonica institutione, and 

                                            
13 Cope, Computers and Musical Style, 5-6. 

14 Ibid. 

15 Ibid., 6. 

16 Mathiesen, 114. 

17 Cope, Hidden Structure: Music Analysis Using Computers, 7-8. To be clearer, the Aristoxenian 
tradition includes notes, intervals, genera, scales, tonoi and harmoniai, modulation, and melic 
composition. Mathiesen, 120-130. 

18 Oliver Strunk, "Aristedes Quintilianus," in Source Readings in Music History, ed. Leo Treitler, 
(New York: W. W. Norton & Company, 1998), 47. 

19 Cope, Hidden Structure: Music Analysis Using Computers, 8. 
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Alia musica, were compiled to describe the practice of Gregorian chant.20 Musica 

enchiriadis introduced a “method for improvising a second voice to a given Gregorian 

chant by singing in parallel intervals such as fourths and fifths - a practice later 

described as Organum.”21 These instructions “were called canon (from the Greek word 

kanon = rule) and had their first bloom in the Franco-Flemish polyphony of the fifteenth 

century.”22 

Guido d’Arezzo (ca. 991-1031) was a pedagogue of the medieval era, mainly 

known for his mnemonic device of what is now called the “Guidonian Hand,” which 

Cope calls “a kind of algorithm in itself” that creates “a simple organization of rules from 

memorization.”23  However, the most cited example of algorithmic thinking of the 

medieval era is Guido’s Micrologus Guidonis de disciplina artis musicae from ca. 

1026.24 In chapter 17, titled Quod ad cantum redigitur omne, quod dicitur – “Anything 

                                            
20 Strunk, "Anonymous (9th Century)," 189. 

21 Essl, 109. There are at least five distinct styles of organum: (1) "parallel" organum (c. 800, 
which is never truly "parallel" because of the need to begin and end on a unison and the need to change 
to some other allowable interval in order to avoid the tritone appearing in a series of fourths); (2) "free" or 
"Guidonian" organum (c. 1025, which places less emphasis on parallelism); (3) organum in a 2:1 or 3:1 
metric relationship as described in the Ad organum faciendum (c. 1100, which introduces "passing 
tones"); (4) the "melismatic" organum in the schools of St. Martial and Santiago de Compostela (c. 1125); 
and (5) "Notre Dame" organum (c. 1175, in which at least one voice is found in measured rhythm against 
an unmeasured tenor). 

22 Ibid. 

23 Cope, Hidden Structure: Music Analysis Using Computers, 12. 

24 Curtis Roads sets Micrologus’ date to 1026. Roads, 822. Micrologus is also mentioned in 
Gareth Loy, "Composing with Computers: A Survey of Some Compositional Formailsms and Music 
Programming Languages," in Current Directions in Computer Music Research, ed. Max V. Mathews and 
John R. Pierce, (Cambridge, MA: MIT Press, 1989). Loy in Musimathics, Vol. 1, also mentions 
Micrologus, and offers an argument of how the vowel assignment algorithm is not an algorithm in the 
Knutian sense as mentioned in the previous section of this chapter. Loy, 289-292. Gerhard Nierhaus cites 
Micrologus. Nierhaus, 21-23. Robert Rowe discusses Guido’s Micrologus. Rowe, 6. Die Reihe, Vol. 8 
references Micrologus. Helmut Kirchmeyer, "Vom Historischen Wesen Einer Rationalistischen Musik," in 
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that can be spoken, can be brought into song,” – Guido describes a method “for 

automatic generation of melodies from text.”25 The description of this algorithm is as 

follows:26  

Then we take these five vowels, since they lend such concordance to the words, 
and no less help you sing the song and the neumes. They set then in order of the 
letters of the monochord, and since there are only five, are being repeated, until 
every tone has a corresponding vowel, in the following fashion:27 

Table 3-1: Guido's vowel array assignment algorithm (Guido-1). 

Γ A B C D E F G. a b [s] c d e f g. aa bb [s] [s] cc dd. 

a e i o u. a e i o u.  a e i o u. a e   i o 
 

In this order one should consider that everything that is spoken is moving within 
these five letters, and that one needs to alternate, as mentioned before, the five 
notes that were assigned according to length. This being the case, let us take a 

                                                                                                                                             
Die Reihe - Rückblicke, ed. Herbert Eimert, (Vienna: Universal Edition, 1962). Cope discusses the 
Micrologus in all his writings on algorithmic composition. Wason describes the Micrologus as a 
compositional pedagogical treatise. Robert Wason, "Musica Practica: Music Theory as Pedagogy," in 
Western Music Theory, ed. Thomas Christensen, (New York: Cambridge University Press, 2002). V. J. 
Manzo describes the Micrologus in his description of algorithmic composition with Max/MSP. V. J.  
Manzo, Max/Msp/Jitter for Music (New York: Oxford University Press, 2011), 26. Richard Crocker 
describes Micrologus’ content. Richard Crocker, "Musica Rhythmica and Musica Metrica in Antique and 
Mediecal Theory," Journal of Music Theory 2, (1958). 

25 Nierhaus, 21-23. Nierhaus erroneously claims that the theory of motus (Latin: movement), 
described in chapter 15 of Micrologus, forms the basis of the motet for the coming centuries. However, 
the word motet really is derived from the French word for word, or mot. H. Sanders Ernest et al., "Motet", 
Grove Music Online. Oxford Music Online. Oxford University Press. 
http://www.oxfordmusiconline.com/subscriber/article/grove/music/40086pg1 (accessed October 28, 
2012). Nierhaus is indeed correct though in regards to setting text to music and its historical context within 
the motet practice. Guido d'Arezzo, "Micrologus", Indian University http://www.chmtl.indiana.edu/tml/9th-
11th/GUIMIC_TEXT.html (accessed October 28, 2012). 

26 The vowel assignment algorithm will be referred to “Guido-1.” 

27 d'Arezzo. (“Has itaque quinque vocales sumamus, forsitan cum tantum concordiae tribuunt 
verbis, non minus Cantilenae praestabunt et neumis. Supponantur itaque per ordinem litteris monochordi, 
et quia quinque tantum sunt, tamdiu repetantur, donec unicuique sono sua subscribatur vocalis, hoc 
modo:”).  
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sentence and its syllables, apply the corresponding notes, and sing the notes 
toward which the vowels point:28 

 

Figure 3-1: Guido-1 algorithm represented in modern notation. 

Guido then proceeds to explain how this algorithm is applied to text (Sancte 

Ioannes meritorum tuorum copias nequeo digne canere), which essentially is a pattern-

matching algorithm (Figure 3-2).29 

 

Figure 3-2: Guido-2 algorithm applied to a line of text. 

The pattern-matching algorithm proposed by Guido matches a vowel within a 

syllable of text to a certain pitch level. The collection of resulting pitches is then strung in 

                                            
28 Ibid. (“In qua descriptione id modo perpende, quia cum his quinque litteris omnis locutio 

moveatur, moveri quoque et quinque voces ad se invicem, ut diximus, non negetur. Quod cum ita sit, 
sumamus modo aliquam locutionem, eiusque syllabas illis sonis adhibitis decantemus, quas earumdem 
syllabarum vocales subscriptae monstraverint, hoc modo.”) 

29 Ibid. (“Saint John of the merit of your powers, I cannot sing worthily.”) The text assignment 
algorithm will be referred to as “Guido-2.” 

e i o uo u a oa e i u a ea ue i i o
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order of occurrence into a melodic strand. The following Lisp example shows how this 

pattern-matching algorithm works with the sentence that Guido originally proposes 

(Figure 3-2, Example 3-1): 

1. (defparameter *vowels* '(a e i o u) 
2.   "Holds vowels.") 
3.  
4. (defparameter *pitches* '(60 62 64 65 67) 
5.   "Holds pitches.") 
6.  
7. (defparameter *sentence*  
8.   "Sancte Ioannes meritorum tuorum copias nequeo digne canere") 
9.  
10. (defparameter *vowel-pitch-matrix* 
11.   (mapcar #'list *vowels* *pitches*) 
12.   "Holds the vowel/pitch matrix.") 
13.  
14. (defparameter *melody* nil 
15.   "Holds algorithmic melody.") 
16.  
17. (defun string->list (sentence) 
18.   "Converts a string to a list." 
19.   (let ((sentence (if (find #\space sentence)  
20.                     (remove #\space sentence) sentence))) 
21.     (if (eq (length sentence) 0) nil 
22.       (cons 
23.        (read-from-string (subseq sentence 0 1)) 
24.        (string->list (subseq sentence 1)))))) 
25.  
26. (defun remove-consonants (sentence vowels) 
27.   "Removes consonants from a list." 
28.   (let ((sentence (string->list sentence))) 
29.     (remove-if-not #'(lambda (x)  
30.                        (OR (eq x (nth 0 vowels))  
31.                            (eq x (nth 1 vowels))  
32.                            (eq x (nth 2 vowels))  
33.                            (eq x (nth 3 vowels))  
34.                            (eq x (nth 4 vowels))))  
35.                    sentence))) 
36.  
37. (defun pitched-melody (melody vowel-pitch-matrix) 
38.   "Assign pitches to sequence of vowels according to vowels-pitch-

matrix." 
39.   (if (eq melody nil) nil 
40.     (cons  
41.      (second (assoc (car melody) vowel-pitch-matrix)) 
42.      (pitched-melody (cdr melody) vowel-pitch-matrix)))) 
43.  
44. (progn 
45.   *pitches*  
46.   *vowels*  
47.   *vowel-pitch-matrix*  
48.   *sentence* 
49.   (string->list *sentence*) 
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50.   (setf *melody*  
51.         (remove-consonants *sentence* *vowels*)) 
52.   (pitched-melody *melody* *vowel-pitch-matrix*)) 
53.  

Example 3-1: Guido’s Micrologus algorithm 2 in Lisp. 

The first line of Example 3-1 defines a variable that holds five *vowels* (a, e, 

i, o, u), and contains a documentation string of what type of value is represented by 

the variable in line 2. Line 4 specifies a variable containing a series of *pitches* 

(represented as MIDI pitch values – g, a, b, c, d) that will be assigned to the vowel 

sequence at a later point.30 The variable *sentence* in lines 7-8 holds the sentence 

that serves as the melodic generator (Sancte Ioannes meritorum tuorum copias nequeo 

digne canere, as used by Guido in Figure 3-2). Line 10-12 declares the *vowel-

pitch-matrix* variable that holds the 2-dimensional vowel-pitch assignment, which 

is populated by the previously declared *vowels*, and *pitches* variables that were 

mapped to each other via the mapcar function, or ((A 60) (E 62) (I 64) (O 

65) (U 67)). In lines 14-15 an empty variable *melody* is declared that will hold the 

generated melody later in the script. The string->list function (lines 17-24) takes 

the text string from the *sentence* variable, and converts all occurring characters to 

a list: (S A N C T E I O A N N E S M E R I T O R U M T U O R U M C O 

                                            
30 Asterisks surround global variables in Common Lisp, a practice also known as “earmuffs.” 

Conrad Barski, Land of Lisp: Learn to Program in Lisp, One Game at a Time! (San Francisco: No Starch 
Press, 2011), 23. Robert Brown and François-René Rideau, "Google Common Lisp Style Guide", Google, 
Inc. https://google-styleguide.googlecode.com/svn/trunk/lispguide.xml (accessed October 2, 2014). Global 
variables are available everywhere within a script, unlike local variables in a function, which are only 
available to the function that they occur in. In the following script an example of a local variable would be 
sentence, which is provided as an argument to the string->list function. 
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P I A S N E Q U E O D I G N E C A N E R E).31 Since only vowels are used 

for the pitch generation, all consonants need to be trimmed from the previously 

generated letter list, which is the purpose of the remove-consonants function in lines 

26-35. Here is the resulting letter sequence: (A E I O A E E I O U U O U O I A 

E U E O I E A E E). All that’s left to do is to assign pitches recursively to the 

generated vowel sequences, which is done via the pitched-melody function in lines 

37-42. This is the generated melody: (60 62 65 60 62 62 64 65 67 67 65 67 

65 64 60 62 67 62 65 64 62 60 62 62).32  

 

Figure 3-3: Guido's second algorithm outcome. 

Guido shows an additional example with which to set another text to music 

according to his vowel placement scheme, and how adding another vowel note 

assignment array can vary this principle, as ut tibi paullo liberius liceat evagari,33 

essentially shifting the vowel array (Guido-3 - Example 3-2). Guido exemplifies not just 

one algorithm (Guido-1 - Figure 3-1), the vowel pitch assignment, and as mentioned by 

numerous cited sources, the note assignment to text syllable vowel occurrences (Guido-

2 - Figure 3-2), but a third algorithm that manipulates the vowel-pitch array through shift 

                                            
31 However, any other sentence can be used by assigning it to the variable *sentence*, and it 

would generate different melodies. 

32 The progn function (lines 44-52) sequentially process all variables and functions of Guido’s 
second algorithm and generates the melody at once. The function is akin to trigger in Pd or Max. The red 
MIDI pitch indicates an anomaly where two consecutive vowels in the Latin text produce two different 
pitches, but Guido’s resulting melody only assigns one pitch. 

33 (“…to give you a little more freedom in order to be permitted to roam.”) 
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operations (Guido-3 - Example 3-2).34 The “phase shift” procedure of the vowel to pitch 

assignment is reminiscent of combining a color (multiple repeating melody) and talea 

(rhythmic model) segments in an isorhythmic motet.35 To illustrate that the vowel to 

pitch assignment is a recursive algorithm of finite quality the following example is 

provided in Lisp:36 

1. ;;; ===== algorithms guido-one, and guido-three ===== ;;; 
2.  
3. ;; ----- variables ----- ;; 
4.  
5. (defparameter *gamut* 
6.   '(43 45 47 48 50 52 53 55 57 59  
7.        60 62 64 65 67 69 71 72 74 76) 
8.   "Holds the gamut.") 
9.   
10. (defvar *vowels* 
11.   '(a e i o u) 
12.   "Holds vowels.")                            
13.  
14. ;; ----- guido-one ----- ;; 
15.  
16. (defun guido-one (vowels gamut) 
17.   "Assigns five vowels sequentially to the pitches  
18.   of the gamut. Repeats assigning vowels sequentially  
19.   until the entire gamut has been assigned with vowels." 
20.   (if (null gamut) nil                                
21.     (if (null vowels)                                  
22.       (cons                                            
23.        (list (first gamut) (first *vowels*))         
24.        (guido-one (rest *vowels*) (rest gamut)))     
25.       (cons                                            
26.        (list (first gamut) (first vowels))           
27.        (guido-one (rest vowels) (rest gamut))))))   
28.  
29. ; testing guido-one 
30. ; (guido-one *vowels* *gamut*) 
31.  
32. ;; ----- guido-three ----- ;; 
33.  
34. (defun rotate (vowels direction) 
35.   "Rotate order of vowels." 

                                            
34 Loy acknowledges the algorithmic nature of this procedure. Loy,  298. 

35 The color and talea definitions here are taken from Algorithmic Composition. Nierhaus, 21-23. 
More on the isorhythmic motet is to follow. 

36 The example above can be copied and pasted into a Common Lisp run-time environment and 
run. The Γ-ut is described here in MIDI pitch numbers. 
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36.   (cond                                                      
37.    ((eql direction 'right)                                   
38.     (setf *vowels*                                           
39.           (append                                            
40.            (last vowels)                                     
41.            (butlast vowels))))                               
42.    ((eql direction 'left)                                    
43.     (setf *vowels*                                           
44.           (append                                            
45.            (rest vowels)                                     
46.            (list (first vowels)))))                          
47.    (t "The direction is specified using  
48.       the terms 'left' or 'right' as parameters."))) 
49.  
50. ; testing guido-three ; 
51. (rotate *vowels* 'left) 
52. (rotate *vowels* 'right) 
53.  
54. ;; ----- use ----- ;; 
55.  
56. ; now combining the two: 
57. ; 1. Rotate 
58. ; 2. Assign vowels sequentially 
59. (rotate *vowels* 'left) 
60. (guido-one *vowels* *gamut*) 
61.  

Example 3-2: Guido's Micrologus algorithm 1 & 3 in Common Lisp. 

Lines 1-4 provide organization of the script via formatted documentation strings. 

The amount of semicolons used as documentation string delimiters determines the 

color-coding within the Clozure Common Lisp IDE. Lines 5-8 define the global variable 

*gamut*, and a discrete pitch sequence is assigned. Lines 10-12 define the global 

variable *vowels* with its corresponding five vowel assignment. Lines 16-27 define a 

recursive function that is the algorithm described by Guido called guido-one. The 

function takes two parameters as its argument, namely the vowel sequence, and the 

gamut. Line 20 shows an if/else statement that stops the recursion of the algorithm by 

stating that if no pitches of the gamut are available anymore, return nil, or the end of 

the new list that is being generated by the algorithm. Line 21 utilizes another, or nested, 

if/else statement that evaluates whether the end of the vowel sequence has been 
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reached. If the end of the vowel sequence has been reached, line 22 creates a new 

list, also known as cons-ing, by (line 23) combining the first value of the 

remaining pitches of the gamut with a new re-bound instance of the original *vowels* 

sequence, which then (line 24) recurses back to the guido-one function with the re-

bound *vowels* sequence and the remaining pitch sequence of the gamut.37 If the 

end of the vowel sequence has not been reached (line 25), line 26 creates a new list 

by assigning the first available pitch from the gamut to the first available vowel 

from the vowels sequence. The remaining items from the vowels sequence and the 

gamut are then passed to the guido-one function anew in line 27. Line 30 provides a 

REPL instantiation of the guido-one function, by including the global variables of the 

*vowels* and *pitches* lists.38 

Guido describes how more creative freedom is allowed by assigning rotated 

instances of vowel sequences to pitch sequences. Guido limits the possibilities of 

rotation from “a, e, i, o, u” to “o, u, a, e, i.” It should be noted that De Musica, by 

someone named John, around 1100 – modeled after Guido’s Micrologus – appearing in 

a letter to the Abbott or bishop John of Fulgentius, does advocate further rotations of the 

vowels sequence in Chapter 20 titled “How chants can be composed by means of their 

                                            
37 Re-binding a global variable by a function violates the orthodox practice of functional 

programming, and is considered a “mutation,” which is supposed to be avoided. Barski, 293. 

38 REPL stands for read-evaluate-print loop and is an interactive computer environment, also 
called a listener. Other computer music programming environments such as Pd, MaxMSP, OpenMusic, 
and PWGL all feature listeners as well. Philosophically, the loop of the REPL is an endless loop and can 
continue indefinitely, until some sort of quit command is issued. This quality gives the loop a sort of “alive” 
or “organic” quality, while programming. 



   36 

vowels.”39 The integration of the vowel rotation occurs in line 34 of Example 3-2, by 

defining the rotate function. The function checks for the condition whether the vowel 

sequence should be rotated to the 'right or the 'left (lines 37 and 42). If the vowels 

are to be rotated toward the right, the global variable *vowels* is rebound (line 38) 

through the operation of prepending (line 39) the last vowel of the list (line 40) to the 

beginning of the list, and adding the remainder of the list (line 41). If the vowels are to 

be rotated toward the left, then the global variable *vowels* is rebound through the 

operation of appending the first vowel of the list (line 46) to the remaining vowel list 

(line 45). Lines 51 and 52 provide functionality to run the rotate function in the REPL 

repeatedly by the user (user defined recursion). The outcome of guido-one produces 

the matrix in Example 3-3, and corresponds to what Guido showed in Table 3-1 and 

Figure 3-1. Furthermore, the vowels can be rotated either to the left or the right, and 

new matrices of vowel-pitch assignments can be created by then running other 

instances of the guido-one function (lines 56-60). 

((43 A) (45 E) (47 I) (48 O) (50 U) (52 A) (53 E) (55 I) (57 O) (59 U) (60 A) 
(62 E) (64 I) (65 O) (67 U) (69 A) (71 E) (72 I) (74 O) (76 U)) 

Example 3-3: Outcome of Example 3-2. 

Guido is known also for establishing “the framework for our conventional system 

of music notation” by creating a system in which a staff with lines and spaces is 

accompanied by a clef.40 Now composers could notate pitches, but the problem of 

                                            
39 Warren Babb and Claude V. Palisca, Hucbald, Guido, and John on Music: Three Medieval 

Treatises. (New Haven: Yale University Press, 1978), 87, 144-146. 

40 Mary Simoni and Roger B. Dannenberg, Algorithmic Composition: A Guide to Composing 
Music with Nyquist (Ann Arbor: The University of Michigan Press, 2013), 7. Claude V. Palisca and 
Dolores Pesce, "Guido of Arezzo [Aretinus]", Grove Music Online. Oxford Music Online. Oxford University 
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notating rhythm was still not solved. According to Cope, Johannes de Garlandia’s (ca 

1270-1320) De Mensurabili musica “provides clear algorithms for the practical use of 

rules in analyzing music of its day,” and was built on Guido’s contributions by “proposing 

a new theory of consonances,”41 dividing them into perfect (unison, octave), imperfect 

(major third, minor third), and medial (fifth, fourth) types while ascribing the same 

attributes to dissonances (imperfect – major sixths, minor sevenths, medial – whole 

tone, minor sixths, perfect, semitone, tritone, major seventh).42 These intervallic 

relationships are important, since Garlandia “stresses melodic independence between 

the voices (diversi cantus).”43 Foremost, “Garlandia also defined classes of organum, 

pitches, and ligatures.”44 “Musica menusurabilis refers to rhythmically notated 

polyphonic music (as opposed to the “unmeasured” music of the plainchant – musica 

plana).”45 Along with ideas of rhythmic durations Garlandia also introduced the concept 

of rests, along with its notation, in the same treaty.”46 Ars cantus mensurabilis (1280), by 

                                                                                                                                             
Press http://www.oxfordmusiconline.com/subscriber/article/grove/music/11968 (accessed February 1, 
2014). 

41 Cope, Hidden Structure: Music Analysis Using Computers, 12. However, Cope gets the dates 
wrong for Johannes de Garlandia – Cope says that Johannes lived from 1195-1272, but New Grove gives 
the dates of 1270-1320. Rebecca A. Baltzer, "Johannes De Garlandia", Grove Music Online. Oxford 
Music Online. Oxford University Press. 
http://www.oxfordmusiconline.com/subscriber/article/grove/music/14358 (accessed January 31, 2014).  

42 Sarah Fuller, "Organum-Discantus-Contrapunctus in the Middle Ages," in Western Music 
Theory, ed. Thomas Christensen, (New York: Cambridge University Press, 2002), 486. 

43 Ibid. 

44 Cope, Hidden Structure: Music Analysis Using Computers, 12. 

45 Anna Maria Busse Berger, "The Evolution of Rhythmic Notation," in Western Music Theory, ed. 
Thomas Christensen, (New York: Cambridge University Press, 2002), 629. 

46 Ibid., 630. The concept of the emerging complexity of polyphonic music directly contributes to 
the development of notation. Music notation itself can be seen as being algorithmic. For one, symbolic 
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Franco of Cologne, was popular during the Middle Ages and Renaissance, due to its 

clarity and its good organization.47 Franco re-evaluates Garlandia’s concepts, and 

“places the separate note value rather than the modal pattern at the center.”48 In effect, 

“by notating rhythm using separate note shapes and ligatures, a singer could now read 

and perform a score without the knowledge of rhythmic modes.”49 One of the 

characteristics of the Ars Nova movement depends on the ability to notate complex 

rhythmic schemes. 

A contemporary of Garlandia’s Jacques de Liège (1270-1340) published 

Speculum musice (1340) and subdivided the practice of “music theory into five 

categories: Heavenly (celestis), cosmic (mundana), human (humana), instrumental 

(sonorous) and analysis (practica).”50 Pilippe de Vitry (1291-1361) was involved in the 

compilation of the Roman de Favel and more importantly published Ars nova (1320), 

after which a whole new epoch of late medieval music is named.51 In addition, de Vitry is 

also credited with having written some of the first isorhythmic motets.52 Isorhythmic 

                                                                                                                                             
assignment of notes and their duration (array algorithm), modern notation in the twentyfirst century is 
usually conducted on computers utilizing algorithms, and “music notation itself has constraints that often 
require algorithmic solutions.” Cope, The Algorithmic Composer, 12. It turns out, however, that Garlandia 
is really only an editor of De mensurabili musica. Baltzer.  

47 Berger, 632. 

48 Ibid., 634. 

49 Ibid. 

50 Cope, Hidden Structure: Music Analysis Using Computers, 12. Jacque de Liège also opposed 
elements of the Ars Nova practice as set forth by de Vitry.  

51 Margaret Bent and Andrew Wathey, "Vitry, Philippe De", Grove Music Online. Oxford Music 
Online. Oxford University Press. http://www.oxfordmusiconline.com/subscriber/article/grove/music/29535 
(accessed October 24, 2012). 

52 Ibid.  
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motets reached their zenith with Guilliame de Machaut (1300-1377), and are considered 

by many to be part of algorithmic practice.53 

“Isorhythm” (from Greek ἴσος – ‘equal’, and ρυθμός – ‘rhythm’) as a term did not 

exist during the Middle Ages, but was implied through the use of the term talea and 

color.54 The melodic repetition occurs in the tenor of a given motet.55 There are many 

different variations of isorhythmic motets, some feature one or multiple colors, one or 

multiple taleas, and can also feature different proportions within taleas, expressed in 

schemes of diminution and augmentation.56 The following example shows the talea and 

color, and how these are combined in the tenor part of an isorhythmic motet titled 

Detractor est from the Roman de Fauvel (the composer is unknown):57 

 
                                            

53 Nierhaus, 21-23. Roads, 822. Loy. Kirchmeyer. Rowe, 6. Cope, The Algorithmic Composer, 3. 

54 Margaret Bent, "Isorhythm", Grove Music Online. Oxford Music Online. Oxford University 
Press. http://www.oxfordmusiconline.com/subscriber/article/grove/music/13950 (accessed October 28, 
2012). Examine footnote 37 and its corresponding text for the definition of color and talea. 

55 Ibid. 

56 Although musicians generally understand the "isorhythmic motet" to include a repeated 
rhythmic pattern (talea) and a repeating but non-congruent melodic pattern (color), it is only the talea that 
defines the motet as "isorhythmic." Many examples of the "isorhythmic" motet exist without an 
accompanying color.  

57 Willi Apel and Archibald T. Davidson, Historical Anthology of Music, 2 vols., vol. 1 (Cambridge, 
Massachusetts: Harvard University Press, 1977), 45-46. English title: Withdrawn. By the 12th century, 
musicians were already measuring out blocks of "time" by creating rhythmic patterns that would then be 
repeated to form the architectural basis of a composition. This measured-off block of time would later 
come to be called, in Latin, a talea. The word talea was a tailor's term meaning "stick" or "cutting."  The 
talea was much like today's yardstick; it could be used as a gauge to measure out a consistent length of 
cloth or, in music, "time." In Detractor est, the rhythmic-mode patterns of the Notre Dame school are 
evolving into the mature talea of the isorhythmic motet. The pattern has been expanded from the very 
simple rhythmic mode, and the newly devised pattern is repeated and/or replaced with a new pattern, 
giving the work an architectural structure, in the tenor, of aaaba. 

43
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Figure 3-4: Detractor est - Talea. 

 

Figure 3-5: Detractor est - Color. 

The measures in Figure 3-6 show how the talea (Figure 3-4) and color (Figure 

3-5) are superimposed on top of each other to form the isorhythm.58 On first 

observation, the example does not seem to have a lot in common with Guido’s algorithm 

as mentioned above (Table 3-1 and Figure 3-1). However, Example 3-4 shows how an 

algorithm in Lisp would take care of the isorhythmic procedure from Figure 3-4, Figure 

3-5, and Figure 3-6. 

                                            
58 Measures 42 and 43 are the end of the piece and alter the talea structure for cadential 

purposes. 
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Figure 3-6: Detractor est - tenor, Talea and Color combined. 

1. (defparameter *color* 
2.   '(55 57 59 57 57 57 55  
3.        57 55 57 55 55 53 52  
4.        55 57 60 60 59 60 62  
5.        60 62 62 60 60 62 59  
6.        60 59 57 55 57 59 57  
7.        57 60 62 60 60 59 57  
8.        57 59 60 59 57 59 59) 
9.   "A pitch class collection representing the color.") 
10.  
11. (defparameter *talea*  
12.   '(dh q h dh qr qr q q h dhr) 
13.   "Holds the talea, or representative values for durations, and rests.") 
14.  
15. (defun isorhythm (talea color) 
16.   "Recursive function to build an isorhythm with the talea and color as 

arguments." 
17.   (if (null color) nil 
18.     (if (null talea) 
19.       (cons 
20.         (list (first *talea*) (first color)) 
21.         (isorhythm (rest *talea*) (rest color))) 
22.       (cons 
23.        (cond 
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24.         ((eql (first talea) 'qr)  
25.          (list (first talea) (first (push 'r color)))) 
26.         ((eql (first talea) 'dhr)  
27.          (list (first talea) (first (push 'r color)))) 
28.         (t (list (first talea) (first color)))) 
29.        (isorhythm (rest talea) (rest color)))))) 
30.  
31. ; ----- running the algorithm ----- ; 
32. (isorhythm *talea* *color*) 
33.  

Example 3-4: Isorhythmic algorithm in Lisp.  

Lines 1-9 in Example 3-4 define the global variable that will hold a PPC that 

represents the *color*. The PCC Lines is expressed in MIDI pitch values whereas 

middle C equals 60. Lines 11-13 define the *talea* global variable. The *talea* 

consists of representative values of note durations and rests (dh = dotted half, h = half, 

q = quarter, dhr = dotted half rest, qr = quarter rest). The isorhythm algorithm is 

defined by the recursive function named isorhythm and accepts the talea and the 

color as arguments in line 15. Line 17 declares an if/else condition that evaluates to 

true when the end of the color is reached, and returns a nil value to end the 

recursion. When the condition is false a nested if/else statement is initiated that 

determines the end of the talea (line 18). If the end of the talea evaluates true, the 

first value of the talea is re-bound to the global variable *talea* and is combined 

with the corresponding first value of the color (line 20). The remaining list items 

from the talea and the color sequences are then passed back into the function 

isorhythm for recursion (line 21). If the end of the talea has not been reached 

another list is created in line 25. The first item of the talea is assigned to the 

first corresponding item of the color (line 27), and the remaining items from the 

talea and color sequences are recursively passed back to the isorhythm function 
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(line 29). 

However, another nested conditional statement determines whether or not a rest 

occurred in the talea and a rest instead of a note needs to be inserted into the new 

list (lines 25 - 27). If, for example a quarter rest ('qr) is indicated in the talea list 

(line 24), then the first item of the talea sequence is combined with the first item 

of the outcome of an operation that first inserts the atom 'r and then pushes the rest of 

the color sequence one value over to the right in the list’s index (line 25).59 This is 

done so that the interruption of the color list picks up where it left off when it is passed 

back into the recursion function isorhythm with the remaining values of the talea 

and color sequences in line 29. Lines 26 and 27 accomplish the same goal except 

with a dotted half rest ('dhr). Since the conditional statement is a switch statement (a 

compound if/else statement that decided on more than one if/else condition via the 

cond function) a default value is established in line 28. In order to run the algorithm a 

call to the function isorhythm with its corresponding parameters of *talea* and 

*color* is provided in line 32 for REPL operation. The resulting isorhythmic matrix of 

the isorhythm algorithm is shown in Example 3-4 (which corresponds to Figure 3-6).60 

((DH 55)(Q 57)(H 59)(DH 57)(QR R)(QR R)(Q 57)(Q 57)(H 55)(DHR R)  
 (DH 57)(Q 55)(H 57)(DH 55)(QR R)(QR R)(Q 55)(Q 53)(H 52)(DHR R)  
 (DH 55)(Q 57)(H 60)(DH 60)(QR R)(QR R)(Q 59)(Q 60)(H 62)(DHR R)  
 (DH 60)(Q 62)(H 62)(DH 60)(QR R)(QR R)(Q 60)(Q 62)(H 59)(DHR R)  
 (DH 60)(Q 59)(H 57)(DH 55)(QR R)(QR R)(Q 57)(Q 59)(H 57)(DHR R)  
 (DH 57)(Q 60)(H 62)(DH 60)(QR R)(QR R)(Q 60)(Q 59)(H 57)(DHR R)  
 (DH 57)(Q 59)(H 60)(DH 59)(QR R)(QR R)(Q 57)(Q 59)(H 59)) 

                                            
59 An atom in Common Lisp corresponds to something that is neither a list nor a number, and in 

this case is represented by a symbol. 

60 The note names (in MIDI values) are paired with their durations. If a rest occurs the MIDI note 
value is assigned “R.”  
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Example 3-5: outcome of Example 3-4. 

Comparing the isorhythm algorithm (Example 3-4) to the guido-one algorithm 

(Example 3-2) shows that they are very similar. The only changes, aside from a different 

naming structure, have been italicized (Example 3-4, lines 23 - 27). These changes 

were needed to compensate for the integration of rests. Surprisingly, both algorithms set 

out to accomplish two different musical tasks, but remain structurally the same. In effect, 

these formal techniques were used in two ways, (1) “to achieve an underlying unity and 

direction in a work,” and (2) “to determine an independent agent of choice for certain 

details.”61 

During the Middle Ages other algorithmic procedures seem to appear within 

contrapuntal practice that derive their heritage from practices within Euclidian 

geometry.62 Two often cited early examples are Guillaume Machaut’s secular three part 

rondeau “Ma fin est mon commencement” (my end is my beginning) from the fourteenth 

century,63 and the Agnus Dei from Guillaume Dufay’s (1397-1474) Missa L’Homme 

armé from the fifteenth century.64 The practice is known as cancrizans, or retrograde, 

and involves “a succession of notes to be played backwards, either retaining or 

                                            
61 Loy, 299. 

62 It is not surprising that medieval composers would seek interdisciplinary approaches within the 
study of the quadrivium (arithmetic, geometry, music – really music theory, and astonomy), especially 
since Boethius, and/or Cassidorus (both music theorists) advocated the quadrivium. 

63 William Drabkin, "Retrograde", Grove Music Online. Oxford Music Online. Oxford University 
Press. http://www.oxfordmusiconline.com/subscriber/article/grove/music/23263 (accessed November 5, 
2012). 

64 Loy, 300. 
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abandoning the rhythm of the original.”65 The practice represents a geometric 

transformation of melodic pitch material around a vertical axis. If one thinks of a 

Euclidian plane, considering the durational values of pitches as being equal – or 

retaining the original rhythms, this geometric transformation is considered isometric.66   

 

Figure 3-7: Guillaume Machaut's Ma fin, first 20 measures, tenor. 

Examining Machaut’s Ma fin shows that the first 20 measures in the tenor part 

(Figure 3-7) are repeated in retrograde the following 20 measures (Figure 3-8).67 The 

same is also true for the triplum and the cantus, with the only difference that after the 

first 20 measures the triplum part is retrograded in the cantus part and vice versa for the 

following 20 measures. The rhythmic values are mirrored identically, thus being 

isometric.  

                                            
65 Drabkin. 

66 Vi Hart, "Symmetry and Transformations in the Musical Plane," in Bridges 2009: Mathematics, 
Music, Art, Architecture, Culture, ed. Craig S. Kaplan and Reza Sarhangi (Banff: Tarquin Books, 2009), 
170. 

67 The full score can be viewed in Appendix 1: A.1. 
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Figure 3-8: Guillaume Machaut's Ma fin, following 20 mm. retrograde (tenor). 

Retrograde is an isometric procedure that can easily be translated to an 

algorithmic procedure. The practice is so common that most programming languages 

have a built-in reverse (retrograde, i.e. vertical reflection) function.68 Lisp contains the 

built-in function reverse. But when using the reverse function there is no indication on 

how this function actually works, or whether it makes use of algorithmic procedure. The 

reverse function is a special kind of function in Lisp and is called a macro. Unlike a 

Microsoft Word macro, a macro in Lisp is a type of abstraction that extends the Lisp 

core language. Macros make Lisp incredibly powerful, since anything that does not exist 

in the core language can be added on ad infinitum.69 Macros deflate into actual 

functions at runtime that do not have to be reprogrammed. The following example 

shows how the reverse function works programmatically, or how the reverse macro 

would deflate at runtime (lines 9-13): 

1. (defparameter *pitches*  
2.   '(48 55 48 48 48 55 48 55 57 55 48  
3.        50 48 57 55 54 55 48 48 48 r  
4.        50 57 50 55 53 52 50 48 52 53  
5.        55 48 52 50 48 55 48 50 52 53  
6.        55 48 55 53 50 48 50 52 55 54  
7.        52 50) 

                                            
68 MakeMusic’s Finale 2014 has a built-in retrograde tool under “Plug-ins” > “Scoring and 

Arranging” > “Canonic Utilities.” 

69 In Pd macros are in fact called abstractions. 

282722 292321 24 25 26
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8.   "Holds a pitch sequence.") 
9.   
10. (defun retrograde (pitches) 
11.   "Emulates Lisp's reverse function." 
12.   (if (eql pitches nil) nil 
13.     (append 
14.      (last pitches) 
15.      (retrograde (butlast pitches))))) 
16.  
17. ; running retrograde function with pitches as argument  
18. (retrograde *pitches*) 
19.  

Example 3-6: Retrograde algorithm. 

In the first line the global variable *pitches* is defined, and sequence of 

pitches is bound to that variable (lines 2-7). In this case the pitch sequence from 

Machaut’s Ma Fin’s tenor has been bound in MIDI numbers, and for the one rest r was 

specified. In line 10-15 the recursive function of retrograde is defined, and requires 

the pitches as its argument.70 Line 12 shows the condition under which the recursion 

stops, i.e. when there are no leftover pitches in the pitch sequence return nil, or the 

end of a list. Appending the last pitch to a remaining list that contains everything 

except the last pitch is then fed into the retrograde function anew, and creates a 

retrograded pitch sequence. Line 18 provides a function call (for REPL use) to the 

retrograde function with the *pitches* provided as an argument. The recursion of 

a defined set and the automation involved within the recursion makes the retrograde 

operation algorithmic in nature. 

Cancrizans is only one type of mirroring in music, namely the reflection around a 

vertical axis. Another category of mirroring is the principle of melodic inversion, whereby 

melodic material is reflected around a horizontal axis. Guido d’Arezzo states, “when a 
                                            

70 Cope lists a similar retrograde function in Computers and Musical Style. Cope, Computers and 
Musical Style, 77. 
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neume traverses a certain range or contour by leaping down from high notes, another 

neume may respond similarly in an opposite direction from low notes, as happens when 

we look for our likeness confronting us in a well.”71 This statement can be interpreted in 

two ways: 1. Guido is describing contrary motion, and/or 2. Guido is describing 

inversion, since the reflection in a well describes a reflection around a horizontal axis.72  

 

Figure 3-9: Gradual Benedicta.73 

The musicologist Willi Apel traces melodic inversions to the fifteenth century, 

referring to the works of Ciconia and tenors of masses, and motets by Dunstable 

(indicated with “subverte lineam” in the tenor of Veni sancte spritus), and Obrecht.74 

While these examples are on the cusp of the late Middle Ages and the early 

Renaissance, Leo Treitler points to an example (Figure 3-9) from the Notre Dame 

school, ca. 1200, using inversion, and a second example (Figure 3-10) from an 

Aquitanian manuscript (Saint Marital polyphony) that features alternating patterns of 

                                            
71 Babb and Palisca, 71. 

72 The term in Euclidian transformation is horizontal reflection. Hart,  170. 

73 Leo Treitler, "Regarding Meter and Rhythm in the Ars Antiqua," The Musical Quarterly 65, no. 4 
(1979): 546. 

74 Willi Apel, Harvard Dictionary of Music, Second ed. (Cambridge, Massachusetts: Harvard 
University Press 1972), 423. Willi Apel, The Notation of Polyphonic Music 900-1600, Fourth ed. 
(Cambridge Massachusets: The Mediaeval Academy of America, 1949), 187. 

8

8
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inversions and retrograde inversions.75 Treitler’s second example clearly shows that 

retrograde inversion also emerged from music compositional practices during the Middle 

Ages.76  

 

Figure 3-10: Versus Omnis curet homo.77 

These compositional techniques (retrograde, inversion, retrograde-inversion) 

generate three different melodies from one initial melodic idea.78 The procedures can be 

seen as having been derived from Euclidian transformations. It is not surprising that 

these three techniques rose out of the scholarly life during the Middle Ages, since “a 

medieval scholar could demonstrate that he had really ‘learned’ or ‘mastered’ the text 

when he could recite it backwards, a medieval musician might be admired for applying 

                                            
75 Treitler, "Regarding Meter and Rhythm in the Ars Antiqua," 546-547. 

76 The term in Euclidian transformation is in this case 180º rotation (there can be other rotations 
according to different degrees that in the transformation of melodic material are not particularly useful). 
Hart,  170. 

77 Eng.: “Takes care of all men.” Treitler, "Regarding Meter and Rhythm in the Ars Antiqua," 546. 

78 In canons the Euclidian transformation of vertical translation, or transposition are used as well. 
Sequences can be considered vertical translations. A horizontal translation is simply repetition in music 
according to Hart. Furthermore, Hart states that the vertical and horizontal translation is a transposed 
repetition in music. Hart mentions two more Euclidian transformations. The first being the horizontal glide 
reflection, or a repeated inversion, and the second being the vertical glide reflection that is a transposed 
retrograde. Hart,  170. Thus in Figure 3-9, the third three-note pattern is a horizontal glide reflection. Hart 
partially bases her insights on a book article by Wilfrid Hodges, "The Geometry of Music," in Music and 
Mathematics: From Pythagoras to Fractals, ed. John Fauvel, Raymond Flood, and Robin Wilson, (New 
York: Oxford University Press, 2003). 

8

8
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inversions and retrograde movement to his tenors.”79 Two additional compositional 

practices that were not mentioned are the techniques of diminution and augmentation. 

Proportional isorhythmic motets use these two techniques exhaustively, e.g: the 

isorhythmic motets written by John Dunstable, and many others.80 Diminution decreases 

the durational values of pitch material, and augmentation increases the durational 

values of pitch material. By themselves these two techniques do not generate 

particularly interesting melodic material, unless they are combined with the three 

generative procedures mentioned above that directly transform melodic material. The 

previously mentioned generative techniques continue to be of importance ever since the 

Middle Ages. 

From observing the first two three-note groups from Figure 3-9 in the top part ((f, 

e, d), (f, g, a)), and the first two three-note groups in the bottom part ((f, g, a), (f, e, d)), it 

becomes clear that the bottom part has been inverted from the top part.81 This inversion 

can be expressed algorithmically the following way in Lisp: 

1. (defparameter *melody* '(77 76 74 77 79 81) 
2.   "Sequence of MIDI pitches.") 
3.   
4. (defparameter *diatonic-pitch-classes*  
5.   '((0 0 C) (1 2 D) (2 4 E) (3 5 F)  
6.     (4 7 G) (5 9 A) (6 11 B)) 
7.   "Matrix of diatonic pitches, their pitch class 
8.   designation, and pitch names.") 
9.   

                                            
79 Anna Maria Busse Berger, Medieval Music and the Art of Memory (Berkeley: University of 

California Press, 2005), 7. 

80 Brian Trowell, "Proportions in the Music of Dunstable," Proceedings of the Royal Musical 
Association 105, (1978-1979). 

81 It should be noted that this inversion could also be viewed as simply changing the order of the 
three note sets, whereby the first three note set from the top part is simply placed behind the second 
three note set of the top part, in order to form the second part (middle staff). 
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10. (defun contour (melody &optional (invert 1)) 
11.   "Calculates contour of a melody by ascending or  
12.   descending intervals. Invert intervals with -1." 
13.   (if (eql (second melody) nil) nil 
14.     (cons 
15.      (* (- (second melody) (first melody)) invert) 
16.      (contour (rest melody) invert)))) 
17.   
18. (defun midi->diatonic (melody &optional (count 0)) 
19.   "Saves number value for octave and converts MIDI  
20.   to diatonic pitch classes." 
21.   (if (eql (first melody) nil) nil 
22.     (if (eql count 0) 
23.       (cons 
24.        (list (floor (/ (first *melody*) 12))) 
25.        (list (midi->diatonic melody (+ count 1)))) 
26.       (cons 
27.        (first  
28.         (find  
29.          (mod (first melody) 12)  
30.          *diatonic-pitch-classes*  
31.          :key #'second)) 
32.        (midi->diatonic (rest melody) (+ count 1)))))) 
33.   
34. (defun diatonic->midi (melody &optional (starting-pitch 60)) 
35.   "Converts diatonic pitch classes to MIDI pitches." 
36.   (if (eql (first melody) nil) nil 
37.     (cons  
38.      (+  
39.       (second  
40.        (find  
41.         (first melody)  
42.         *diatonic-pitch-classes*  
43.         :key #'first))  
44.       starting-pitch) 
45.      (diatonic->midi (rest melody) starting-pitch)))) 
46.   
47. (defun invert-melody (melody contour &optional (count 0)) 
48.   "Inverting a melody." 
49.   (if (eql (first contour) nil) nil 
50.     (if (eql count 0) 
51.       (cons 
52.        (first melody) 
53.        (invert-melody melody contour (+ count 1))) 
54.       (cons 
55.        (+ (first melody)(first contour)) 
56.        (invert-melody  
57.         (list (+ (first melody) (first contour)))  
58.         (rest contour)   
59.         (+ count 1)))))) 
60.   
61. (defun invert (melody) 
62.   "Invert a melody - main function." 
63.   (diatonic->midi  
64.    (invert-melody  
65.     (second (midi->diatonic melody)) 
66.     (contour (second (midi->diatonic melody)) -1))  
67.    (* (first (first (midi->diatonic melody))) 12))) 
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68.   
69. (progn 
70.   (format t "~%Melody: ~t~t~t~t~t~t~t~t~t~A" *melody*) 
71.   (format t "~%Inverted Melody: ~A" (invert *melody*))) 
72.  

Example 3-7: Inversion algorithm (as seen in Figure 3-9). 

In line 1 a small melodic fragment is assigned to the variable *melody* 

alongside its corresponding documentation string. The MIDI values assigned here 

correspond to the pitch sequence f, e, d, f, g, and a, or: (77 76 74 77 79 81). Lines 

4-8 define a matrix that translates pitch classes to diatonic pitch classes, and their 

corresponding pitch class names, as shown in Table 3-2. Diatonic pitch classes are 

established here to stay true to the character of the actual inversion in Figure 3-9, 

especially in regards to the distribution of half and whole steps. That means the diatonic 

pitch classes correspond to the scale degrees of the major scale. The matrix is utilized 

in later functions to translate MIDI values, to pitch class values, to diatonic pitch class 

values (or scale degrees), and vice versa.  

Table 3-2: Matrix from lines 4-8. 

scale degree 0 1 2 3 4 5 6 

PC 0 2 4 5 7 9 11 

note name c d e f g a b 
 

Lines 10-16 define the contour function to determine the shape of the given 

pitch sequence.82 The contour of a melody is established by calculating the intervals 

                                            
82 The contour function is similar to Cope’s interval-translator function. Cope, 

Computers and Musical Style, 79. 
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used to move from one scale degree to the next, resulting in the following list (-1 -1 2 

1 1). The established contour is then inverted, meaning if the first interval moved 

upward in stepwise motion, the inverted interval will move downward in stepwise 

motion, e.g.: (1 1 -2 -1 -1). Through recursion, the procedure is repeated until the 

end of the melodic fragment is reached, and the inverted contour has been established. 

The midi-diatonic function in lines 18-32 converts MIDI values to a list of 

scale degree values that includes octave information. Dividing the first note of the 

melody by 12, and storing the resulting integer value by discarding the resulting float 

value stores in the octave in which the melodic fragment that is to be inverted occurred, 

or (6). Afterwards, all the pitches of the sequence first are converted to pitch classes 

through a mod 12 operation, and second are converted from pitch classes, with help of 

the *diatonic-pitch-classes* matrix established in lines 4-8, to scale degrees, 

e.g: ((6) (3 2 1 3 4 5)). Lines 34-45 show the diatonic->midi function that 

converts scale degree values back to MIDI values, with help of the previously 

established octave indicator, and the *diatonic-pitch-classes* matrix. 

The following invert-melody function actually inverts the melody by mapping 

the inverted contour onto the pitch material (lines 47-59). The starting pitch of the 

melody is established first. Thereafter, using the starting pitch and consecutively 

resulting pitches from applying the contour values creates the new inverted melody 

consisting of scale degrees: (3 4 5 3 2 1). The last function (invert), lines 61-67, 

ties all previously mentioned functions together to simply invert a melody specified in 

MIDI values, and return the inversion in MIDI values. All melodic values are translated 
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first to pitch classes, and then to scale degrees. Second, from the melody expressed in 

scale degrees an intervallic contour is created and inverted. Third, the inverted 

intervallic contour is mapped onto a starting pitch of the existing melody, and the 

resulting inverted melody is built in scale degrees. Fourth, the inverted melody is 

translated back into appropriate MIDI values: (77 79 81 77 76 74). The final step 

occurs within the (progn) function, which creates a program processing order, and 

first, prints the melody to the REPL’s listener window, and second, prints the outcome of 

the inversion function to the listener window, when running the program or copying and 

pasting the program into the listener window of a REPL (Example 3-8).  

The inversion algorithm can be used as part of a pattern-matching scheme for a 

music-analysis algorithm.83 David Cope used a similar technique to detect melodic 

contours during analysis.84  

Melody:          (77 76 74 77 79 81) 
Inverted Melody: (77 79 81 77 76 74) 

Example 3-8: Outcome of the inversion algorithm.  

The medieval period left a large impact on how to conceive certain compositional 

processes as formalizations, and set the foundation for later periods to expand on these 

foundations. Whether or not all of these formalizations of music were actually developed 

during this time period, or were merely compiled by scholars of the period remains 

unclear. 

                                            
83 The inversion algorithm did not make use of any particular rhythmic scheme, which may lead to 

the impression of lack of dimension. However, since the algorithm is free of any rhythmic values it can 
detect melodic patterns regardless of diminution, augmentation, or any other rhythmic variations. 

84 David Cope, Computer Models of Musical Creativity (Cambridge, MA: MIT Press, 2005), 142. 
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3.2.3. Renaissance 

The next common thread in the narrative of algorithmic composition is soggetto 

cavato dale parole – or a subject carved out of words – and was described by the 

Renaissance music theorist Gioseffo Zarlino in Le istituzioni armoniche (1558).85 Loy 

specifically characterizes the practice as an example of musical acrostics.86 The 

example that both Kirchmeyer and Lockwood mention is Josquin’s subject based on the 

name of Hercules, the duke of Ferrara.87 Josquin creates the subject by assigning 

vowels occurring in the syllables that spell out the full name and title of the duke of 

Ferrara to a discrete set of pitches (Table 3-3).88 The vowels of the syllables alliterate 

with the vowels in the Latin pitch names. The technique is reminiscent of Guido’s vowel 

to pitch assignment technique, in which a search algorithm matches vowel occurrences 

                                            
85 Kirchmeyer, 18. Lewis Lockwood, "Soggetto Cavato", Grove Music Online. Oxford Music 

Online. Oxford University Press. http://www.oxfordmusiconline.com/subscriber/article/grove/music/26100. 
Loy,  300. Heinrich Glareanus makes the claim in his Dodekachordon in 1547 that “Josquin had invented 
la-sol-fa-re-mi as a soggetto cavato on the promise of his procrastinating patron to take care of his salary, 
'Laise faire moy' or 'Lascia fare a me.'” This motive becomes the basis of Josquin’s Missa La sol fa re mi. 
Richard J. Agee, "Costanzo Festa's 'Gradus Ad Parnassum'," Early Music History 15, (1996): 12. Bonnie 
J. Blackburn, "Masses Based on Popular Songs and Solmization Syllables," in The Josquin Companion, 
ed. Richard Sherr, (2001). 

86 Loy, 300. 

87 Kirchmeyer, 18. Lockwood. 

88 Another one of Josquin’s soggetto cavato examples is the fa-mi-fa motive carved out of Ma-ri-
a. Richard Sherr, "'Illibata Dei Virgo Nutrix' and Josquin's Roman Style," Journal of the American 
Musicological Society 41, no. 3 (1988): 438. Willem Elders and L. Okken, "Das Symbol in Der Musik Von 
Josquin Des Prez," Acta Musicologica 41, no. 3/4 (1969): 170. Cipriano di Rore expanded the soggetto 
cavato in his Hercules mass, by using the expanded phrase of Vi-vat foe-lix Her-cu-les se-cun-dus dux 
fer-ra-ri-ae quar-tus, resulting in the subsequent melodic material: mi, fa, re, mi, re, ut, re, re, ut, ut, ut, re, 
fa, mi, re, fa, ut. Alvin Johnson, "The Masses of Cipriano De Rore," Journal of the American Musicological 
Society 6, no. 3 (1953): 231. It becomes clear that Zarlino and de Rore had adapted the soggetto cavato 
technique from their teacher Adrian Willaert, who used the technique in order to honor his patron Antoine 
Perrenot de Granvelle (1517-1586) by creating a motif out of the nobleman’s motto Du-ra-te or ut-fa-re. 
Ignace Bossuyt, "O Socii Durate: A Musical Correspondence from the Time of Philip Ii," Early Music 26, 
no. 3 (1998): 441. 
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to pitches (Example 3-1).  

Table 3-4: Josquin's Missa Hercules Dux Ferrariae subject. 

re (d) ut89 (c) re (d) ut (c) re (d) fa (f) mi (e) re (d) 

Her- cu- les dux Fer- ra- ri- ae 
 

However, in the soggetto cavato method the vowels occurring in solfège syllables 

are matched with vowels occurring in words. The method seems slightly more restrictive 

in what type of melodies can be generated, since Guido suggested that the order of 

vowels could be rotated in order to achieve more varying results. Table 3-4 illustrates 

what is possible with soggetto cavato.90  

Table 3-5: Soggetto Cavato pitch-vowel assignment. 

ut (c) re (d) mi (e) fa (f) sol (g) [la (a)] 

u e i a o [a] 
 

The Oxford Dictionary of English defines the word acrostic as (1) “A (usually 

short) poem (or other composition) in which the initial letters of the lines, taken in order, 

spell a word, phrase, or sentence;” (2) “A (usually short) poem (or other composition) in 

which the initial letters of the lines, taken in order, spell a word, phrase, or sentence;” 

and (3) “Any of various types of word puzzle in which a word or phrase is formed from 

certain letters of the answers to several clues.”91 Therefore, musical acrostics from a 

                                            
89 Now known as “do.” 

90 “La” is parenthesized in square brackets in Table 3-4, since in the majority of examples the 
vowel “a” is matched with the “fa” syllable, and not the “la” syllable. 

91 "Acrostic, Adj.1 and N.", Oxford English Dictionary. OED Online. Oxford University Press. 
http://www.oed.com/view/Entry/1867?rskey=3gSbqk&amp;result=1 (accessed March 12, 2014). 



   57 

poetic standpoint are really only applicable to Guido’s Ut queant laxis, and it would be 

better to categorize the soggetto cavato technique as musical cryptography (Figure 

3-11). From that perspective Table 3-4 can be interpreted as a simple substitution 

cipher algorithm, in which substituting a letter with a note encrypts text.92 

 

Figure 3-11: Musical acrostics - Ut queant laxis. 

 

3.2.4. Baroque 

Algorithms can be rules written on paper, but mechanical devices can also create 

automated processes through mechanical algorithms. Salomon de Caus (1576-1626), 

who inter alia was a teacher of how to draw perspective, “described an organ in which a 

pegged cylinder, turned by a water wheel, activated levers which triggered bellows to 

force air through pipes.”93 Running water of rivers in the city of Heidelberg were the 

source of propulsion for the water wheel.94 Additionally, de Caus also proposes a 

“sound” sculpture that features an automated musical process. “Through art, Salomon 
                                            

92 Cormen defines the algorithm in which substituting a letter with another letter encrypts text. 
Thomas H. Cormen, Algorithms Unlocked (Cambridge, MA: MIT Press, 2013), 139. The algorithm itself is 
akin to the pattern-matching algorithm described in Example 3-1. 

93 Joel Chadabe, Electric Sound (Upper Saddle River, N. J.: Prentice Hall, 1997), 268. 

94 Frances Yates, The Rosicrucian Enlightenment (New York: Routledge, 1999), 11-12. 

rabris, ges-MI- to- rumla- xis fi-UT que- ant so- na- reRE-

bi- i re-pol- lu- ti LA- a- tum,tu- o- rum,FA- mu- li veSOL-
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de Caus transformed the heat of the sun into music” at sunrise and sunset.95 

Furthermore, “de Caus may have been the first music theorist to liken musical sound 

propagation to the concentric circles, generated when an object is thrown into standing 

water,” thereby describing an early concept of a sound “wave.”96 Incidentally, in the 

same treatise (Les raisons des forces mouvantes avec diverses machines), de Caus 

describes a recipe on how to construct a just intonation monochord.97  

A contemporary of de Caus, Johannes Kepler (1571-1630), also created a 

specific just intonation monochord. But more importantly, in his book Harmonices mundi 

libri quinque, Johannes Kepler continued the Platonic narrative of Musica universalis, or 

“music of the spheres“ in 1619. Kepler’s perception of the music of the spheres “differed 

from earlier examples,” by considering that “harmonies are real, but soundless,” that 

“they are perceived from the sun, rather than the earth,” that “they are polyphonic, i.e., 

harmonies in the modern sense of the word,” and that “they follow the proportions of just 

intonation.”98 Further, Kepler devised a method in which music is “formally derived from 

non-human sources.”99 According to Kepler “all the musical intervals of the scale were 

                                            
95 Katja Grillner, "Human and Divine Perspectives in the Works of Salomon De Caus," in Chora 3: 

Intervals in the Philosophy of Architecture, ed. Alberto Perez-Gomez and Stephen Parcell, (Montreal: 
McGill-Queens University Press, 1999), 94-95. 

96 David Damschroder and David Russell Williams, Music Theory from Zarlino to Schenker: A 
Bibliography and Guide, Harmonologia (Hillsdale, New York: Pendragon, 1991), 51. 

97 J. Murray Barbour, Tuning and Temperament (Mineola, New York: Dover, 2004), 97. 

98 Penelope Gouk, "The Role of Harmonics in the Scientific Revolution," in The Cambridge History 
of Western Music Theory, ed. Thomas Christensen, (New York: Cambridge University Press, 2002), 233. 

99 Cope, Computers and Musical Style, 6. 
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expressed in the elliptical motions of the planets as they orbited around the sun.”100 The 

calculations that were used in mapping the orbital movements of the planets to pitches, 

were not based on actual speeds, but rather “on the minimal and maximal orbital 

velocities of each planet as they would appear from the sun.”101  

 

Figure 3-12: Kepler's seven "melodies." 

Therefore, “each planet ‘sings’ a range of notes depending on its rate of 

acceleration and deceleration.”102 The pitch mappings really are reductions of what 

really should be glissandi or portamenti.103 In either case Figure 3-12 shows the seven 

resulting “melodies” from this procedure.104 Earth was represented by “endless 

repetitions of ‘mi, fa, mi,’” while Saturn was represented by “short and low patterns.”105 

According to Cope, Kepler’s results were not necessarily “aesthetically pleasing,” but 

                                            
100 Gouk, 234. 

101 Ibid. 

102 Ibid. 

103 Gouk explains that the “continuous pitches would rise and fall like a siren.” Ibid. If Kepler were 
to have been alive at the beginning of the twentieth century he would have not had any problems mapping 
actual glissandi ranges to the rates of acceleration and deceleration of the planetary orbits, but Russolo’s 
The Art of Noise will not have been published for another 400 years or so. 

104 Johannes Kepler, Harmonices Mundi Libri V (Linz: G. Tampachius, 1619), 207. 

105 Cope, Computers and Musical Style, 6. 
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that the automation of the compositional process should still provoke interest.”106  

In 1650 Athanasius Kircher (1602-1680) published Musurgia Universalis. Charles 

Brewer provides the following synopsis of book VIII, of Musurgia Universalis, titled 

“Wonders” (Musurgiae Mirificae):  

Wonders, demonstrates the new craft of ‘Musarithmica,’ by which certainly 
anyone at all unskilled in music would be able to attain to a perfect knowledge of 
composing in a brief time, and continues the poetic and rhetorical musical 
combinations. It adapts the universal ‘Musarithmetic’ explanations to all 
languages with new artifice.107  

The book is further divided into four subsections (Musurgia combinatoria, 

Musurgia rhythmica sive poetica, Musarithmorum melotheticorum oraxin exhibens, De 

musurgia mechanica – misnamed Pars V, even though it is only the fourth part).108 The 

first part discusses “the combinatorial musical art,” the second part examines “the 

rhythmic or poetical musical art,” the third part introduces “the practice of ‘song-building 

musical numbers’ (musarithmi melothetici),” and the fourth part is concerned with “the 

mechanical musical art or the various transpositions of certain ‘musical-arithmetical 

columns.’”109 Knobloch traces Kircher’s discussion on combinatorics to Mersenne’s 

Harmonie universelle (1636), by pointing to the congruence of Kircher’s and Mersenne’s 

number examples 9 and 22, and Kircher’s explanations of Mersenne’s understanding of 

                                            
106 Ibid. 

107 Charles E. Brewer, The Instrumental Music of Schmeltzer, Biber, Muffat and Their 
Contemporaries (Burlington: Ashgate, 2011), 13. 

108 Athanasius Kircher, Musurgia Universalis, 2 vols., vol. 2 (Rome: Typis Ludouici Grignani, 
1650). 

109 Eberhard Knobloch, "The Sounding Algebra: Relations between Combinatorics and Music 
from Mersenne to Euler," in Mathematics and Music, ed. Gerard Assayag and Hans G. Feichtinger, (New 
York: Springer, 2002), 37. 
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“permutations, combinations or unordered selections, and arrangements or ordered 

selections.”110 

Nierhaus elaborates on how the Arca Musarithmica operates (which comes from 

the third part): 

In Kircher’s ‘Arca Musarithmica,’ four-lined number columns can be combined 
with four-voice rhythmic patterns by means of syntagmas. The number columns 
represent levels of different modes and are arranged in groups of 2 to 12 units. 
These units serve to correctly transfer text passages and represent one syllable 
each. Each class of tone pitch symbols of a particular size can be combined with 
a class of rhythmic patterns of the same size, finally producing four-voice 
movements in the style of the contrapunctus simplex. Because the number of 
voices differs in a movement of contrapunctus flores, in this form of syntagma the 
voices are only combined with a selection of appropriate values.111  

Kircher’s truly revolutionary concept of assigning numbers as pitch classes to 

notes predates the compositional and analytical practice of serialism by four 

centuries.112  

The conceptualization of Arca Musarithmica, which was by no means completed 

at the time of writing Musurgia Universalis, and served as one of the progenitors of 

Kircher’s later invention the Organum Mathematicum.113 Kircher’s student Gaspar 

Schott (1608-1666) described the box in his treatise titled Organum Mathematicum 

                                            
110 Eberhard Knobloch, "Mathematics and the Divine: Athanasius Kircher," in Mathematics and 

the Divine: A Historical Study, ed. Teun Koetsier and Luc Bergmans, (Philadelphia: Elsevier Science, 
2004), 336. In turn, Mersenne derived his work from Raimundus Lullus. Siegfried Zielinski, Archäologie 
Der Medien: Zur Tiefenzeit Des Technischen Hörens Und Sehens (Berlin: Rowohlt, 2002), 170. 

111 Nierhaus, 25. 

112 Ibid., 26. 

113 Ibid., 26, 29. 
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(1668).114 It was a physical manifestation of the Arca Musarithmica, and utilized 

Napier’s bones (created from ivory), or Rabdologia.115 John Napier (1550-1617) 

invented the Rabdologia as a “set of plates that could be organized with respect to one 

another to give a multiplication product.”116 It was invented to calculate the Descriptio, or 

logarithms and their corresponding number tables.117  

The Organum Mathematicum was an extraordinary set of tools that could be 

used for a number of different computations, aside from automated music composition. 

Sections in Schott’s treatise discuss how to use the syntagmas contained within the box 

for Arithmeticus - arithmetic (syntagmas akin to Napier’s bones), Geometricus - 

geometry, Fortificatorius - fortifications, Chronologicus - chronology (church holidays), 

Horographicus - horography (sundial construction), Astronomicus - astronomy, 

Astrologicus - astrology, Stenographicus - cryptography (a cyclic transposition cypher), 

and Musicus - music (as described in Arca Musarithmica).118 An existing PERL program 

demonstrates how the concepts from Arca Musarithmica can be applied in a virtual 

Organum Mathematicum, and thereby clearly exemplifies its algorithmic character.119 

                                            
114 Gaspar Schott, Organum Mathematicum (Ghent: Sumptibus Johannis Andreae Endteri & 

Wolfgangi Jun. Haeredum Excudebat Jobus Hertz, 1668). 

115 Eric G. Swedin and David L. Ferro, Computers: The Life Story of a Technology (Baltimore: 
Johns Hopkins University Press, 2007), 10. 

116 Ibid. 

117 Ibid., 9. 

118 Schott, xvii-xxxix. 

119 Jim Bumgardner, "Kircher’s Mechanical Composer: A Software Implementation," in Bridges 
2009: Mathematics, Music, Art, Architecture, Culture, ed. Craig S. Kaplan and Reza Sarhangi (Banff: 
Tarquin Books, 2009). 
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 In 1660, Giovanni Andrea Bontempi (1624-1705), who was assistant 

Kapellmeister to Heinrich Schütz at Dresden, publishes a book titled “New Method of 

Composing Four Voices, by means of which one thoroughly ignorant of the art of music 

can begin to compose.”120 The method involved a wheel with scale degree numbers of 

the Mixolydian mode that could produce compositions by rotating a dial in any 

direction.121 The innermost dial contained the number series, reading from left to right, 

(1 2 3 4 5 6 7 8); the ante-penultimate dial aligned those numbers with (12 11 8 13 12 

10 9 8) – scale degree 12, etc.; the penultimate dial contained the numbers (15 13 15 

13 14 15 14 12) that were initially aligned with the preceding dial, while the last dial 

consisted of the numbers (17 16 19 15 12 15 16 17). Therefore the first four-voice chord 

would consist of scale degree (1 12 15 17), or in the F Mixolydian mode (F C A C), and 

so forth. These chords could be placed into any order to determine accurate results.122 

This “wheel” of fortune is akin to an eight-sided dice. 

Wolfgang Caspar Printz (1641-1717) describes melodic and harmonic 

permutations in Phrynis Mytilenaeus, oder der Satyrische Componist that are “not 

inconsistent with more formal ars combinatorial of the century to come.”123 Printz had 

met Athansius Kircher in Rome, and the encounter impacted Printz’s theoretical 
                                            

120 Cope, The Algorithmic Composer, 6. Joel Lester, "Composition Made Easy: Bontempi's Nova 
Methodus of 1660," Theoria, no. 7 (1993): 87-102. The Latin title of the treatise is “Nova quatuor vocibus 
compendi methodus, qua musicae artis plane nescius ad compositionem accedete potest.” Damschroder 
and Williams, 35. Furthermore, according to Damschroder and Williams “Bontempi’s instructions 
anticipate the classic formulation by Fux a few decades later and produce similarly conservative results.” 

121 Cope, The Algorithmic Composer, 6. 

122 Ibid. 

123 David Cope, Experiments in Musical Intelligence, Computer Music and Digital Audio Series, 
vol. 12 (Madison, WI: A-R Editions, 1996), 2. 
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writing.124 Generally, the Phrynis discusses “theoretical issues, ranging from intervals 

and cadences to variation techniques, figured bass, tuning and temperament, rhythm, 

and counterpoint.”125 “Printz arrives at one thousand possible combinations” in his 

description of the salti composti (four-note combination of simple leaps).126 According to 

Cope the treatise “demonstrates its author’s interest in the extensive combinatorial 

possibilities of the variety of melodic lines above a given bass.”127  

In addition, musical acrostics further continue, the famous B-A-C-H motive comes 

to mind, as it was used in Fuga XV, The Art of The Fugue (BWV 1080).128 Acrostics by 

no means were particularly new, but their emergence as musical cryptograms starts 

appearing around the time of Josquin (see Table 3-3: Josquin's Missa Hercules Dux 

Ferrariae subject.129 Examples found from Josquin to Schütz would add “visual meaning 

to written scores.”130 In prose, acrostics had been used as cryptographic messages 

                                            
124 George J. Buelow, "Printz, Wolfgang Caspar", Grove Music Online. Oxford Music Online. 

Oxford University Press. http://www.oxfordmusiconline.com/subscriber/article/grove/music/22370 
(accessed March 19, 2014). 

125 Damschroder and Williams, 240. 

126 Dietrich Bartel, Musica Poetica: Musical-Rhetorical Figures in German Baroque Music 
(Lincoln, NE: University of Nebraska Press, 1997), 121. 

127 Cope, Experiments in Musical Intelligence, 2. Cope gets most of this information from Leonard 
Ratner. Leonard Ratner, "Ars Combinatoria Chance and Choice in Eighteenth-Century Music," in Studies 
in Eighteenth Century Music Essays Presented to Karl Geiringer on the Occasion of His 70th Birthday, 
ed. H. C. Robbins, (New York: Oxford University Press, 1970). 

128 Simoni and Dannenberg, 10.  

129 Cope states that music cryptography, or acrostics, was a “way of composing automatically – 
even though the rigor of automata is not seriously approached.” Cope, Computers and Musical Style, 6. 

130 Eric Sams, "Cryptography, Musical", Grove Music Online. Oxford Music Online. Oxford 
University Press. http://www.oxfordmusiconline.com/subscriber/article/grove/music/06915 (accessed April 
7, 2014). 
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since antiquity. Bach makes use of text-based acrostics in the Musical Offering (BWV 

1079) as an inscription before the first page of music. The inscription reads: Regis Iussu 

Cantion Et Reliqua Canonica Arte Resoluta (“At the Kings’ Command, the Song and the 

Remainder Resolved with Canonic Art.”)131 The early Bach historian Johann Nikolaus 

Forkel (1749-1818) points to the same acrostic and provides the translation as it 

appears in Hofstadter’s Gödel, Escher, Bach.132 However, the Bach scholar Christoph 

Wolff points out that the R-I-C-E-R-C-A-R was glued on top of the aforementioned page, 

after the volume had already been printed (Wolff, however, disagrees with Spitta and 

David that the acrostic was created as an afterthought).133 Bach’s practice was not just 

limited to his own name. In fact, Sams speculates that “Bach showed further ingenuity in 

his seven-part canon over a ground of F-A-B-E, headed ‘FABERepetatur’ - possibly a 

suitably cryptic allusion to” the eighteenth century author J. C. Faber, who had written a 

book titled “Neu-erfundene obligate Composition” in which a cypher matrix was used to 

encrypt the name “Ludovicus.”134  

Furthermore, Bach also was fond of riddle canons. The sole purpose of the riddle 

canon was for the user to figure out how the composition worked by applying Bach’s 
                                            

131 Douglas R. Hofstadter, Gödel, Escher, Bach: An Eternal Golden Braid, 20th Anniversary 
Edition ed. (New York: Random House, 1999), 7. Martin Geck translates the Latin into English in the 
ensuing manner, “The piece performed on the King’s command, along with further examples of the art of 
the canon.” Martin Geck, Johann Sebastian Bach: Life and Work, trans., John Hargraves (San Diego, 
California: Harcourt, 2006), 240. 

132 Johann Nikolaus Forkel, "Forkel's Biography of Bach," in The New Bach Reader, ed. Hans T. 
David, Arthur Mendel, and Christoph Wolff, (New York: W. W. Norton, 1998), 465. 

133 Christoph Wolff, Bach: Essays on His Life and Music (Cambridge, Massachusetts: Harvard 
University Press, 1994), 353, 420. 

134 Sams. Incidentally, BWV 1078 is a riddle canon. Christoph Wolff, Johann Sebastian Bach: The 
Learned Musician (New York: W. W. Norton & Company, 2001), 337. 
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algorithms. This is exemplified in a 1974 discovery titled “Verschiedene Canones über 

die ersten acht Fundamental-Noten vorheriger Arie von J. S. Bach (various canons 

based on the first eight fundamental notes of the previous aria by J. S. Bach, BWV 

1087),” which was a “single handwritten leaflet containing fourteen different canons 

based on the ground of Bach’s Goldberg Variations (BWV 988).”135 According to Essl, 

“Bach supplies a highly compressed code, but without the algorithm that expands the 

rudimentary notation into something resembling a score.”136 Each one of the 14 canons 

features an instruction, and some type of iteration of the eight-note subject (see Bach’s 

manuscript on page 383 in Appendix A – Scores). Bach’s instructions from the 

manuscript are as follows: 

 Canon simplex 1.
 All' roverscio 2.
 Beede vorigen Canones zugleich, motu recto e contrario 3.
 Motu contrario e recto 4.
 Canon duplex à 4 5.
 Canon simplex über besagtes Fundament à 3 6.
 Idem à 3 7.
 Canon simplex à 3, il soggetto in Alto 8.
 Canon in unisono post semifusam à 3 9.
 Alio modo, per syncopationes et per ligaturas à 2 10.
 Canon duplex übers Fundament à 5 11.
 Canon duplex über besagte Fundamental-Noten à 5 12.
 Canon triplex à 6 13.
 Canon à 4 per augmentationem et Diminutionem 14.

 
BWV 1087’s solutions are found “through combining the various subjects in 

                                            
135 Essl, 109. Also known by the title of 14 Canons. Walter Blankenburg explains that finding the 

14 canons in 1975 was one of the greatest finds in decades. Walter Blankenburg, "Die Bachforschung 
Seit Etwa 1965. Ergebnisse, Probleme, Aufgaben. Teil 3," Acta Musicologica 55, no. 1 (1983): 7. Bach 
himself entered these 14 canons “into his personal copy of Clavier-Übung IV.” Wolff, Johann Sebastian 
Bach: The Learned Musician, 378. The Clavier-Übung IV is also commonly known by the Goldberg 
Variations. 

136 Essl, 109. 
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different forms such as retrograde, inversion and the retrograde of the inversion, partly 

with changing temporal compression or augmentation.”137 It is clear from examining the 

list of the 14 descriptions that they are “grouped, by canonic techniques of increasing 

complexity, 4–1–4–1–4, a striking combination of 14 and 41 that will not be lost on 

students of Bach numerology.”138 The canons consist of three groups: (1) four simple 

canons consisting only of thematic material, (2) six canons that combine the subject 

with free counterpoint, and (3) four canons in which the idea of progressive contrapuntal 

complexity unfolds with strict logic.139  

The “highly developed contrapuntal forms such as the canon and fugue” were in 

widespread use during the baroque period.140 Bach’s Die Kunst der Fuge, presents a 

“pedagogical tool for the study of counterpoint that systematically documents the 

procedure of fugal and canonic composition.141 Simoni and Dannenberg find that “the 

canon is a highly procedural contrapuntal form,” in which an introductory melody, or dux 

                                            
137 Ibid. Essl further explains, “Reinhard Böß was able to discover all possible solutions – 269 

movements providing seventy minutes of astonishing music.” Reinhard Böß, Verschiedene 
Canones...Von J. S. Bach (Bwv1087) (Munich: edition text + kritik, 1996). Through Böß explorations it is 
clear that in fact Bach does provide an algorithm in the strict Knuthian sense. 

138 Richard Abram, "14 Canons (Bwv 1087); Concerto in F Major (F 10); Four Little Duets (Wq 
115); Sonata in G Major (Op. 15, No. 5) by Johann Sebastian Bach; Wilhelm Friedemann Bach; Carl 
Philipp Emanuel Bach; Johann Christian Bach; Rolf Junghanns; Bradford Tracey," Early Music 8, no. 4 
(1980): 572-573. The Bach numerology referred to here is derived by adding the indices of the alphabet 
(a = 1, b = 2, c = 3, h = 8, or 2 + 1 + 3 + 8 = 14) of Bach’s last name, and the indices of the alphabet by 
spelling “jsbach.” 

139 Blankenburg, "Die Bachforschung Seit Etwa 1965. Ergebnisse, Probleme, Aufgaben. Teil 3," 
7. These three sections still conform to the 4–(1–4–1)–4 principle, but with less numerological baggage. 

140 Simoni and Dannenberg, 8. Besides contrapuntal practice, it should be noted that Cope 
considers the practice of figured bass also as being algorithmic. David Cope, Virtual Music: Computer 
Synthesis of Musical Style (Cambridge, MA: MIT Press, 2001), 1-2. 

141 Simoni and Dannenberg, 9. 
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– leader – subject, is followed by another melody, or comes – companion – answer.142 A 

specified temporal distance specifies when the comes is to follow. Indicating a 

transposition (Example 3-9), inversion (Example 3-7), diminution (Example 3-10), 

augmentation (Example 3-10), or any other type contrapuntal writing technique from the 

Middle Ages or the Renaissance, can vary the companion further.143 The following code 

example shows transposition. 

1. (defparameter *chord* '(0 4 7)) 
2.  
3. (defun transpose (notes level) 
4.   (mapcar (lambda (x) (+ x level)) notes)) 
5.  
6. (transpose *chord* '3) 
7.  

Example 3-9: Transposition. 

Transposition is trivial with lisp. In line 1 a note sequence is specified as a major 

arpeggio containing the pitch class collection '(0 4 7) (it could also be a chord) as a 

global variable.144 Lines 3-4 show an implementation of a higher-level mapcar function 

in conjunction with a lambda function, as a transpose function.145 A transposition level 

is added to each note member of a sequence. A physical recursion is not required here 

since the higher-order mapcar function already takes care of the required recursion 

automatically.146 In line 6 the transpose function is then called with the parameters of 

                                            
142 Ibid. David Ledbetter, Bach's "Well-Tempered Clavier" (New Haven: Yale University Press, 

2002), 75.  

143 Simoni and Dannenberg, 9. 

144 The pitch sequence here is just a short hand, since durational values have been omitted for 
clarity. 

145 A lambda function is an un-named, or anonymous function. 

146 A higher-order function can take another function as its argument. 
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the note sequence and is transposed by a minor third. The outcome of this operation is: 

(3 7 10). 

1. (defparameter *durations* '(4 4 2 8 8 4 2)) 
2.  
3. (defun aug-dim (notes length) 
4.   (mapcar (lambda (x) (* x length)) notes)) 
5.  
6. (aug-dim *durations* '1/2) 
7.  

Example 3-10: Augmentation and diminution. 

The augmentation and the diminution algorithms are the same, and are not very 

different from the transposition algorithm, except that to get to the desired result values 

are multiplied rather than added. Line 1 defines a sequence of pitches in terms of their 

durational values (pitch classes have been omitted for clarity). The number 4 represents 

a quarter note, the number 2 represents a half note, and the number 8 represents an 

eighth note. Line 3 shows the definition of the aug-dim function. The function requires 

two values, the duration of the note (notes), and the new length to which the note 

value will be augmented. Again, utilizing a combination of the mapcar and lambda 

function, the existing note duration value sequence will be multiplied by the new desired 

durational value recursively. Line 6 shows a call to the aug-dim function on the 

durations parameter augmenting the durational values of the note sequence to twice 

as long by a factor of ½. The resulting new durational sequence then reads: (2 2 1 4 

4 2 1). If a diminution were required a call to the aug-dim function would include the 

durations, and multiply these by a factor of 2. The procedure would then yield the 

following durational values sequence: (8 8 4 16 16 8 4). As was the case with 

transposition, it is clear that diminution and augmentation are also trivial tasks for lisp 
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via the higher-order mapcar and lambda functions.  

The Baroque period also saw formalizations in form of treatises of contrapuntal 

practice.147 Without question Johann Joseph Fux’s (1660-1741) Gradus ad Parnassum 

(1725) was one of the most important of these treatises, and the ideas of species 

counterpoint are still being taught in Renaissance counterpoint classes to this day. Cope 

explains that Fux created an “algorithmic-like process by describing many of the basic 

contrapuntal techniques of tonal music.”148 Cope paraphrases Fux’s procedures in the 

following four rules: (1) “From one perfect consonance to another perfect consonance 

one must proceed in contrary or oblique motion;” (2) “From a perfect consonance to an 

imperfect consonance one may proceed in any of the three motions;” (3) “From an 

imperfect consonance to a perfect consonance one must proceed in contrary or oblique 

motion;” and (4) “From one imperfect consonance to another imperfect consonance one 

may proceed in any of the three motions.”149 Cope furthermore explains, “present-day 

theory books dealing with the common-practice period incorporate versions of these 

rules in their approach to analysis and imitative composition.”150 

Another algorithmic music practice that did not involve composers and music 

theorists became formalized during the baroque period. The practice – change-ringing – 

evolved in England, and spread throughout the English-speaking world. The most 

                                            
147 Formalizations of counterpoint have been seen in other treatise before the Baroque period as 

well, but Fux’s ideas take on a special role in Cope’s work. 

148 Cope, The Algorithmic Composer, 6. Cope revises these rules later in order to incorporate 
them into a machine learning program, called Gradus. Cope, Computer Models of Musical Creativity, 183. 

149 Cope, The Algorithmic Composer, 6. 

150 Ibid., 7. 
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famous example of change-ringing are the Westminster Quarters, also referred to as the 

Westminster Chimes, or the Cambridge Chimes. While on the continent most church 

towers had four to five bells, the churches in England started to equip their church 

towers with more than five bells.151 While “it is possible to choose intervals between 

their pitches so that, even if two or more of them happen to sound at the same time, 

they produce a harmonious chord,” the same task is more difficult with the inclusion of 

heptatonic/diatonic scale degrees, especially considering ”the timing of strokes of the 

different bells, which are each rung at their own natural speeds.”152 Therefore, the 

problem arises that bells can be rung only once in a successive row, without 

repetition.153 The English bell ringers solved the challenge, one hundred years before 

the emergence of mathematical ‘group theory,’ and the practices were formalized in 

Fabian Stedman’s (1640-1713) Tintinnalogia: or the art of change ringing (1668), and 

Campanologia: or, the art of ringing improved (1677).154  

Many different methods for change ringing have been devised and are 

appropriately catalogued in various Campanologias (late Latin campana = bell; and 

Greek –λογία) that have been published over the course of three centuries. These 
                                            

151 Daniel Roaf and Arthur White, "Ringing the Changes: Bells and Mathematics," in Music and 
Mathematics: From Pythagoras to Fractals, ed. John Fauvel, Raymond Flood, and Robin Wilson, (New 
York: Oxford University Press, 2010), 114. 

152 Ibid. 

153 Ibid., 113.  

154 Ibid., 113, 118. According to Daniel Harrison, “Campanologia can fairly be said to be the first 
work of in which group theory was applied to a musical situation.” Daniel Harrison, "Tolling Time", Music 
Theory Online. Society of Music Theory. 
http://www.mtosmt.org/issues/mto.00.6.4/mto.00.6.4.harrison_essay.html (accessed March 23, 2014). 
Tintinnalogia, will be revisited later in connection to Arvo Pärt’s Tintinnabulation technique, as explained 
by Paul Hillier. Paul Hillier, Arvo Pärt (New York, New York: Oxford University Press, 1997), 18-19. 
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Campanologias show the permutations that can be achieved from starting with three 

bells all the way to ten bells, and name give the permutations names.155 There are six 

possible permutations with three bells (3 x 2 x 1), 24 permutations with four bells (4 x 3 

x 2 x 1), 40,320 permutations with eight bells, and 3,628,800 with ten bells.156 In either 

case numbers are assigned to the bells, whereby the highest bell, also known as the 

tenor, receives the number one, and the each lower bell receives a successively lower 

number.157 Each change begins with the bells played one time in a descending order. A 

row contains the number of bells involved, each permutation of the row can only be 

played once, and “no bell should stay in place for more than two successive rows.”158 

The change ringing method is currently known as the combinatorial Steinhaus-Johnson-

Trotter algorithm.159 The algorithm can generate 24 permutations from a row containing 

the numbers 1, 2, 3, and 4:160 

1234 2143 2413 4231 4321 3412 3142 1324 
1342 3124 3214 2341 2431 4213 4123 1432 
1423 4132 4312 3421 3241 2314 2134 1234 

 

Example 3-11 shows how to programmatically generate all 24 permutations of 
                                            

155 Fabian Stedman, Campanologia Improved: Or, the Art of Ringing Made Easy, Fifth ed. 
(London: L. Hawes, W. Clarke, and R. Collins, and S. Crowder, 1766). William Shipway, The 
Campanologia: Or, Universal Instructor in the Art or Ringing (London: Sherwood, Neely, and Jones, 
1816). 

156 Wilfrid G. Wilson and Steve Coleman, "Change Ringing", Grove Music Online. Oxford Music 
Online. Oxford University Press. (accessed March 23, 2014). 

157 Roaf and White, 115. 

158 Ibid., 118. 

159 Steven S. Skiena, The Algorithm Design Manual, 2nd ed. (London: Springer, 2008), 451. 
Richard Bird, Pearls of Functional Algorithm Design (New York: Cambridge University Press, 2010), 251. 

160 This particular arrangement of rows is called the Plain Bob Minimus. Roaf and White, 123. 
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the number sequence 0, 3, 7, and T (10), also know as a minor 7th chord. 

1. (defun permutations (function sequence) 
2.   "List all permutations of a number sequence." 
3.   (labels ((permutate (n) 
4.              (if (eq n 0)  
5.                (funcall function sequence) 
6.                (dotimes (i n (permutate (1- n))) 
7.                  (permutate (1- n)) 
8.                  (rotatef (aref sequence n) 
9.                           (aref sequence (if (oddp n) i 0))))))) 
10.     (permutate (1- (length sequence))))) 
11.  
12. ; call permutations 
13. (permutations #'pprint "037T") 
14.  

Example 3-11: Steinhaus-Johnson-Trotter permutations algorithm in Common Lisp. 

In line 1 the function permutations is defined, which takes two arguments, (1) 

a function itself, in this case the print function pprint, and (2) the number sequence to 

be permuted. Within the permutations function a local recursive permutate function 

is established with the labels function (lines 3-10), which takes the sequence to be 

permuted as an argument. If no permutation possibilities generated from the sequence 

are possible, or n = 0, then call the pprint function, and print out all possibilities that 

were generated with the number sequence (line 4-5). However, if more permutations 

are possible, loop through a recursive call to permutate via dotimes, and count the 

permutations (lines 6-7). Each permutation sequence counted then needs to be rotated 

through rotatef, by comparing the array index (aref), or the position of the sequence 

with an array index of 0 (lines 8-9), meaning that if 0 is reached a number from the a 

sequence becomes immobile and another number of a sequence can be rotated. In line 

10, the local permutate function is initiated and repeated if needed. Running the script 

with (permutations #'pprint "037T") in line 13 at the REPL results in the 

following permutations of the PCC {0, 3, 7, T}: 
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"037T" 
"307T" 
"703T" 
"073T" 
"370T" 
"730T" 
"T307" 
"3T07" 
"0T37" 
"T037" 
"30T7" 
"03T7" 
"07T3" 
"70T3" 
"T073" 
"0T73" 
"7T03" 
"T703" 
"T730" 
"7T30" 
"3T70" 
"T370" 
"73T0" 
"37T0" 

Example 3-12: The 24 permutations of PCC {0, 3, 7, T}. 

 

3.2.5. Classical Period 

Ars combinatoria, “the art of combining or dealing with permutations and 

combinations,” was given significant attention during the eighteenth century.161 Leonard 

Ratner summarizes eighteenth century obsession the following way:162 

1. Ars combinatoria was an important part of eighteenth century music 
composition. 

2. Ars combinatoria could be applied to melody, harmony, rhythm, phrase 
structure, counterpoint, and large scale forms. 

                                            
161 Angela B. Shiflet, "Musical Notes," The College Mathematics Journal 19, no. 4 (1988): 345. 

162 Leonard Ratner, "Ars Combinatoria, Chance and Choice in Eighteenth-Century Music," in 
Studies in Eighteenth-Century Music; a Tribute to Karl Geiringer on His Seventieth Birthday, ed. Karl  
Geiringer, H. C. Robbins Landon, and Roger E. Chapeman, (New York: Oxford University Press, 1970), 
361. 
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3. Eighteenth century musical materials were adaptable through ars combinatoria, 
because of their “simple,” clear, and symmetrical layouts, in which musical 
materials could be joined, shifted and substituted in modular fashion. 

4. Ars combinatoria is essential to the eighteenth century Zeitgeist. 
 
As a music theorist or a compositional theorist, Joseph Riepel (1709-1782) 

investigates and “applies permutations to musical notes in series of three and four.”163 

Riepel begins his discussion on melodic permutations with the two note set of {C5, D5}, 

and shows the two possible combinations of C5->D5, and D5->C5.164 In his next 

example Riepel illustrates the possible permutations of the {C5, D5, E5} set, by 

demonstrating the six following possible combinations: (1) C5->D5->E5, (2) C5->E5-

>D5, (3) D5->E5->C5, (4) D5->C5->E5, (5) E5->C5->D5, and (6) E5->D5->C5. In the 

ensuing example, Riepel presents permutations that combine the rhythmic values of 

quarter notes, eighth notes and a set of a four notes {C5, D5, E5, F5}.165 Riepel 

indicates 24 possible combinations, but according to Ratner 144 melodic-rhythmic 

variations are actually possible.166 It’s not hard to imagine all the permutations on staff 

paper, but what holds true is that Riepel applies principles of change ringing that can 

also be expressed with the Steinhaus-Johnson-Trotter algorithm (Example 3-12).167  

Another musical manifestation of ars combinatoria is found in the Musikalisches 
                                            

163 Ibid., 346. 

164 Joseph Riepel, "Grundregeln Zur Tonordnung," in Anfangsgründe Zur Musicalischen 
Setzkunst, (Ulm: Christian Ulrich Wagner, 1755), 27. 

165 Ibid., 27-28. 

166 Ratner, "Ars Combinatoria, Chance and Choice in Eighteenth-Century Music," 348-349. 

167 Ratner further mentions a treatise by Christian Gottlob Ziegler titled “Anleitung zur 
musikalischen Composition” (1739) that predates Riepels ideas, and uses a C major chord, or 
{E4,G4,C5}, and another treatise by Francesco Galeazzi that draws upon Riepel’s ideas titled “Elementi 
teorico-pratici di musica,” (1791-6) in which Galeazzi uses a three note example {C5,D5,E5}. Ibid., 346. 
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Würfelspiel or musical dice game, and it is typically listed in the historical algorithmic 

composition narrative.168 Between 1757 and 1813 more than 20 such games “were 

published in Europe, some, in several editions and languages.”169 Johann Kirnberger 

(1721-1783) writes one of the first compositions utilizing musical dice titled Der allezeit 

fertige Polonaisen- und Menuettencomponist (1757).170 Shiflet explains, “Dr. Charles 

Burney, a contemporary, said of Kirnberger, ‘in his late writings, he appears to be more 

ambitious of the character of an algebraist, than of a musician.’”171 Kirnberger’s piece 

would “serve as a model for many of the succeeding musical dice games.”172 The 

composition consists of: (1) an introduction, in which Kirnberger explains how to 

generate the music (pp. 2-6); (2) two tables indicating a matrix of measures aligned with 

numbers generated through dice rolls (with the options for either one die – numbers 1-6 

– or a pair of dice – numbers 2-12) for the first (6 rolls), a second part (8 rolls), and a da 

capo part that starts back on the first page with the 4th roll of a polonaise (pp. 7-8); (3) 

and two tables (this time written in French) indicating matrices of measures that 

correspond to numbers generated through one die thrown (1-6) for the first (minuet) and 

                                            
168 Leoni,  63. Simoni and Dannenberg, 10. Mary Simoni, "Algorithmic Composition: A Gentle 

Introduction to Music Composition Using Common Lisp and Common Music", MPublishing, University of 
Michigan Library http://hdl.handle.net/2027/spo.bbv9810.0001.001 (accessed January 31, 2014). 

169 Stephen A. Hedges, "Dice Music in the Eighteenth Century," Music & Letters 59, no. 2 (1978): 
180. Ratner, "Ars Combinatoria, Chance and Choice in Eighteenth-Century Music," 343. 

170 Cope, Experiments in Musical Intelligence, 2. A ready to use implementation of Kirnberger’s 
musical dice game can be found here: http://muwiinfa.geschichte.uni-mainz.de:5050/kirnberger_de.html.  

171 Shiflet, "Musical Notes," 346. Moreover, Kirnberger “collaborated with a mathematics 
professor in Berlin, Johann Georg Sulzer, in writing of the relationship between music and mathematics in 
the latter's Theory of Polite Arts.” Ibid. 

172 Hedges, "Dice Music in the Eighteenth Century," 180. 
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second part (trio) of a minuet (pp. 9-10). Pages I-XXIX then consist of the combinable 

measures 1-154 for: (1) the polonaises (pp. I - XVI), (2) the combinable measures 1-96 

for the minuet (pp. XVII - XXI), (3) and the combinable measures 1-96 for the trio (pp. 

XXII - XXIX).173  

Both parts of the polonaise are in the key of D major; the minuet is in D major; 

while the trio is in F major. Each roll of the die or dice produces 1 measure, so that the 

first section of the polonaise consists of 6 measures, the second of 8 measures, and the 

da capo section of 3 measures. The minuet is then constructed of 8 measures in the 

first section and 8 measures in the second section. Additionally, Kirnberger gives the 

option to play these pieces with a piano alone, a violin duet, or a smaller ensemble 

combining any of these three instruments. Furthermore, for the minuet and trio, the first 

and second part can be generated through different dice rolls, meaning for example that 

the first two violins can have two different parts with two die rolls for the first measure. 

The German music theorist and critic Friederich Wilhelm Marpurg (1718-1795) 

published a journal, or periodical from 1754-1762/1778 titled Historisch-Kritische 

Beyträge zur Aufnahme der Musik, and in volume 3, part 2 Carl Philipp Emanuel Bach 

authored a 14-page article titled Einfall, einen doppelten Contrapunct in der Octave von 

sechs Tacten zu machen, ohne die Regeln davon zu wissen (1757).174 Instead of using 

                                            
173 Johann Philipp Kirnberger, Der Allezeit Fertige Polonaisen- Und Menuettencomponist (Berlin: 

George Ludewig Winter, 1757). Incidentally, a somewhat negative review of Kirnberger’s Der allzeit 
fertige Polonoisen- und Menuettencomponist is found in the same volume on pp. 135-154, written by 
Anonymous, in which the author recommends to read Riepel’s Grundlegung zur Tonordnung. 

174 Carl Philipp Emanuel Bach, "Einfall, Einen Doppelten Contrapunct in Der Octave Von Sechs 
Tacten Zu Machen, Ohne Die Regeln Davon Zu Wissen," in Historisch-Kritische Beyträge Zur Aufnahme 
Der Musik, ed. Friederich Wilhelm Marpurg, (Berlin: G. A. Lange, 1757), 167-181. 
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dice C. P. E. Bach suggests to imagining six random numbers between 1 and 9, 

whereby numbers can be repeated, which “then represent entry points into the six 

respective tables, each representing one measure of music for one of the voices.”175 

When the first note “is found, one continues to select successive ninth members of the 

table until an ‘X,’ signaling a barline, is found.”176 According to Cope, “six complete 

measures of music are produced,” eventually.177 More importantly though, “Bach’s 

method stands as a precursor of the micro augmented transition network (MATN), one 

of the cornerstones of EMI and SARA.”178 

The musical dice games of the classical period are numerous due to the general 

understanding of ars combinatoria.179 Pierre Hoegi’s Tabular System (1763) was 

“completely random, allowing the player to choose a number from 8 to 48 for each of the 

two eight-bar reprises.”180 The system “was designed to compose a minuet and trio.”181 

E. F. de Lange’s Le Toton Harmonique ou Nouveau Jeu de Hazard, and the 

anonymously authored Ludus Melothedicus ou Le Jeu de Dez Harmonique (176?) of 

francophone origin, used a nine sided table top instead of dice for chance operations.182 

                                            
175 Cope, Experiments in Musical Intelligence, 3. 

176 Ibid. 

177 Ibid. 

178 Ibid., 7. 

179 Ratner, "Ars Combinatoria, Chance and Choice in Eighteenth-Century Music." 

180 Ibid., 344. 

181 Hedges, "Dice Music in the Eighteenth Century," 182. 

182 Ratner, "Ars Combinatoria, Chance and Choice in Eighteenth-Century Music," 344. 
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Maximilian Stadler’s (1748-1833) Table Pour Composer des Menuets et de Trios a 

l’infinite; avec deux Dez a Jouer (1780), and Franz Joseph Haydn’s (1732-1809) Gioco 

Filarmonico, o sia maniera facile per comporre un infinito numero di minuettie trio anche 

senza sapere il contrapunto (1793), feature identical music, but the work allegedly 

attributed to Haydn is re-scored for two violins and bass.183   

Another famous dice game, attributed to Mozart, although its authenticity is 

somewhat in dispute, is known by its catalogue number C K. Anh. 294d (516f) and can 

be found in series X of the Neue Mozart Gesamtausgabe, or its title Musikalisches 

Würfelspiel.184 One of the available scores consists of: (1) a cover page, followed with 

instructions in German, French, English, and Italian (p. 1); (2) two tables 176 measures 

(p. 2), two tables with 12 x 8 matrices (for the two parts of the waltz – the German terms 

are Walzer or Schleifer – the matrices will produce), in which the rows represent the 

numbers of measures to be chosen according to what number is being rolled with two 

dice, and columns labeled A-H, determining the order; and (3) a four page score 

consisting of 176 measures (pp. 3-7).185 Since there are eight columns in each table, the 

waltz this procedure generates consists of an eight measure A part that can be 

                                            
183 Ibid., 362. Hedges, "Dice Music in the Eighteenth Century," 182. 

184 Cope, Experiments in Musical Intelligence, 7. Cope calls it a “particularly good example.” Cope 
doesn’t cite his source when he claims that the piece is attributed to Mozart, but that its authenticity had 
not been proven. But is clear that the information came from a discussion of the subject in Hedges’ article. 
Hedges, "Dice Music in the Eighteenth Century," 182-183. A Schott edition print can be found in Machine 
Models of Music. Stephan M. Schwanauer and David A. Levitt, eds., Machine Models of Music 
(Cambridge, MA: MIT Press, 1993), 533-538. 

185 Wolfgang Amadeus Mozart, Musikalisches Würfelspiel (Bonn: N. Simrock, 1793), 1-7.An 
online version of this game that produces MIDI files lives here: http://sunsite.univie.ac.at/Mozart/dice/. 
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repeated, and an 8 measure B part that can be repeated.186  

 After Mozart, there are additional writings on the practice of musical dice game, 

namely Antonio Calegari’s (1757-1828) Gioco pitagorico (1801), and Giovanni Catrufo’s 

(1771-1820) Bareme musical (1811).187 According to Hedges (and Ratner), “all of these 

treatises were manifestations of the ‘Age of Reason’.”188 However, it could be 

speculated that the practice of musical dice came from J. S. Bach himself, since two of 

his most famous students, namely Kirnberger, and C. P. E. Bach, wrote about the 

practice, and wrote compositions utilizing the format. The musical dice game is an 

application of knowledge gained from the ars combinatoria to music. 

The classical period also encompasses the beginning of the industrial revolution 

and along with it the development of steam powered machinery. Therefore automatic 

processes are used to graft automation to music machines. The German inventor 

Johann Nepomuk Maelzel (1772-1838), famous for having invented the metronome in 

1815, started to devote his life “to teaching music and to constructing various 

mechanical devices, including a chronometer, and an automatic instrument of organ 

pipes imitating flutes and trumpets, and drums, cymbals and a triangle struck by 

hammers, which played music by Haydn, Mozart and Crescentini.”189 In 1804, Maelzel 

                                            
186 Kirnberger, Stadler, Mozart, and Haydn are also mentioned in the discourses of algorithmic 

composition with Karlheinz Essl, Gareth Loy, Gerhard Nierhaus, and Curtis Roads. Essl, 109. Loy, 302-
305. Loy, 295-297. Nierhaus, 36-38. Roads, 823. 

187 Hedges, "Dice Music in the Eighteenth Century," 184. 

188 Ibid. 

189 Alexander Wheelock Thayer and Dixie Harvey, "Maelzel, Johann Nepomuk", Grove Music 
Online. Oxford Music Online. Oxford University Press. 
http://www.oxfordmusiconline.com/subscriber/article/grove/music/17414 (accessed April 7, 2014). 
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invented the Panharmonicon, which is an Orchestrion type of instrument.190 Maelzel’s 

“instrument was designed to play orchestral music, and various accounts describe it as 

capable of imitating the sounds of the french horn, clarinet, trumpet, oboe, bassoon, 

German flute, flageolet, drum, cymbal and triangle”191 The instrument could play 

(through an automated and presumably mechanically programmed process) “popular 

marches and overtures, as well as pastorales, rondos and similar pieces,” as well as 

music by Haydn, Mozart, Cherubini, and other composers.192 In fact, “Beethoven’s 

‘Battle Symphony’ (Wellingtons Sieg, 1813),” was “originally written for Maelzel’s 

instrument and later transcribed for orchestra.”193  

Another automated instrument of the late classical early romantic period was the 

Apollonicon, which was build in 1817, and “could be played by up to five organists at 

once, each from an individual keyboard, or it could be played automatically using pinned 

wooden barrels.”194 Additionally, Diederich Nikolaus Winkel (1773-1826) developed the 

                                            
190 Barbara Owen and Arthur W. J. G. Ord-Hume, "Orchestrion", Grove Music Online. Oxford 

Music Online. Oxford University Press. 
http://www.oxfordmusiconline.com/subscriber/article/grove/music/20409 (accessed April 7, 2014). 
According to Owen and Ord-Hume the Orchestrion was “a complex mechanical instrument played by 
pinned barrels or perforated cards or paper rolls,” and were “intended only for indoor use, and for the 
performance of classical music and dances from the orchestral repertory.” Barbara Owen and Arthur W. 
J. G. Ord-Hume, "Panharmonicon", Grove Music Online. Oxford Music Online. Oxford Unversity Press. 
http://www.oxfordmusiconline.com/subscriber/article/grove/music/20808 (accessed April 7, 2014).  

191 Owen and Ord-Hume, "Panharmonicon". 

192 Ibid. 

193 Ibid. 

194 Arthur W. J. G. Ord-Hume, "Apollonicon", Grove Music Online. Oxford Music Online. Oxford 
University Press. http://www.oxfordmusiconline.com/subscriber/article/grove/music/01093 (accessed April 
7, 2014). 
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Componium in 1821.195 The instrument was made of “wooden and metal organ pipes, a 

triangle and a drum, all activated by two pinned wooden barrels.”196 Furthermore, “it also 

includes a device for automatically sequencing two-bar units of music from each barrel 

in turn in order to produce endless variations on a single theme.”197 The two wooden 

barrels of the Componium had two specific functions: (1) the “first barrel encodes 

several variations of short musical works,” and (2) the “second barrel, in conjunction 

with a complicated gearing apparatus, determines which of the variations will be played 

from measure to measure, providing a large enumerative set of possible 

compositions.”198 Furthermore, the Kaleidacousticon, which was advertised by The 

Euterpiad (Boston, MA) in 1822-1823, was “a set of cards by means of which upwards 

of 214 million waltzes might be composed.”199 

 

3.2.6. Romantic Period 

“One can scarcely imagine a Romantic composer constructing dice games, as 

Kirnberger, Haydn and Mozart did. For composers of the seventeenth and eighteenth 

centuries, the ars combinatoria was a way of thinking about melodic manipulation and 

                                            
195 Arthur W. J. G. Ord-Hume, "Componium", Grove Music Online. Oxford Music Online. Oxford 

University Press. http://www.oxfordmusiconline.com/subscriber/article/grove/music/06211 (accessed April 
7, 2014). Loy, 297. 

196 Ord-Hume, "Componium". 

197 Ibid. 

198 Loy, 297. 

199 Percy A. Scholes, "Composition Systems and Mechanisms," in The Oxford Companion to 
Music, ed. John Owen Ward, (London: Oxford University Press, 1995), 226. 
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invention.”200 Leonard B. Meyer’s statement largely juxtaposes the tradition of the 

Classical composers to that of the practice of the Romantic composers. But there are 

still certain elements during the Romantic period that carry transfer knowledge forward 

from other eras. Additionally, outside of music, algorithmic thought made great strides 

forward, especially in regard to the development of machines. 

Inversion, retrograde, and retrograde inversions are still used in musical practice, 

and so is imitative counterpoint. Moreover, the practice of musical cryptography 

continues. Louis Spohr (1784-1859) found a way to encrypt his name into a motivic idea 

by utilizing E-flat, which is Es in German, and connecting it with a B, or H in German, by 

with a portamento edge, which he abbreviated with “po.”201 The motive ends with a rest, 

which as “old-style crotchet looks like ‘r’).”202 Maximilian Stadler, who was involved in 

the musical dice movement in the eighteenth century as mentioned earlier, and the 

theorist and composer Simon Sechter (1788-1867) both composed fugues on a motivic 

idea derived from Schubert’s name, when Schubert died.203 The Irish composer John 

Field (1782-1837) encoded two lighthearted motives dedicated to a Mme Cramer as {B, 

                                            
200 Leonard B. Meyer, Style and Music: Theory, History, and Ideology (Chicago: University of 

Chicago Press, 1989), 193. 

201 Sams.In mathematics an “edge” connects two nodes, the nodes here being E-flat, and B. 
Sams further explains that the idea of using the German note Es as a substitute for the letter ‘S’ was 
already thought of by Friederich Fesca (1789-1826), in one of his string quartets through the use of the 
following set: {F, E, Eb, C, A}. 

202 Ibid. 

203 Ibid. Sechter actually assigned Schubert the motive as the conclusion to a lesson. The motive 
reads (all based on quarter notes): {Eb4, C5, B4, Bb4, E4}, with a quarter rest between the B the Bb (the 
corresponding sequence of letters would read {S,c,hu,b,ert}. Schubert did not finish the assigned fugue, 
but Sechter did, “under the imprint of Diabelli as Fuge in C Moll für Orgel oder das Piano-Forte.” Alfred 
Mann, "Schubert's Lesson with Sechter," 19th-Century Music 6, no. 2 (1982): 164-165. 
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E, E, F}, and {C, A, B, B, A, G, E}.204 

According to Sams, one of “the greatest and most prolific exponent” of using 

musical ciphers was Schumann.205 The following list shows the extent of Schumann’s 

use of musical ciphers:206 

 {Eb, C, B, A} - Schumann’s name. 1.
 {A, Eb, C, B} - Ernestine von Fricken’s home town, friend. 2.

a. {A, Eb, B, C} - Anagram. 
b. A and Eb - can be encoded as either {A, Eb} or just Ab. 

 {A, Bb, E, G, G} – Meta Abegg – imaginary friend.207 3.
 {G, A, D, E} - Nils Gade (1817-1890), Danish Composer. 4.
 {F, A, E} - Frei, aber einsam, free, but lonely. 5.
 {A, C, H} - German for: alas, oh, no kidding, etc. 6.
 {A, D, E} - German for: farewell. 7.
 {Bb, E, D, A} - Pet name for Clara Wieck (Schumann). 8.
 {Bb, E, Eb, E, D, B} - closest approximation to his friend’s name Bezeth. 9.

 {E, B, E} - German for marriage. 10.
 L {A, Eb, Eb, D, A, Es, F, A, D, E, F, A, Eb, Eb, D, A Eb, A, E, C, B, D, E} - 11.
lass das Fade, fass das Echte – leave the boring, grasp the real.  
 

Johannes Brahms (1833-1897) also made use of the practice: (1) {Bb, A, B, Eb} 

for Brahms, (2) {F, A, F} - frei, aber froh, free, but content, (3) {A, G, A, B, E, A, D, E} - 

for Agathe Ade, “Farewell Agathe,” “a valediction to Agathe von Siebold,” (4) {A, Eb} - 

Adele Strauss’ initials, and (5) {G#, E, A} - Gisela von Armin, through a combination of 

solfège syllables and German note names.208 Other nineteenth century composers that 

use cryptography are: (1) Bordodin, who uses {Bb, A, F} (B-la-F) for a string quartet 

                                            
204 Sams. 

205 Ibid. 

206 (Unless otherwise noted) ibid. Keep in mind that in German H == B, and Es == Eb, etc. 

207 Eric Blom, Some Great Composers (New York: Oxford University Press, 1961), 84. 

208 Sams. Eric Sams, "Brahms and His Musical Love Letters," The Musical Times 112, no. 1538 
(1971): 329. 
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written for Mitrofan Petrvich Belyayev, (2) Tchaikovsky, who encrypted the name 

Desiree as {D, Eb, G#, D, E} after his friend Désirée Artôt, (3) Glazunov encrypted his 

own nick name Sacha as {Eb, A, C, B, A}, (4) César Cui encoded wife’s maiden name 

Bamberg as {B, A, B, E, G}, (5) Smetana used his own monogram {B, Eb} and 

encrypted Froejeda’s name as {F, E, D, A}, (6) Elgar encoded the name of his students 

the Gedge sisters as {G, E, D, G, E} in a work for violin and piano, as well as, and (7) 

Granville Bantock encrypted his wife’s initials {B, F, Bb} in his Helena Variations.209 

Algorithmic composition lore seemingly never seems to omit Ada Lovelace, and 

Charles Babage. Ada Lovelace reacts to Charles Babage’s calculating machine in the 

following manner:  

Supposing, for instance, that the fundamental relations of pitched sound in the 
sigs of harmony and of musical composition were susceptible of such expression 
and adaptations, the engine might compose elaborate and scientific pieces of 
music of any degree of complexity or extent.210 

Thus Lovelace prophetically predicts computer-aided composition by a little more 

than 100 years. A logical continuation of the musical dice, or more precisely the 

Kaleidacousticon, was the Quadrille Melodist, which was invented, or composed, by J. 

Clinton, Professor at the Royal Academy of Music in London England.211 This system, 

“by means of a set of cards, enabled a pianist at a quadrille party to keep the evening’s 

pleasure by means of a modest provision of 428,000,000 quadrilles.”212 Additionally, in 

                                            
209 Sams, "Cryptography, Musical". 

210 Cope, Computers and Musical Style, 3.  

211 Scholes, 226. "Front Matter," The Musical Times and Singing Class Circular 12, no. 266 
(1865): 24. 

212 Scholes, 226. 
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1874, Elisha Gray creates a “musical telegraph,” which was a “single-octave keyboard 

device” that “produced arbitrary music during telegraph communications as a by-product 

of Morse code letter representations.”213  

 

3.3. Algorithmic Practice in the Twentieth Century 

The twentieth century saw many developments in the development of algorithmic 

structures to generate musical materials. The most important ones are serialism, 

including the twelve-tone procedure, integral serialism, aleatory, and the development of 

CAC after WWII.  

Other techniques of noteworthy mention that will not be discussed are The 

Schillinger System of Musical Composition, a method for musical composition 

developed by the Ukrainian-American composer Joseph Schillinger that “reduced 

melody, harmony and especially rhythm to geometric phase relationships.”214 Joseph 

Schillinger students included “George Gershwin, Oscar Levant, Leith Stevens, Lyn 

Murray, Paul Lavalle, Nathan Van Cleave, and other prominent composers and 

arrangers for radio, television, and film.”215 Schillinger was active during the 1930s and 

1940s in the United States.216 The algorithms that Schillinger developed could be used 

                                            
213 Cope, Computers and Musical Style, 3-4. 

214 James N. Burk and Wayne J. Schneider, "Schillinger, Joseph", Grove Music Online. Oxford 
Music Online. Oxford University Press 
http://www.oxfordmusiconline.com/subscriber/article/grove/music/24863 (accessed September 18, 2014). 

215 J. Murray Barbour, "The Schillinger System of Musical Composition," Notes 3, no. 3 (1946): 
274. 

216 Burk and Schneider. 
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“for generating or transforming melodies, rhythms and musical forms: techniques that 

can be considered as tools for artistic imagination.”217 

Arvo Pärt’s tintinnabuli technique, developed in the mid 1970s, sets forth 

“mechanisms for processing diatonic (or polymodal) material, that in their essence 

function similarly to the serial technique of dodecaphony.”218  

In tintinnabuli music, the formula could be defined as a minimized numerical 
program that incorporates the algorithm of development, but at the same time 
contains the summary of the musical work's pitch structure in its variety.219 

Christopher Ariza and Michael Cuthbert’s phasing.py script from the music21 

library clearly demonstrates that tintinnabulation is an algorithmic process, and 

produces a score named Intervallo.220 

 

3.3.1. Serialism 

Perhaps one of the most significant algorithmic musical practices emerged in the 

early part of the twentieth century, namely serialism. Serialism developed in part from 

the “atonal,” or “pantonal” practices of various composers of the early twentieth century. 

The desire of these composers was to devise a compositional method that would 

attempt to remove pitch centricity from compositions. Most chronologies will mention the 

second Viennese school composers (Arnold Schoenberg, Anton Webern, and Alban 
                                            

217 Essl, 111. 

218 Elena Tokun, "Formal Algorithms of Tintinnabuli in Arvo Pärt's Music", Arvo Pärt Centre 
http://vana.arvopart.ee/en/Selected-texts/formal-algorithms-of-tintinnabuli-in-arvo-paerts-music/Page-1 
(accessed September 18, 2014). 

219 Ibid. 

220 Cuthbert. 
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Berg) in association with the 12-tone technique, one type of serialism. However, 

Mathias Josef Hauer developed a compositional system named the “‘law of the 12 

notes,’ which required that all 12 notes be sounded before any is repeated,” in the 

summer of 1919.221 Hauer’s technique involved creating “tropes” consisting of 12 pitch 

classes that were “divided into discrete, mutually exclusive segments,” and “the order of 

segments within a 12-note set and the order of pitch classes within each segment are 

not pre-compositionally defined.”222 Paul Lansky further explains, “The only tropes that 

Hauer investigated systematically are those that divide the pitch classes into two 

hexachords.”223  

In either case Schoenberg’s method – 12-note serialism – became the more 

dominant compositional technique. According to Schoenbergian sensibility then, “the 

series is an ordering of the 12 notes of the equal-tempered chromatic scale (i.e. the 12 

pitch classes) so that each appears once.”224 The series “can exist at 12 transpositional 

                                            
221 Monika Lichtenfeld, "Hauer, Josef Matthias", Grove Music Online. Oxford Music Online. Oxford 

University Press. http://www.oxfordmusiconline.com/subscriber/article/grove/music/12544 (accessed 
September 17, 2014).Additionally, Lichtenfeld makes the argument that Hauer did indeed develop the 
technique before Schoenberg by explaining, “The compositional outworking of the ‘law’ was evident in the 
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Musikalischen, published in 1920.” Ibid. Another composer (and painter) that predates even Hauer was 
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"Golïshev, Yefim", Grove Music Online. Oxford Music Online. Oxford University Press. 
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(accessed September 17, 2014). 
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224 Paul Griffiths, "Serialism", Grove Music Online. Oxford Music Online. Oxford University Press. 
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levels, all of which Schoenberg considered to be forms of the same series.”225 

Schoenberg “also included the inversion, the retrograde and the retrograde inversion at 

each transpositional level in the complex, so that the series may be used in any of 48 

forms.”226 The creation of a twelve tone row in which not notes are repeated is 

algorithmic (also known as the Fisher-Yates-Shuffle algorithm, Example 3-13), and the 

generation of the 48 forms, i.e. the matrix (Example 3-15), is algorithmic. 

1. (defparameter *pcc*  
2.   '(0 1 2 3 4 5 6 7 8 9 T E)) 
3.  
4. (defparameter *rs* (make-random-state t)  
5.   "Create proper random numbers.") 
6.  
7. (defun fisher-yates-shuffle (pcc random-state) 
8.   "Create a random tone row." 
9.   (loop for i from (length pcc) downto 2 
10.     do (rotatef (elt pcc (random i random-state)) 
11.         (elt pcc (1- i)))) 
12.   pcc) 
13.  
14. ; calling the function 
15. (fisher-yates-shuffle *pcc* *rs*) 
16.  

Example 3-13: Creating a random tone row from a PCC. 

In line 1 the *pcc* global variable is declared and assigned 12 pitches 

numbered 0-11 (any number of pitches can really be assigned, and they do not have to 

be in any type of order). Line 4 shows how to create a more random state, based on the 

UNIX timestamp, because all computationally created random functions are actually 

pseudo random. The *rs* parameter holds a random state seed.  

Lines 7-12 show the fisher-yates-shuffle function, which takes a pcc as 

its argument. The loop macro is utilized to determine the length of the pcc, randomly 
                                            

225 Ibid. 

226 Ibid. 
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pick a number from the pcc, rotate the pcc of the remaining pitches, and pick a new 

number that has not yet been used from the pcc (lines 9-11). The process repeats until 

the length of the pcc is reached, and the new “shuffled” pcc is returned out side of the 

loop (line 12). The (fisher-yates-shuffle *pcc*) function call is provided in line 

15 to view the result at the REPL, and calling the function six different times results in 

six different 12-tone series (Example 3-14).227 

(2 5 9 0 E 6 T 8 3 7 4 1) 
?  
(0 9 E 2 4 6 T 8 1 5 7 3) 
?  
(2 5 3 7 1 4 E 9 8 6 T 0) 
?  
(5 T 0 4 1 7 9 E 6 8 2 3) 
?  
(1 0 3 E 7 5 2 T 6 8 4 9) 
?  
(9 6 3 E 2 8 T 1 7 5 4 0) 

Example 3-14: Six 12-tone series generated with the Fisher-Yates algorithm. 

The following example shows how the Fisher-Yates algorithm can be integrated 

into generating Schoenberg’s 48 forms, also known as the matrix. 

1. (defun fisher-yates-shuffle (pcc) 
2.   "Create a random tone row." 
3.   (loop for i from (length pcc) downto 2 
4.     do (rotatef (elt pcc (random i (make-random-state t))) 
5.         (elt pcc (1- i))))  
6.   pcc) 
7.  
8. (defun prime () 
9.   "Generates a prime." 
10.   (fisher-yates-shuffle (loop for i from 0 to 11 collect i))) 
11.  
12. (defun retrograde (row) 
13.   "Creates a retrograde." 
14.   (reverse (copy-seq row))) 
15.  
16. (defun inversion (row rl) 
17.   "Creates an inversion." 
18.   (if (eql row nil) nil 
19.     (cons 

                                            
227 The REPL separates statements with question marks. 
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20.      (mod (- rl (car row)) 12) 
21.      (inversion (cdr row) rl)))) 
22.       
23. (defun ri (row rl) 
24.   "Creates a retrograde inversion." 
25.   (retrograde (inversion row rl))) 
26.  
27. (defun inversion-position (row rl inversion &optional (count 0)) 
28.   "Finding the position of the inversion." 
29.   (if (eql row nil) nil 
30.     (if (eql (car row) inversion) count 
31.       (inversion-position (cdr row) rl inversion (+ count 1))))) 
32.  
33. (defun transpositions (inversion) 
34.   "Creates the transpositions necessary to generate the matrix." 
35.   (labels ((levels (inv) 
36.                (if (eql inv nil) nil 
37.                  (cons 
38.                   (if (eql (second inv) nil) nil 
39.                     (- (second inv) (car inv))) 
40.                   (levels (cdr inv)))))) 
41.     (cons 0 (remove 'nil (levels inversion))))) 
42.       
43. (defun build-matrix-row (row trans) 
44.   "Builds one matrix row." 
45.   (if (eql row nil) nil 
46.     (cons 
47.      (mod (+ (car row) trans) 12) 
48.      (build-matrix-row (cdr row) trans)))) 
49.  
50. (defun build-matrix (row trans) 
51.   "Compiles matrix." 
52.   (if (eql trans nil) nil 
53.     (cons 
54.      (build-matrix-row row (car trans)) 
55.      (build-matrix (build-matrix-row row (car trans)) (cdr trans))))) 
56.  
57. (defun generate-matrix () 
58.   "Creates a matrix." 
59.   (let* ((row (prime)) 
60.          (rl (length row))) 
61.     (progn 
62.       (format t "~%----------------------------------------") 
63.       (format t "~%Analysis") 
64.       (format t "~%----------------------------------------") 
65.       (format t "~%Length: ~A" rl) 
66.       (format t "~%P-~A: ~8T~A" (car row) row) 
67.       (format t "~%R-~A: ~8T~A"  
68.               (car (retrograde row))  
69.               (retrograde row)) 
70.       (format t "~%I-~A: ~8T~A"  
71.               (car (inversion row rl))  
72.               (inversion row rl)) 
73.       (format t "~%RI-~A: ~8T~A"  
74.               (car (ri row rl))  
75.               (ri row rl)) 
76.       (format t "~%The inversion is @ position ~A of prime."  
77.               (inversion-position row rl (car (inversion row rl)))) 
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78.       (format t "~%Transpositions for generating matrix:~%~A" 
79.               (transpositions (inversion row rl))) 
80.       (format t "~%----------------------------------------") 
81.       (format t "~%The Matrix") 
82.       (format t "~%----------------------------------------") 
83.       (format t "~{~%~A~}"  
84.               (build-matrix row (transpositions (inversion row rl)))) 
85.       (format t "~%----------------------------------------")))) 
86.  
87. (generate-matrix) 
88.  

Example 3-15: Generating Schoenberg's 48 forms. 

Lines 1-6 of the script shown in Example 3-15 re-use the fisher-yates-

shuffle function introduced in Example 3-13. In lines 8-10 the prime function, which 

does not need a supplied argument, randomly creates a new tone row from the 

numbers 0-11, which are programmatically enumerated via a for loop macro and 

provided to the fisher-yates-shuffle algorithm function. The following 

retrograde function (lines 12-14) was also previously introduced, but this time rather 

than creating a recursion the built-in Common Lisp reverse function is used. Before 

the reverse function can be used the argument row is copied via the copy-seq 

function, since the reverse function has the adverse effect of destroying the original 

row (even though this example strictly adheres to the functional programming paradigm 

and therefore the individual instance of the retrograde function will already prevent 

the original row from being destroyed).  

Lines 16-21 show the recursive inversion function. The inversion function 

needs to receive the row and the row length (rl) as its arguments. The first note (car) 

from the row is subtracted from the rl, and then mod twelve(d), which results in an 

inverted pitch, i.e. PC 3 inverts to PC 9 if the rl is 12 (line 20). The process is repeated, 

until all pitches of the row have been appropriately inverted by passing the remaining 
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(cdr) pitches from the row back to the top of the inversion function (line 21). The ri 

(retrograde-inversion) function (lines 23-25) needs to be supplied with a row and a row 

length as arguments, and uses the reverse function with a call to the previously 

discussed inversion function as an argument (line 25). 

Lines 27-31 show the inversion-position function that tries to figure out at 

what position of the prime the inversion, which stacks downward rather than left to 

right, is located. The inversion-position function needs to be supplied with a row, 

the row length, and the first member of the inverted row. The count variable keeps 

track of how many recursions have occurred. A pattern matching call via two nested 

if/else statements (lines 29-30) is at the heart of this recursion. The first if/else 

statement checks whether or not the end of the row has been reached (line 29). If the 

end of the row has been reached the recursion ends, if the end of the row has not been 

reached the recursion is passed on to the next level if/else statement. The next 

if/else statement (line 30) checks whether or not the first note of the row is equal to 

the first note of the inversion. If so, the count reveals the position or index of where 

the inversion row begins within the prime row. However, if no matching number is found 

the inversion-position function returns back to the top with the remaining 

members of the row, the row length, the first member of the inversion row, and the 

number 1 added to the current count. 

The transpositions function determines what successive steps are located in 

between the notes of the inversion (lines 33-41). Because the inversion stacks 

vertically downward, these steps will be used in calculating the successive prime rows, 
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which will be used to unfold the matrix at a later step. The result of the recursive 

transpositions function has to be altered, since it counts through all twelve 

members of an inversion; yet there are only eleven steps, which results in a nil value. 

The nil value has to be removed, and a 0 value has to be prepended, so that the 

original prime row can be displayed in the matrix (line 41). That means that the 

recursion has to be accomplished with a local function within the transpositions 

function, which can be established via the labels function (line 35). Two nested 

if/else, or conditional statements are used within the levels local function. The first 

conditional statement checks whether there are any more inversional row members, and 

ends the recursion if there are not (line 36). The second conditional statement checks 

whether or not a second consecutive contains a value, before a first value is subtracted 

from it (line 38). If it is true, then a recursive call to the local levels function with the 

remaining members of the inversions row supplied as an argument is passed back to 

the top of the levels decision tree (line 40). 

The build-matrix-row function (lines 43-48) constructs individual 

consecutive prime rows of the matrix by using a row and a transposition level that was 

previously found with the transpositions function as arguments. The function is recursive 

as well. The if/else conditional in line 45 checks whether there are any row members 

that need to be transposed left; if not the recursion ends. Conversely, if the conditional 

evaluates true then a list is appended by adding the current pitch of the row to the 

established transposition level, and in turn is mod twelve(d) (line 47). The remaining 

members of the row are passed back into the build-matrix-row function along with 
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the transpositional level, and the process begins anew (line 48).  

The build-matrix-row function is a subroutine for the build-matrix 

function (lines 50-55), and needs a row and a series of transposition levels as its 

arguments. The build-matrix function steps through the different transposition levels 

that were found with the transpositions function with its terminating conditional 

statement (line 52). The matrix is assembled by completing a call to the build-

matrix-row function with the row as the first argument, and the first available 

transpositional level as the second argument (line 54). The resulting prime row is then 

passed back to the build-matrix function along with the remaining transpositional 

levels until the recursion terminates (line 55). 

All the previous functions are needed to create a matrix with some basic 

analytical data. The generate-matrix function (lines 57-85) pulls all of these 

functions together and creates a text output at the REPL. Two local variables are 

established in lines 59-60 via the let* function, (1) the row variable holds the results of 

a call to the prime function, and (2) the rl variable holds the length of the just 

generated row (which is the reason why the let* function was used to declare the 

local variables – rather than the let function – because a local variable declared within 

a let* function is immediately available to be used in a declaration of another local 

variable). The progn function, like the trigger object in Pd or Max, processes function 

calls in a specific order (lines 62-85). The statements contained within the progn 

function create text output to the REPL via the format function. The text output is 

divided into two section, (1) the analysis section, and (2) the matrix section. The 
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analysis section lists the length of the generated tone row (line 65), the prime of the tone 

row (line 66), the retrograde form (line 67-69) of the tone row, the inversional form of the 

tone row (lines 70-72), the retrograde-inversional form of the tone row (line 73-75), the 

position of where the inversion occurs within the prime row (lines 76-77), and the 

transpositional levels that will be used to generate the matrix (lines 78-79). The matrix 

section displays the resulting matrix by utilizing the build-matrix function with the 

appropriately supplied arguments (line 84). The whole output of the script can be called 

by executing the (generate-matrix) function in line 87. The resulting output is 

shown in Example 3-16. 

---------------------------------------- 
Analysis 
---------------------------------------- 
Length: 12 
P-2:    (2 5 9 0 11 6 10 8 3 7 4 1) 
R-1:    (1 4 7 3 8 10 6 11 0 9 5 2) 
I-10:   (10 7 3 0 1 6 2 4 9 5 8 11) 
RI-11:  (11 8 5 9 4 2 6 1 0 3 7 10) 
The inversion is @ position 6 of prime. 
Transpositions for generating matrix: 
(0 -3 -4 -3 1 5 -4 2 5 -4 3 3) 
---------------------------------------- 
The Matrix 
---------------------------------------- 
(2 5 9 0 11 6 10 8 3 7 4 1) 
(11 2 6 9 8 3 7 5 0 4 1 10) 
(7 10 2 5 4 11 3 1 8 0 9 6) 
(4 7 11 2 1 8 0 10 5 9 6 3) 
(5 8 0 3 2 9 1 11 6 10 7 4) 
(10 1 5 8 7 2 6 4 11 3 0 9) 
(6 9 1 4 3 10 2 0 7 11 8 5) 
(8 11 3 6 5 0 4 2 9 1 10 7) 
(1 4 8 11 10 5 9 7 2 6 3 0) 
(9 0 4 7 6 1 5 3 10 2 11 8) 
(0 3 7 10 9 4 8 6 1 5 2 11) 
(3 6 10 1 0 7 11 9 4 8 5 2) 
---------------------------------------- 

Example 3-16: Outcome of Example 3-15. 

Serialism was not only restricted to include exactly twelve notes. Some 

composers like Stravinsky experimented with pitch based serialism that included less 
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than twelve notes, like his Cantata from 1952.228 Other composers like Boulez 

experimented with serialism based on other tuning systems, one for example uses 

quartertones.229 The algorithmic examples above can be applied to these procedures as 

well. The algorithms are designed in a way that any number of pitches within PCCs can 

be applied (the only thing that needs to be changed are the mod operations). 

Serialism has also been applied to rhythmic procedures. Berg and Webern began 

using the technique in the 1940s.230 Boulez continued the tradition in the 1950s, by 

applying serialist type procedures developed by Messiaen, Berg, and Webern.231 Again 

relatively simple adjustments can be made to apply serial procedures to rhythms with 

the algorithms built, by applying matrices for rhythmic assignments to pitch matrices. 

Furthermore, in the 1950s Boulez, Nono, and Stockhausen, among others, started to 

apply serialist techniques to any aspect of sound, like dynamics, tempos, timbres 

(instrumentation), articulations, etc.232 All of these techniques can be combined with the 

algorithms presented in this section as well.   

The application of serialist techniques to all aspects of a musical composition, 

whereby the composition, and structure of a piece was extremely organized, made 

compositions increasingly perceivable as being unpredictable, or happening by 

                                            
228 Griffiths. Robert P. Morgan, Twentieth-Century Music (New York: W. W. Norton & Company, 

1991), 355. 

229 Griffiths. 

230 Ibid. 

231 Ibid.  

232 Morgan, 342. Griffiths. 
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“chance.” 

 

3.3.2. Aleatory 

The word “Aleatory” comes from the Latin word for die, or alea. An immediate 

connection to eighteenth century dice music can be drawn. However, “these games 

usually left only one aspect to guided chance: the ordering of bars supplied with the 

scheme, for instance, or the melody to be placed over a given rhythmic-harmonic 

pattern.”233 Opinions on what constitutes to the indeterminate process differ. For 

example, Paul Griffiths considers three techniques as being part of the aleatory 

technique, (1) “the use of random procedures in the generation of fixed compositions,” 

(2) “the allowance of choice to the performer(s) among formal options stipulated by the 

composer,” and (3) “methods of notation which reduce the composer’s control over the 

sounds in a composition.”234 David Cope lists five techniques:235 

 The use of graphic or other indeterminate notations 1.
 Music composed indeterminately but notated traditionally  2.
 Performer indeterminacy (related to improvisation)  3.
 Composer determinacy of events ordered randomly (mobiles)  4.
 Composer determinacy of generalized parameters with actual material 5.

chosen randomly 
 

From a twentieth century perspective the technique had its origin in the practice 

of American composers Charles Ives, and Henry Cowell.236 John Cage, however, is 

                                            
233 Griffiths. 

234 Paul Griffiths, "Aleatory", Grove Music Online. Oxford Music Online. Oxford University Press. 
http://www.oxfordmusiconline.com/subscriber/article/grove/music/00509 (accessed September 18, 2014). 

235 Cope, Techniques of the Contemporary Composer, 162. 

236 Morgan, 359. 



   99 

most associated with the technique, and began using chance operations frequently in 

the early 1950s (along with Morton Feldman). European composers like Stockhausen, 

and Boulez, began using the technique in the late 1950s. Additionally, Xenakis “used a 

computer in producing music modelled on stochastic processes, where events on the 

smallest scale are indeterminate though the shape of the whole is defined” beginning in 

the late 1950s as well.237 With the procedure Xenakis introduced randomness as a 

necessity.238 

From an algorithmic point of view, Griffith’s “use of random procedures in the 

generation of fixed compositions” is relevant in this discussion. A basic number 

generator can be used to simulate consecutive dice operations. In the serialism section, 

one algorithm that creates a degree of randomness had already been introduced: the 

Fisher-Yates-Shuffle. One could almost venture to say that all CAC uses certain 

degrees of randomness in the generation of pitch material, be it through simple random 

number generators, to probabilistic (“stochastic”) methods, to neural networks that learn 

certain procedures, and then are able to devise new compositions. 

 

3.3.3. Emergence of CAC after WW II 

After WW II, computers started to be available at major research centers at a 

handful of universities in the U.S. Even though most systems would take up entire 

rooms, researchers did not shy away of trying to use the computer as a tool in aiding the 

                                            
237 Griffiths, "Aleatory". 

238 Ibid. 
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compositional process. One of those machines was the ILLIAC computer at the 

University of Illinois, Urbana-Champaign.239 In 1955 Lejaren Hiller and Leonard 

Isaacson started to program the ILLIAC computer to generate music.240 The result of 

this collaboration was the Illiac Suite for String Quartet, and all four movements were 

completed by November 1956.241  

Each movement of the suite was the result of one experiment.242 The first 

experiment dealt with the generation of cantus firmi, where the first part (Presto) 

demonstrated five monophonic cantus firmi, the second part (Andante) demonstrated a 

two-part cantus firmus, and the third and last part (Allegro) demonstrated a four-part 

cantus firmus setting.243 The second experiment featured “four-part counterpoint; from 

random white-note music to strict counterpoint with rules added successively,” and 

consisted of one long section (Adagio, ma non troppo lento), followed by a CODA.244 

The third experiment was a rondo of sorts and consisted of six parts: (1) A – Allegro 

                                            
239 Simoni and Dannenberg, 13. ILLIAC stands for Illinois Automatic Computer. James Bohn, 

"Illiac I", University of Illinois Urbana-Champaign http://ems.music.uiuc.edu/history/illiac.html (accessed 
September 18, 2013). 

240 Bohn. 

241 Lejaren A. Hiller and Leonard M. Isaacson, Experimental Music (New York: McGraw Hill Book 
Company, Inc., 1959), 7. The first three movements were completed in July 1956. According the 
Experimental Music Studios page at UIUC, “Hiller also used the ILLIAC I as a means of editing scores 
that were typed with a music-typewriter called the "Musicwriter.” Bohn. The Illiac Suite in the historic 
algorithmic composition narrative is often considered to be the first computer-generated composition. 
However, Christopher Ariza points out in a recent article that David Caplin and Dietrich Prinz, had actually 
preceded Hiller and Isaacson’s work, by four years (1950/1). Christopher Ariza, "Two Pioneering Projects 
from the Early History of Computer-Aided Algorithmic Composition," Computer Music Journal 35, no. 3 
(2011): 40. 

242 Hiller and Isaacson, 7. 

243 Ibid., 153. 

244 Ibid., 155. 
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vivace – “basic rhythm, dynamics, and instrumentation code,” (2) B – Adagio – “random 

chromatic music,” (3) A’ – Allegro vivace – “modified rhythm, dynamics, and 

instrumentation code plus random chromatic music,” (4) B’ – Adagio – “controlled 

chromatic music,” (5) A’’ – Allegro vivace – “revised rhythm, dynamics, and 

instrumentation code plus random chromatic music,” (6) CODA – alternating 

Adagio/Allegro vivace – subdivided into three parts featuring (a) an “interval row,” (b) a 

“tone row,” and (c) a “modified tone row.” 245 The fourth experiment dealt with basic 

machine learning techniques by which music rules data was entered into a table, which 

in turn was used to activate differently ordered Markov chains.246 The experiment 

consisted of five different sections: (1) “alterations of harmonic function transition 

possibilities,” (2) “zeroth-order Markov chain music,” (3) “first-order Markov chain 

music,” (4) “separation of strong and weak beats,” and (5) the CODA, which presented a 

“ith-order Markov chain music; modulation and simple closed structure.”247 

Another algorithmic composition that appeared around 1956 was song called 

“Push Button Bertha,” and was composed on a DATATRON computer by Martin Klein, 

and Douglas Bolito.248 Xenakis used a computer to complete stochastic probability 

calculations with the “FORTRAN programming language on the IBM 7090.”249 Pierre 

                                            
245 Ibid. 

246 This particular machine learning technique will be revisited in Chapter 6 of this dissertation. 

247 Hiller and Isaacson, 155. 

248 David Cope, New Directions in Music, 7th ed. (Prospect Heights, Ill.: Waveland Press, 2001), 
160-161. 

249 Ibid., 161. Music composed with the stochastic method was Metastasis (1954), Pithoprakta 
(1956), and Achoripsis (1957). Ibid. 
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Barbaud started working “with random permutational methods applied to traditional 

harmonies and twelve-tone processes,” in 1960.250 Around “1962, Xenakis began to use 

the computer to assist in the calculations for the compositions Amorsima-Morsima and 

Strategie, Jeu pour deux orchestres.”251  

“Hiller and Robert Baker developed Musicomp, the first computer-assisted 

composition environment,” in 1963.252 MUSICOMP stands for “MUsic Simulator 

Interpreter for COMPositional Procedures,” and many compositions have been written 

with the aid of MUSICOMP: Robert Baker’s CSX-1 Study, Baker and Hiller’s Computer 

Cantata (1963), Herbert Brün’s Sonoriferous Loops, Brün’s Nonsequitur VI (1961), 

Cage and Hiller’s HPSCHD (1969), etc.253 In 1964-1967 Gottfried Michael Koenig 

created Project 1, a system that composed music “by applying seven selection 

principles to a database of five musical event parameters: instrument, rhythm, harmony, 

register, and dynamics.”254 

The GROOVE system by Max Mathews and Rosler continued the CAC tradition 

into the 1970s.255 In the mid 1970s Barry Truax developed the POD (Poisson 

                                            
250 Ibid. 

251 Simoni and Dannenberg, 13. 

252 Nierhaus, 63. 

253 Cope, New Directions in Music, 161. 

254 Roads, 839. Peter Manning, Electronic and Computer Music (New York: Oxford University 
Press, 2004), 203. Koenig developed Project 2 from 1968-70. Ibid. 

255 Nierhaus, 63. The graphical representation system of music is closely related to Schillinger’s 
System of Musical Composition. Loy,  311. GROOVE stands for “Generated Real-time Ouput Operations 
on Voltage-controlled Equipment.” Manning, 207. 
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Distribution) programs.256 During the 1980s the environments used for CAC were: Midi 

Lisp, Patch Work, Bol Processor.257 Lansky’s Travesty program uses a deterministic 

algorithm, where “the composer takes an existing work of music, extracts arbitrary 

phrase from it, and relinks them together according to some set of rules.”258  

In the early 1990s Common Music, Symbolic Composer, and Open Music started 

to emerge.259 While these environments were specifically created for CAC, other 

environments, namely ones that also were able to actually synthesize sound, can also 

be used. These included the MusicN family by Mathews (1960s), Barry Vercoe’s 

Csound (1980s), and Schottstaedt’s Common Lisp Music (1990s).260 Current tools that 

can be used for CAC purposes, and have sound capabilities, are PWGL, PureData (Pd), 

MaxMSP, SuperCollider, OpenMusic (continued), ChucK, Nyquist, Grace, and others. 

 

3.3.4. Brief AI History (and Music) 

Since CAC has dealt with algorithms since its inception, it is not surprising that 

artificial intelligence research infused the field from the beginning as well. Early work in 

AI was completed by McCulloch and Pitts, who based this work in, (1) “knowledge of the 

basic physiology and function of neurons in the brain,” (2) “formal analysis of 
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257 Nierhaus, 63. 

258 Loy, 312. 
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proportional logic,” and (3) “Turing’s theory of computation.”261 Another one of the early 

pioneers in AI was Donald Hebb, after whom “Hebbian learning” is named, which was “a 

simple updating rule for modifying the connection strengths between neurons.”262 Alan 

Turing’s contributions to the field should also be mentioned, especially his 1950s article 

“Computing Machinery and Intelligence,” in which he laid the foundation for “the Turing 

Test, machine learning, genetic algorithms, and reinforcement learning.”263 

According to Russell and Norvig the actual birth of AI research started with a call 

for participation in a wokshop at Darmouth College in the summer of 1956, made by 

John McCarthy, Marvin Minsky, Claude Shannon, and Nathaniel Rochester, to gather 

“U.S. researchers interested in automata theory, neural nets, and the study of 

intelligence.”264 McCarthy would move on to develop Lisp in 1958 at MIT, “which was 

the dominant AI programming language for the next 30 years.”265 Minsky developed a 

project named “microworlds,” in which limited problems would have to be solved, such 

as closed-form calculus integration problems, geometric analogy problems, or algebra 

story problems.266 Further, Newell and Simon developed the “physical symbol 

hypothesis” (an outgrowth of the “General Problem Solver” designed “to imitate human 

problem-solving protocols”), which states “that any system (human or machine) 
                                            

261 Stuart J. Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, 3rd ed. (Upper 
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exhibiting intelligence must operate by manipulating stat structures composed of 

symbols.”267 

Other branches of AI research would not necessarily be concerned with “problem 

solving” tasks, like Friedberg’s “experiments in machine evolution (now called genetic 

algorithms).”268 The purpose of these algorithms was “that by making an appropriate 

series of small mutations to a machine-code program, once can generate a program 

with good performance for any particular test.”269 However, creating “general-purpose 

search mechanisms trying to string together elementary reasoning steps to find 

complete solutions,” became known as being a “weak method,” “because…they do not 

scale up to a large or difficult problem.”270 The realization led to the development of 

“expert systems,” where the expertise of a system is “derived from large numbers of 

special-purpose rules.”271 A system called “frames” was developed by Minsky in 1975, 

which assembled “facts about particular object and event types and arranging the types 

                                            
267 Ibid., 18. Laske discusses general problem-solving heuristics. Otto E. Laske, "In Search of a 

Generative Grammar in Music," in Machine Models of Music, ed. Stephan M. Schwanauer and David A. 
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269 Russell and Norvig, 21. 
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into a large taxonomic hierarchy analogous to biological taxonomy.”272 

In 1969 Bryson and Ho developed the back-propagation learning algorithm that 

was re-invented in the mid-1980s, also known as “the return of neural networks.”273 A 

back-propagation algorithm takes on the task of “supervised learning in which errors are 

propagated back through the network (from the outputs to the inputs), changing the 

connection weights as they go.”274 This type of algorithm, dealing with neural networks, 

is part of the “connectionist models of intelligent systems.”275 Research in the neural 

network area is still ongoing and current as of present writing. Additionally, HMMs, have 

attained a high degree of versatility, since (1) “they are based on rigorous mathematical 
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theory,” and (2) “they are generated by a process of training a large corpus of…data.”276 

Consequently, HMMs and neural nets gave way to data mining.277  

Furthermore, the “Bayesian network formalism was invented to allow efficient 

representation of, and rigorous reasoning with uncertain knowledge.”278 Intelligent 

agents have become synonymous with web technologies that end with the “-bot” suffix, 

including “search engines, recommender systems, and Web site aggregators.”279 The 

availability of very voluminous data sets has forced researchers to re-evaluate the roles 

of what algorithms to apply, and focus on the actual data.280 Large data sets are also 

known as corpora. These corpora can then be bootstrapped to learn new patterns with 

the help of only few definitions.281 Therefore, if corpora are assembled appropriately, 

learning algorithms can extrapolate new analyses, new data, new rules that would have 

been overlooked otherwise.
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CHAPTER 4  

DAVID COPE 

 

4.1. On David Cope 

The American educator, instrument maker, composer, and writer David Howell 

Cope was born on May 17, 1941 in San Francisco, California.1 Cope studied piano and 

cello in his youth.2 He received a Bachelor of Music degree in 1963 from Arizona State 

University, where he studied composition with Grant Fletcher.3 David Cope completed 

his Master of Music degree at the University of Southern California in 1965, where he 

studied with Halsey Stevens, George Perle, and Ingolf Dahl.4 Furthermore, Cope began 

doctoral studies at University of Southern California around 1966, where Arthur Knight 

was one of his advisers.5 

Cope began his career as a college instructor in 1966, by working at Pittsburg 

State University in Kansas.6 His next appointment was at California Lutheran University 

                                            
1 Dale Cockrell and Hugh Davies, "Cope, David Howell", Grove Music Online. Oxford Music 

Online. Oxford University Press. 
http://www.oxfordmusiconline.com/subscriber/article/grove/music/L2232381 (accessed March 11, 2014). 

2 David Cope, "Biography", University of California, Santa Cruz 
http://artsites.ucsc.edu/faculty/cope/biography.htm (accessed April 11, 2014). According to Cope’s 
autobiography, he studied composition with Dahl, at the same time as “Michael Tilson Thomas, current 
conductor of the San Francisco Symphony Orchestra.” Ibid. 

3 Dale Cockrell, "Cope, David", Grove Music Online. Oxford Music Online. Oxford University 
Press. http://www.oxfordmusiconline.com/subscriber/article/grove/music/42662 (accessed April 11, 2014). 
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4 David Cope, Tinman: A Life Explored (Bloomington, IN: iUniverse, Inc., 2008), 141. 

5 Ibid., 185. 

6 All following colleges and universities are going to be listed by their most current names. Cope 
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in Thousand Oaks, CA from 1968-1969. In 1969, Cope taught for one year at Prairie 

View A & M University, a historically black university located in Prairie View, Texas.7 

From 1970 to 1973, he held a position at the Cleveland Institute of Music.8 Cope 

remained in Ohio for another four years, by teaching at Miami University in Oxford from 

1973-1977.9 In 1977, David Cope was appointed to the University of California in Santa 

Cruz, where he remained until his retirement in 2006.10  

Currently, Cope is the “Dickerson Emeriti Professor at the University of California 

at Santa Cruz,” “where he teaches theory and composition.”11 Additionally, Cope also is 

“Honorary Professor of Computer Science at Xiamen University (China).”12 Further, he 

“teaches regularly in the annual Workshop in Algorithmic Computer Music (WACM) held 

in June-July at UC Santa Cruz.”13 

As a physical instrument maker, Cope “has constructed several percussion 

instruments for use in his own compositions.”14 Cope’s composition The Way (1981) “is 

based on Navajo Indian rituals, and is written in a system of just intonation having 33 

                                            
7 Cope, Tinman: A Life Explored, 134. 

8 Cockrell. Cope, Tinman: A Life Explored, 171-172. 

9 Cope, Tinman: A Life Explored, 200-201. Cockrell. 

10 Cope, Tinman: A Life Explored, 202, 209, 211, 213, 219. Cockrell. 

11 Cope, Tinman: A Life Explored, 134, 227, 237. 

12 Cockrell. 

13 Cope, Tinman: A Life Explored, 237, 277, 341, 391, 435. 

14 Cope, "Biography". Being an instrument builder and composer is an American tradition of sorts, 
begun for one by Harry Partch. The practice manifests itself in computer music, when one considers a 
computer, or a computer program as a musical instrument. 
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notes to the octave.”15 The instruments constructed for The Way include: (1) aluminum 

bells, (2) a large drum, (3) transversely blown tubes, and (4) musical glasses.16 

Additional parts are based on instruments that utilize “interacting systems of vibration 

and resonance,” namely the Logsprinoka, which is constructed like a “nail violin, and 

long springs stretched over bridges, which are attached to a 2-metre log drum.”17 

Furthermore, some “instruments, some with only one note, were made from Navajo 

prayer stones and other materials obtained from Canyon de Chelley in Arizona.”18 The 

New Grove describes Cope’s music as incorporating “musical structures and 

compositional methods, from the traditional to the avant-garde.”19 Furthermore, Cope’s 

music incorporates contemporary unconventional playing techniques, prepared 

instruments, invented instruments, microtonal scales (including a “33-note system of 

just-intonation”), atonality, and polyrhythms.20  

 

4.1.1. Composition Projects on Smithsonian Folkways 

The LP record Navajo Dedications from 1976 features four works from Cope’s 

period, namely (1) Vortex, (2) Rituals, (3) Parallax, and (4) Teec Nos Pos.21 The liner 

                                            
15 Ibid. 

16 Ibid. 

17 Cockrell. 

18 Ibid. 

19 Ibid. 

20 Ibid. 

21 David Cope, Navajo Dedications, Bill Albin et al., Folkways Records FTS 33869, LP, 1976. 
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notes give a little bit more detailed information on how some of Cope’s music is 

structured.22 For example, in Vortex, a composition for large chamber ensemble, “a 

single motive (1/2 step repeated evenly in 64th note motion) ties the work together 

through a variety of guises (timbre and rhythmic variations).”23 There are four sections 

“from which each of the transitions spring” in the composition.24 Further, the “flute and 

trombone act in contrapuntal conversation within the 4-framed single movement while 

the 3 percussion and piano help outline the continuous development.”25 Hidden 

meanings are encrypted through syllables that do not belong to the Navajo language.26  

Rituals is written for cello, wind chimes, bass drum, and voice. The piece is to be 

performed by a singular performer, and focuses on the Navajo creation myth.27 In 

Parallax, a piano incorporating extended technique possibilities is being used. As the 

title suggests, the piece aims to “view an object from a variety of directions obtaining 

different results or reactions.”28  The object is PC C#, and a set of variations are based 

on PCC {C#, D#, E} which serve to view “the subject from slightly different angles 

                                            
22 Jon Marshall, liner notes to Navajo Dedications, David Cope, Folkways Records FTS 33869, 

LP, 1976. Perhaps Cope is hinting at the Navajo Code Talkers, a special unit of the U. S. military during 
WW II in the Pacific theatre. 

23 Ibid. 

24 Ibid. 

25 Ibid. 

26 Ibid. 

27 Ibid. 

28 Ibid. 
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achieving vividly different melodic and harmonic ideas.”29 The piano is interspersed with 

whispers of seven Navajo words that together do not form a cohesive statement. PC C# 

can be interpreted as a representation of “Nahokah – dinneh” or “People of the first 

earth,” since special emphasis is given to how Navajo refer to themselves.30 Teec Nos 

Pos, is the only electronic music composition on the album, but like the opening Vortex 

is structured around four sections.31 

Another one of Cope’s albums from the 1970s is called Visions (1979), and 

features the five-movement composition Threshold and Visions for large chamber 

orchestra, and Glassworks for two pianos and computer generated tape, both of which 

were written in 1978.32 In Threshold and Visions, materials “concentrate on the ever 

flowing expansion and contraction of motivic modules gravitating toward a variety of 

central pitches.”33 The tape portion of Glassworks “was composed from June to August 

1978 at the Artificial Intelligence Laboratory at Stanford University, Palo Alto, California 

using a PDP 10 computer and the Samson Digital Synthesizer.”34 Cope gives further 

insight into the compositional process at SAIL:  

                                            
29 Ibid. 

30 Ibid. 

31 Ibid. 

32 David Cope, Visions, David Cope, Ken Durling, and Santa Cruz Chamber Symphony, Folkways 
Records FTS 33452, LP, 1979.Here “large” chamber orchestra means: Flute, Oboe, Clarinet, Bassoon, 
Harp, two percussionists, two horns, trumpet, two trombones, piano, organ, and a string section 
consisting of violins violas, cellos, and basses. 

33 Ibid. 

34 Ibid. Conveniently this information is omitted from the EMI “creation myth.” It is very clear that 
Cope already has some type of programming experience, before embarking on his EMI journey. 
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The tape has been produced entirely by digital procedures and a digital-to-analog 
converter (DAC) and no analog synthesizer-produced sounds were used. All 
splicing was accomplished by computer program changes and not by more 
traditional means of actually cutting the tape directly. The software design used is 
that developed primarily by John Chowning and Leland Smith at Stanford. 
Timbres employed were developed around two substantially different techniques 
available in the SCORE program at Stanford: FM techniques (CHOWNING 
MODULATION) wherein timbres are created by frequency modulation varying 
either or both program and carrier waveforms; or Fourier Synthesis techniques 
wherein each timbre is constructed from scratch by adding each overtone 
separately, controlling frequency (often chosen from the inharmonic spectrum 
with frequencies varying in thousands of cycles from the harmonic norm), 
envelope structure and timing and existence (i.e., overtones were often left out of 
the spectrum). A third type of timbre production, frequency, spatial relations 
(dynamics) and rhythm were controlled through very different means.35 

Cope’s fascination with the all-digital process of sound creation is very clear. He 

further continues: 

A complex tone (timbre #3) can be defined in reference to GLASSWORKS as a 
continuous pitch constructed of hundreds (sometimes) thousands of tiny pitches 
produced in a narrow frequency band. As an example, one must imagine 200 to 
500 separate sound events per second being produced within the frequency 
range of 439 HZ and 442 HZ (or 3 cycles difference) with each sound event 
having say .001 to .009 seconds duration, its own timbre and overtone structure, 
its own envelope and its own pitch identity (pitch being selected to the thousands 
of a cycle; i.e., pitch 1 with a frequency of 441.036, pitch 2, a frequency of 
439.879, etc.). The result of playing these small sounds over a continuous period 
of time is the illusion of a single identifiable pitch with a very unique timbre.36 

What follows is a print-out of required input data (computer code that shows the 

creation of two instruments in which a 33 just intonation division of the octave is 

created) and its corresponding output data, including proto MIDI pitch start, and duration 

                                            
35 Ibid. Additionally this snippet is an excellent insight into how FM synthesis was being 

constructed at Stanford, before FM synthesis became part of the Yamaha FM family of synthesizers. 

36 Ibid. 
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values with the harmonic makeup of each synthesized sound.37 Furthermore, Cope 

explains the need of having to create an automated process (he calls it a “stochastic 

procedure”) in order to calculate the immense amount of data that needs to be created 

in order to create just small bits of organized sounds.38 However, what is more important 

is that in these liner notes Cope creates a blueprint of what his future work during his is 

centered on, the procedural organization of pitched materials through automated 

processes. 

 

4.1.2. Compositions 

The previously examined examples are just a sample of music written by David 

Cope in the 1970s. Table 4-1 lists Cope’s compositional output in more detail.39 

Table 4-1: David Cope works. 

Title Details Year Category 

Piano Sonata No. 1 "Youth" Piano, 15’ 1960 PTC 
Piano Sonata No. 2  Piano, 12’ 1969 PTC 
Piano Sonata No. 3  Piano, 13’ 1970 PTC 
Piano Sonata No. 4  Piano, 19’ 1971 PTC 

Variations 
Solo piano and wind ensemble 
(picc, 2 fl, 2 ob, eng hn, 2 cl, bs 
cl, 2 bs, contra bs, 4 hn, 2 tpt, 3 
trb, tuba, 3 st bass, 3 perc), 12’ 

1965 PTC 

                                            
37 The input example and the output example have been included in Appendix B Code Examples 

as B.1. Glassworks Input Code, and as B.2. Glassworks Output Code 

38 Cope, "Visions." 

39 David Cope, "Works", University of California, Santa Cruz 
http://artsites.ucsc.edu/faculty/cope/works.htm (accessed April 19, 2014).  
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Title Details Year Category 
Three Pieces for Bassoon Basson, 6’ 1966 PTC 
Three Pieces for Clarinet Clarinet, ?’ 1966 PTC 

Contrasts Orchestra (2,2,2,2 4,2,3 perc, 
str), 7’ 1966 PTC 

Three Pieces for Trombone Trombone, 6’ 1966 PTC 
String Quartet No. 1  String quartet, 22’ 1960 PTC 

String Quartet No. 2 String quartet, 25’ 1964 PTC 
String Quartet No. 3 String quartet, 24’ 1969 PTC 
String Quartet No. 4 String quartet, 24’ 1970 PTC 
String Quartet No. 5 String quartet, 24’ 1974 PTC 
String Quartet No. 6 String quartet, 24’ 1984 PTC 
Iceberg Meadow Prepared piano, 9’ 1968 PTC 
B.T.R.B. Solo bass trombone, 20’ 1971 PTC 
Spirals Tuba and prepared tape, 8’ 1972 PTC 
Ashes Soprano and percussion, 8’ 1972 PTC 
Margins Tpt, vc, perc, 2 pf, 12’ 1972 PTC, ACY 
Streams Orchestra, 13’ 1973 PTC 
Extensions Trumpet and prepared tape, 8’ 1973 PTC 

Indices Oboe and piano, 8’ 1973 PTC 

Vectors Baritone, electronics and 
ensemble (3 perc, fl, trb), 20’ 1976 PTC 

Vortex Chamber ensemble (Fl, trb, pf, 
and 3 perc.), 16’ 1976 PTC 

Concerto for Piano and 
Orchestra 

Piano and orchestra (1,1,1,1,cb 
2,1,2 hp, org, perc, str), 29’ 1980 PTC 

Viola Concerto Viola and orchestra, 29’ 2009 PTC 
Symphony No. 1 "The 
Phoenix."  

Orchestra (fl, ob, cl, bs, hn, tpt, 
trb, harp, perc, pf, str), 39’ 1960 PTC 

Symphony No. 2 
"Reconciliation" 

Orchestra (fl, ob, cl, bs, hn, tpt, 
trb, harp, perc, pf, str), 41’ 1961 PTC 

Symphony No. 3  Orchestra (fl, ob, cl, bs, hn, tpt, 
trb, harp, perc, pf, str), 46’ 1962 PTC 

Symphony No. 4  Orchestra (fl, ob, cl, bs, hn, tpt, 1963 PTC 
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Title Details Year Category 
trb, harp, perc, pf, str), 44’ 

Symphony No. 5  Orchestra (fl, ob, cl, bs, hn, tpt, 
trb, harp, perc, pf, str), 44’ 1999 PTC 

Symphony No. 6  Orchestra (fl, ob, cl, bs, hn, tpt, 
trb, harp, perc, pf, str), 43’ 2002 PTC 

Symphony No. 7  Orchestra (fl, ob, cl, bs, hn, tpt, 
trb, harp, perc, pf, str), 39’ 2003 PTC 

Symphony No. 8  Orchestra (fl, ob, cl, bs, hn, tpt, 
trb, harp, perc, pf, str), 34’ 2004 PTC 

homage RFK  String orchestra (str, perc.), 7’ 2000 PTC 
Symphony No. 9 "Martin 
Luther King, Jr."  

Orchestra (fl, ob, cl, bs, hn, tpt, 
trb, harp, perc, pf, str), 43’ 2005 PTC 

Violin Concerto Violin and orchestra, 29’ 2012 PTC 
Cello Concerto Cello and orchestra, 26’ 1979 PTC 

Afterlife 
Orchestra (2, 2, 2, 2, 4, 2, 3 hp, 
perc, str) and soloist (on original 
instruments), 29’  

1982 PTC 

Into the Celestial Spaces Choir (SSAA, chamber 
ensemble), 14’ 2005 PTC 

Children of Darkness  Chamber ensemble, 14’ 2009 PTC 

Piano Variations Piano solo, 53’ 2009 PTC 
Ballet Antigone  Orchestra, 48’ 2009 PTC 
Octet for Strings  String octet, 36’ 2009 PTC 

Koosharem Chamber ensemble (cl, cb, perc 
and pf), 12’ 1973 NC 

Triplum Piano and flute, 13’ 1973 NC, ACY 
Requiem for Bosque 
Redondo 

Brass choir (4, 4, 4) and perc (3), 
12’ 1981 NC, ACY 

Arena Violoncello and tape, 8’ 1974 NC 
Parallax Piano solo, 14’ 1974 NC 
Re-Birth Concert Band, 16’ 1975 NC 
Rituals Cello solo, 6’ 1976 NC 

Threshold and Visions Orchestra (1, 1, 1, 1, 2, 1, 2, 2 
perc, hp, org, pf, strings), 32’ 1977 NC 

Cradle Falling Opera, soprano solo and 
chamber orchestra (1, 1, 1, 1 hn, 1985 NC, ACY 



   117 

Title Details Year Category 
trb, 2 perc, 2 pf, harp, 1, 1, 2, 1), 
60’ 

Songs from the Navajo Soprano and chamber ensemble 
(cl, va, vc, hp, perc., pf,), 13’ 1995 NC 

I remember Him Korean gayageum, wind chimes, 
drum, 12’ 2005 NC 

Asymmetries  Korean gayageum, 12’ 2006 NC 

Choir of Memory  SATB, orchestra, poems by 
Gerald Vizenor, 52’ 2008 NC 

Spires Computer-generated tape (2005 
version), 5’ 1956 ACY 

Three 2-Part Inventions Piano solo, 1960 1960 ACY 
Three Pieces Clarinet, 6’ 1965 ACY 
Five Pieces Flute, bassoon and violin, 7’ 1965 ACY 
Towers Mixed ensemble, 15’ 1968 ACY 
Birds Live electronic music, 12’ 1968 ACY 

1,000 works (with Emmy) Various40 1981-
2003 ACY 

5,000 works (with Emmy) 
1500 symphonies, 1000 string 
qts, 1000 piano sonatas, 1500 
assorted works 

1992 ACY 

Horizons Orchestra (2, 2, 2, 2, 2, 1, 2 hp, 
pf, 2 perc., str.), 12’ 1994 ACY 

Organ Concerto Organ and orchestra (2, 2, 2, 2,  
4, 2, 3 hp., perc., str.), 28’ 2000 ACY 

Endangered Species Chamber ensemble, 15’ 2004 ACY 
From Darkness, Light (with 
Emily Howell) Two pianos, 22’ 2004 ACY 

5,000 chorales (with Emmy) 5000 works in Bach’s chorale 
style 2005 ACY 

Shadow Worlds (with Emily 
Howell) Three disklaviers, 18’ 2005 ACY 

Land of Stone (with Emily 
Howell) Chamber ensemble, 15’ 2007 ACY 

                                            
40 Cope provides a more detailed list of Emmy’s music that appears in the section on Emmy. 

David Cope, "Music of Experiments in Musical Intelligence", University of California, Santa Cruz 
http://artsites.ucsc.edu/faculty/cope/emi.htm (accessed September 22, 2014). 
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Title Details Year Category 
Silver Blood (with Emily 
Howell) Chamber ensemble, 10’ 2007 ACY 
SpaceTime (with Emily 
Howell) 

Computer generated acoustic 
music, 13’ 2011 ACY 

Breathless (with Emily 
Howell) 

Chamber ensemble, percussion, 
9’ 2012 ACY 

From the Willows Keep (with 
Emily Howell) Chamber ensemble, electronic 2012 ACY 
Coming Home (with Emily 
Howell) 

Computer generated acoustic 
musi, 13’c 2012 ACY 

Prescience (with Alena) Chamber ensemble, 8’ 2012 ACY 
Transcendence  Chamber ensemble, 15’ 2012 ACY 

 

4.1.3. Writings 

During the 1970s, Cope also started to gain significant recognition as a writer on 

composition pedagogy: (1) New Directions in Music (1974, and currently in its 7th 

edition) – a volume that explores music composed since the late 1940s to 2001 (date of 

the 7th edition), including an overview of the following practices, and their corresponding 

composers: tonality, atonality and serialism, texturalism, timbralism and tuning, 

indeterminacy, experimentalism, electroacoustic music, algorithmic composition, 

minimalism, and integration of these aspects of new music composition; (2) New Music 

Notation (1976) – a volume focusing on the notational aspects of new music; and (3) 

New Music Composition (1977) – a pedagogical text covering the following topics: 

harmonic progression and chromaticism, twelve tone processes, melodic direction, 

pointillism and Klangfarbenmelodie, polytonality, interval exploration, cluster techniques, 

microtones, percussion and prepared piano, rhythm and meter, indeterminacy, 

multimedia, musique concrète, new traditional instrument resources, synthesizer 
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techniques, new instruments, further extensions, total organization, computer 

techniques, texture, modulations, notation, minimalization, bio music, and de-

categorization.41 In an article published in 1977 (which is not included on David Cope’s 

website), Cope explains how to listen to electronic music in the Music Educators 

Journal. Cope wrote this article while teaching at Miami University in Oxford, OH.42 In 

addition, David Cope has written numerous composition reviews and book reviews. 

Starting in the 1980s, Cope starts publishing books that not only cover pedagogical 

composition topics, but also outcomes of his research into computer aided composition. 

The books, book chapters, and journal articles covering these topics will be covered in 

the following two sections (4.2 Emmy, 4.3 Emily Howell, and 4.4 Cope’s Algorithmic 

Analyses). The following table shows books written by David Cope that are not 

concerned about CAC, but may be composition pedagogy texts, music fundamentals 

texts, poetry, novels, and other items.43 

Table 4-2: Miscellaneous writings. 

Book Title Book Type Year 
Techniques of the Contemporary Composer44 Composition Pedagogy 1997 

                                            
41 Cope, "Works". Cope, New Directions in Music. David Cope, New Music Notation (Dubuque, 

IA: Kendall/Hunt Pub. Co., 1976). David Cope, New Music Composition (New York: Schirmer Books, 
1977). 

42 David Cope, "The Mechanics of Listening to Electronic Music," Music Educators Journal 64, no. 
2 (1977). 

43 The year column in the table lists the year of publication according to David Cope web site. 
David Cope, "Bibliography", University of California, Santa Cruz 
http://artsites.ucsc.edu/faculty/cope/bibliography.htm (accessed April 11, 2014). 

44 Cope, Techniques of the Contemporary Composer. 
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Book Title Book Type Year 
Tinman: A Life Explored45 Autobiography, Part 1 of 3 2008 
Comes the Fiery Night46 (Generative) Poetry 2011 
A Musicianship Primer47 Music Fundamentals 2012 
Taking Sides48 Games 2012 
Tinman Too: A Life Explored49 Autobiography, Part 2 of 3 2012 
ars ingenero50 Generative Art 2012 

The Death of Karlin Mulrey51 Novel 2012 
Not by Death Alone52 Novel 2012 
Death by Proxy53 Novel 2012 
Mind Over Death54 Novel 2012 

                                            
45 Cope, Tinman: A Life Explored. “D. H. Cope” denotes fiction/poetry writings by Cope. 

46 D. H. Cope, Comes the Fiery Night (Charleston, SC: CreateSpace Independent Publishing 
Platform, 2011). 

47 David Cope, A Musicianship Primer (Charleston, SC: CreateSpace Independent Publishing 
Platform, 2012). 

48 David Cope, Taking Sides (Charleston, SC: CreateSpace Independent Publishing Platform, 
2012). 

49 David Cope, Tinman Too: A Life Explored (Bloomington, IN: iUniverse, 2012). 

50 David Cope, Ars Ingenero (Charleston, SC: CreateSpace Independent Publishing Platform, 
2012). 

51 D. H. Cope, The Death of Karlin Mulrey (Charleston, SC: CreateSpace Independent Publishing 
Platform, 2013). 

52 D. H. Cope, Not by Death Alone: A Will Francis Mystery, Book 1, 5 vols., vol. 1 (Charleston, 
SC: CreateSpace Independent Publishing Platform, 2012). 

53 D. H. Cope, Death by Proxy, 5 vols., vol. 2 (Charleston, SC: CreateSpace Independent 
Publishing Platform, 2013). 

54 D. H. Cope, Mind over Death, 5 vols., vol. 3 (Charleston, SC: CreateSpace Independent 
Publishing Platform, 2013). 
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Book Title Book Type Year 
Of Blood and Tears55 Short Stories 2012 
My Gun is Loaded56 Short Stories 2012 
Tinman Tre: A Life Explored57 Autobiography, Part 3 of 3 2013 

 

In the late 1970s, early 1980s Cope started to develop his first sets of CAC 

software tools, which will be hereto referred to as the EMI/Emmy period. It is important 

to understand that the Emmy period encompasses not just one piece of software, but an 

entire family of software tools that Cope constantly improves and revises. Cope’s lore of 

how he got involved in CAC has been told numerous times: he suffered from 

composer’s block.58  

 

4.2. Emmy 

EMI forces us to look at great works of art and wonder where 
they came from and how deep they really are…Nothing I've 
seen in artificial intelligence has done this so well. 

Douglass Hofstadter 

 

                                            
55 D. H. Cope, Of Blood and Tears (Charleston, SC: CreateSpace Independent Publishing 

Platform, 2014). 

56 D. H. Cope, My Gun Is Loaded (Charleston, SC: CreateSpace Independent Publishing 
Platform, 2012). 

57 David Cope, Tinman Tre: A Life Explored (Bloomington, IN: iUniverse, 2013). 

58 Interestingly, during the classical period, when treatises would discuss generative music 
creation techniques via combinatorics, “composer’s block” was being used as a reason to utilize 
generative techniques. For example, Leonard Ratner in connection to Galeazzi states that the use of such 
techniques “applies only to those who cannot invent their own.” Ratner, "Ars Combinatoria, Chance and 
Choice in Eighteenth-Century Music," 348-349. 
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4.2.1. Expert System 

Emmy’s (EMI) name is clearly Cope’s nod to Hiller and Isaacson, since the first 

four movements of the Illiac Suite were called “experiments.” The first articles that Cope 

publishes on Emmy appear in 1987. In “An Expert System for Computer-Assisted Music 

Composition,” Cope lays out what he is trying to accomplish with his project 

“Experiments in Musical Intelligence.”59 An “expert-system” can be defined as a 

“computer system or program, which incorporates one or more techniques of artificial 

intelligence to perform a family of activities that traditionally would have to be performed 

by a skilled or knowledgeable human.”60 Expert-systems had been in use by AI 

researcher since 1969, and started with the DENDRAL system at Stanford University.61  

Cope’s expert-system was at first “an analysis tool for generating extensive lists 

of motivic patterns” that “quickly grew into an imitative projector of possible next 

intervals of given phrases.”62 The sets of functions “allowed for style dictionaries and 

syntax rule applications.”63 The system was developed around Cope’s own biases, 

                                            
59 David Cope, "An Expert System for Computer-Assisted Composition," Computer Music Journal 

11, no. 4 (1987).  

60 Steven L. Tanimoto, The Elements of Artificial Intelligence Using Common Lisp (New York: 
Computer Science Press, 1990), 491. Peter Norvig devotes an entire chapter on expert-systems, and 
explains how an expert system by citing the MYCIN medical system that was developed by Edward 
Shortliffe in 1974 to aid in medical diagnosis. Peter Norvig, Paradigms of Artificial Intelligence 
Programming: Case Studies in Common Lisp (San Francisco: Morgan Kaufmann Publishers, 1992), 530-
563. 

61 Russell and Norvig, 22-23. 

62 Cope, "An Expert System for Computer-Assisted Composition," 30. 

63 Ibid. Style dictionaries to Cope comprise “basic dictionaries,” or databases, “of J. S. Bach, 
Ludwig van Beethoven, Johannes Brahms, and Béla Bartók,” which at this point were “run at separate 
times.” Ibid., 37. 
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which “included projections of linguistic parse like networks for phrase structures, 

intensely rigorous motive replications, and a proclivity for analyzing music by intervals 

rather than pitch.”64 Cope uses the set of programs as “antagonists,” everything is 

focused on “compositional process,” and all output is translated “into music notation 

rather than digital synthesis.”65 At the end of the article Cope provides an appendix that 

features several Emmy functions written in Common Lisp.66 One of these functions has 

been translated to modern Common Lisp in Example 4-1.67 

1. (defun inversion (base number-list) 
2.   "Inverts a list of interval movements." 
3.   (mapcar (lambda (x) (+ (- base x))) number-list)) 
4.  
5. ; (inversion 12 '(2 3 1 -1 -2 -3)) 
6. ; => (10 9 11 13 14 15) 
7.  

Example 4-1: Cope's intervallic inversion function in current Common Lisp. 

The inversion function takes a base, and a number-list, i.e. a list of 

intervals as arguments. In line 3 these arguments are passed to a mapcar function that 

maps the anonymous lambda function, which inverts each interval, across the list of 

intervals. In line 5 the inversion function is called with 12 and the list '(2 3 1 -1 -

2 -3) as arguments (in the CMJ article Cope actually only provides the list as an 

argument, which inevitably would throw an error at the REPL, since none of the 

arguments are &optional). The resulting list is (10 9 11 13 14 15), line 6.    
                                            

64 Ibid., 30. 

65 Ibid. 

66 Ibid., 39-46. 

67 This function is one of the less complex functions in the appendix of the article and has been 
included here, because it does not require any other functions or subroutines (functions utilized by other 
function) to work. 
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4.2.2. Recombinant Music and Signatures 

Four years later (1991) Cope publishes the article “Recombinant Music.”68 Cope 

had expanded his expert-system to include pattern recognition, and the ability “to create 

recombinant music – music written in the styles of various composers by means of a 

contextual recombination of elements in the music of those composer.”69 Furthermore, 

Cope starts to add the “Musikalisches Würfelspiel” to his narrative, by explaining one of 

EMI’s subprograms “performs much the same task as the musical dice games on music 

that was not written to be disassembled, reorganized, and reassembled.”70  

The disassembly occurs according to “signatures” – music structures idiomatic to 

a composer, by which the style of the composer can be recognized.71 The “signatures” 

act as patterns that are utilized by a pattern-matching program. The patterns are 

reduced to their intervallic qualities (as already described in Cope’s 1987 CMJ article), 

with rests marked as ‘0,’ and can easily matched according to their intervallic patterns.72 

More patterns are matched, “by allowing…any interval to be off by just one half step in 

either direction,” in order “to remain within a diatonic framework when sequencing.”73 

Before recombining music, Cope pursues a hierarchical analysis. The analysis 

                                            
68 David Cope, "Recombinant Music: Using the Computer to Explore Musical Style," Computer 27, 

no. 7 (1991). 

69 Ibid., 22. 

70 Ibid. 

71 Ibid., 24. 

72 Ibid., 24-25. 

73 Ibid., 25. 
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includes “musical groupings, including signatures, for hierarchical function.”74 Chord 

functions are analyzed, but also textural elements such as melody, “rising 

melodies…can be followed by falling ones for balance,” and accompaniments, “which 

otherwise would be a pastiche of various motives, can be made rhythmically consistent 

so that they flow regularly with the melodic line.”75 The results of the analyses are stored 

in lexicons, or databases, where they are “randomly mixed,” and “access to each 

lexicon is…controlled by the functional succession of one of the original works.”76  

 

4.2.3. Augmented Transition Networks and SPEAC 

Cope describes how the recombination of musical elements “can be enhanced by 

using augmented transition networks (ATNs).”77 AI researchers to aid in natural 

language processing used ATNs, and “a transition network is like a context-free 

grammar,” while “augmentation is a way of manipulating features and semantic 

values.”78 Cope further explains, “ATNs are programs designed to produce logical 

sentences from sentence bits and pieces that have been stored according to sentence 

function.”79 The recombination is organized in EMI through an ATN, (1) by utilizing a “set 

of functions from the analysis,” (2) applying these functions “by gathering applicable 

                                            
74 Ibid. 

75 Ibid., 26. 

76 Ibid. 

77 Ibid. 

78 Norvig, 711-712. 

79 Cope, "Recombinant Music: Using the Computer to Explore Musical Style," 26. 
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groupings of music…stored previously,” and (3) making transitions smoother by, for 

example, applying stepwise motion to melodies that previously had stepwise motion 

characteristics.80 

“Recombinant Music” does not show any code examples, but Cope illustrates the 

outlined techniques with music examples, and it is clear that the articles serve as a 

teaser for his book Computers and Musical Style, that was publishes in 1991 as well. 81  

Computers and Musical Style is considered to be the first one in the “trilogy” of books 

written by Cope on Emmy.82 In his book Cope provides background information on 

automated music composition, a definition of what he considers musical style – “the 

identifiable characteristics of a composer’s music which are recognizably similar from 

one work to another,”83 a Lisp programming tutorial, his style replication programs, 

musical outcomes from his programs (listed in Table 4-3 and marked with CMS), and 

how he uses Emmy as CAC tool. 

From an analytical perspective Cope provides his views on how analysis can be 

used to help in identifying a style. Cope sets forth several analytical techniques: (1) 

parsing – a technique in language study, where a sentence (S) is broken down into 

smaller elements, such as “a noun phrase (NP) and a verb phrase (VP),” which in turn 

are broken down “into an article (Ar) plus a noun (N),” and “an adverb (Ad) plus a verb 

                                            
80 Ibid. 

81 Cope, Computers and Musical Style. 

82 The “trilogy” reference may seem out of place, however, the last book of the trilogy The 
Algorithmic Composer features an index for all books within the trilogy. Cope, The Algorithmic Composer, 
287-301. 

83 Cope, Computers and Musical Style, 30. 
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(V)” respectively;84 (2) tonal functions; (3) SPEAC – ideas derived from Schenkerian 

analysis;85 (4) hierarchical analysis – as in Schenkerian ideas of the foreground, 

middleground, and background;86 (5) form – movements to different tonal centers in 

accordance to previously described parsing rules;87 (6) melody – mostly stepwise 

motion, “compensation of skips by smaller motions in the opposite direction,” and one 

ore more notes agreeing with implied harmony;88 (7) texture and counterpoint – how 

many voices, contrapuntal procedures, ostinati.89 To recombine the music Cope 

discusses, (1) generating hierarchies, and (2) ATNs. 90  

After the publication of CMS, Cope writes Computer Modeling of Musical 

                                            
84 Cope connects to sentence parsing, by parsing a major scale, where PC C assumes the role of 

S, the PCs C, F, and G become tonic, dominant and subdominant as NP and VP, and further breakdown 
happens from tonic to submediant and mediant, subdominant to simply subdominant, and dominant to 
supertonic and subtonic, all as Ar, N, Ad, and V respectively. Ibid., 31-32. 

85 S stands for statement, “as is;” P stands for preparation, and E stands for extension, which can 
both be used to preface or lengthen S; A stands for antecedent, causing “a significant implication and 
require resolution;” C stands for consequent, the resolution of an antecedent. Ibid., 34-37. The following 
rules of succession apply to SPEAC: S => P, E, A; P => S, A, C; E => S, P, A, C; A => E, C; C => S, P, E, 
A. Ibid., 37. 

86 Ibid., 37-38. 

87 Ibid., 38-41. 

88 Ibid., 41-48. 

89 Ibid., 48-50. 

90 Ibid., 51-67. Cope provides a small ATN generator program that illustrates how an ATN works, 
by combining sentence elements from two database tables (one for syntax, and another for meaning) into 
new sentences. Ibid., 83-88. The example actually did not function as printed in the book, since the 
choose-one function was omitted and the anonymous lambda function was prepended with a quote. 
However, a corrected and updated version of the program (programmed from the bottom-up in order for 
the program to instantly run once “execute all” has been specified from Clozure CL) is included in 
Appendix B.4. p. 341, and one of its outcomes proclaim: (THAT CONCERTO BY HAYDN WAS HARD TO 
PLAY AND ALSO PROFOUND AND LYRICAL). 
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Intelligence in EMI in 1992.91 Cope describes his algorithm that simulates musical 

thinking and is constructed with a “reflexive pattern-matcher combined with an 

augmented transition network ATN.”92 Cope expands his pattern-matcher by combining 

it “with measuring tools such as…statistical analysis to adjust variable settings,” 

because “statistical analysis can refine style analysis for permanent recognition and 

replication of that style.”93 

In 1992, Cope also makes two contributions to edited books, (1) “A Computer 

Model of Music Composition,”94 and (2) “On the Algorithmic Representation of Musical 

Style.”95 In the latter book section Cope discusses his parsing technique in EMI from a 

linguistic perspective through the use of ATNs, and the necessity to refine these 

ATNs.96 In the former book section Cope outlines “the possibilities of computer 

composition,” lists “examples of computer composition,” and discusses “the usefulness 

of computers composing music.”97 As the machine model Cope outlines his specific 

process: (1) “use real music in a given style,” (2) “make examples compatible,” (3) 

                                            
91 David Cope, "Computer Modeling of Musical Intelligence in Emi," Computer Music Journal 16, 

no. 2 (1992): 69-83. 

92 Ibid., 69. 

93 Ibid., 83. 

94 David Cope, "A Computer Model of Music Composition," in Machine Models of Music, ed. 
Stephan M. Schwanauer and David A. Levitt, (Cambridge, MA: MIT Press, 1992). 

95 David Cope, "On Algorithmic Representation of Musical Style," in Understanding Music with Ai: 
Perspectives on Music Cognition, ed. Mira Balaban, Kemal Ebcioğlu, and Otto E. Laske, (Cambridge, MA: 
AAAI Press/MIT Press, 1992). 

96 Ibid., 354-363. 

97 Cope, "A Computer Model of Music Composition," 403. 
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“pattern match for signatures,” (4) analyze the rules of the music, (5) “fix signatures in 

an empty form,” (6) “recompose using rules analysis,” and (7) “ensure proper 

performance.”98 He lists examples of music discussed in Computers and Musical Style. 

Further, Cope explains how computer composed music can benefit, (1) composers – by 

exploring their own musical style, or signature, (2) music theorists – by exploring 

different styles and signatures in addition to pitch, function, rhythm, dynamics, texture, 

orchestration, and form, and (3) performers – by performing computer composed music 

and testing style emulation.99 

 

4.2.4. SARA 

Part two of Cope’s trilogy arrives in 1996 in form of the book titled Experiments in 

Musical Intelligence.100 SARA (Simple Analytic Recombinancy Algorithm) is the central 

topic of this book.101 Cope expands on several previously discussed facets of his 

system and provides background information that includes his approaches to analysis, 

his approaches to pattern matching, and more information on ATNs. For example, 

pattern-matching does not only include the matching of interval strings to one another 

anymore, but includes a whole family of functions within SARA that now also weighs the 

                                            
98 Ibid., 404-407. 

99 Ibid., 421-424. 

100 Cope, Experiments in Musical Intelligence. The 1996 version of the book had been out of print, 
but has recently been re-released with updated code. David Cope, Experiments in Musical Intelligence, 
2nd ed., Computer Music and Digital Audio Series, vol. 12 (Madison, WI: A-R Editions, 2014). 

101 Cope calls SARA “a more or less bulletproof version of Emmy.” Cope, Tinman Too: A Life 
Explored, 300, 477. 
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occurrence of intervals statistically, or creates Schenker plots (or perhaps symbolic 

representations of Schenker plots would be more accurate), or ranks matches. ATNs 

are differentiated between FSTNs (finite-state transition networks),102 and RTNs 

(recursive transition networks). Generally, Cope describes the different components of 

EMI: (1) analysis component – databases, techniques, program;103 (2) pattern-matching 

– signature theory, techniques, program;104 (3) object system – object orientation, 

classes, slots, methods, program; (4) ATN – Lisp, music, program. Additionally, Cope 

describes how he combines all of these components into an application-level program, 

complete with interface, variations, and sample output. 

In 1997, Cope presents a paper at International Computer Music Conference in 

San Francisco, CA called the “Composer’s Underscoring environment,” which is later 

published in CMJ.105 The CUE software is an end-user product for composers that Cope 

designed by which the user did not need to program any Common Lisp.106 The 

                                            
102 The FSTN is an “abstract representation” of a “type of automaton or transition network, 

consisting merely of a set of states (nodes) connected by directional arcs with actions or conditions 
attached.” A Dictionary of Grammatical Terms in Linguistics,  s.v. "Finite-State Automaton." 

103 Cope describes how he stores music data into his database. Each musical event is stored in 
the following format: (0 72 1000 1 100). Cope explains each one of the five items stored as event: (1) on-
time, or when the event starts (the event above starts at the onset of a series of events – starting events 
are indicated in milliseconds); (2) MIDI pitch; (3) duration in milliseconds, whereby 1000 milliseconds 
represent a quarter note and all other note values are derived thereof, e.g.: half note = 2000ms, eight note 
= 500ms; (4) a MIDI channel number (1-16); (5) dynamic level – or how loud a note is ranging from 0-127, 
0 being silence, and 127 being as loud as possible. Cope, Experiments in Musical Intelligence, 57-59. 

104 Recursive transition networks are applied to nonfinite language processing where directional 
“arcs may move between self-contained subnetworks.” Ibid., 43. 

105 David Cope, "The Composer's Underscoring Environment: Cue," Computer Music Journal 21, 
no. 3 (1997): 20-37. 

106 Ibid., 37. Cope indicated that he would supply the CUE software as part of his book The 
Algorithmic Composer. Cope mentions again in the 1999 article “One approach to musical intelligence” 
that the CUE software would be included on the CD-ROM with the book The Algorithmic Composer, but 
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presumably GUI based software features “notational, sequencer, and analytical 

tools.”107 The code to develop the software is in part based on EMI.108 However, 

“although CUE utilizes” the “same basic compositional algorithm, it does not possess 

some of EMI’s more intricate ATN algorithms, or” the “sophisticated…SPEAC system of 

analysis.”109 Cope sets forth some pitch statistical analytical tools like pitch distribution 

or scale tests, pitch entrance rates, texture plots, pitch/duration scatter plots, and MIDI 

channel distributions.110 

 

4.2.5. Earmarks and Proto-Alice (CUE) 

CUE also uses the pattern-matching technique from earlier systems. 111 The 

system still uses Cope’s concept of signatures for pattern-matching procedures, but 

Cope also adds a new concept that he calls earmarks. Cope’s earmarks are more 

generalized concepts, as in (1) anticipatory indications of certain structural events, or (2) 

coherence and unity of one movement to another, or (3) they “have significant impact on 

the analysis of structure beyond thematic repetition and variation.”112 Additionally Cope 

clarifies, “earmarks are discovered by pattern matching a single work…and eliminating 
                                                                                                                                             
the book’s CD-ROM does not include the CUE software. David Cope, "One Approach to Musical 
Intelligence," Intelligent Systems and their Applications, IEEE 14, no. 3 (1999): 25. 

107 Cope, "The Composer's Underscoring Environment: Cue," 20. 

108 Ibid., 21. 

109 Ibid., 23. 

110 Ibid., 27. 

111 Ibid., 26. 

112 Ibid. 
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all of the more numerous patterns relevant to thematic development.”113 The “earmarks 

occur once in a movement or work, and appear as lone survivors after all other matched 

patterns have been discarded.”114  

Cope further expands on his idea of signatures and earmarks in his 1998 article 

titled “Signatures and Earmarks: Computer Recognition of Musical Patterns.”115 Here, 

Cope defines a musical signature as “a term for motives common to two or more works 

of a given composer.”116 Thus, “signatures can tell us what period of music history a 

work comes from,” and who the “probable composer” of a given work might be.117 Cope 

enumerates that earmarks, (1) “mark specific structural locations,” (2) indicate “what 

movement of a work we are hearing,” (3) “foreshadow particularly important structural 

events,” and (4) “contribute to our expectations of when a movement or work could 

climax or end.”118  

By this point (1999), David Cope had received considerable amounts of criticism 

of his music and decided to confront the issues philosophically in his article “Facing the 

Music: Perspectives on Machine-Composed Music.”119 Cope experienced how listeners 

                                            
113 Ibid., 28. 

114 Ibid. 

115 David Cope, "Signatures and Earmarks: Computer Recognition of Patterns in Music," in 
Melodic Similarity: Concepts, Procedures, and Applications, ed. Walter B. Hewlett and Eleanor Selfridge-
Field, (Cambridge, MA: MIT Press, 1998), 129-138. 

116 Ibid., 130. 

117 Ibid. 

118 Ibid., 134. 

119 David Cope, "Facing the Music: Perspectives on Machine-Composed Music," Leonardo Music 
Journal 9, (1999): 79-87. 
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started to actually redefine terminology so that they could “face the music.”120 He lists an 

example of trying to market music produced by Emmy.121  Contemporary music circles 

were not willing to market Emmy’s music, because it sounds too “classical.” Classical 

music distributers were not willing to take on the music, even though it may have 

sounded “classical,” because its creation date didn’t fall within the era of classical 

music. All while computer music specialists denied that the music was computer music 

at all, because it did not sound like computer music. Cope goes on to discuss that some 

had argued that the music has only been successful due to performance by humans, 

and that human perception is trapped within anthropocentrism. Further criticism 

revolves around that the music does not particularly signify anything, and that it lacks 

some sort of “romantic notion” of soul.122 Cope concludes that ultimately he remains to 

be the composer, or artist, since he is the one that defines how to code Emmy, and that 

listeners “should no longer have to need to intellectually camouflage their ears but revel 

in facing the music.”123  

 

4.2.6. Association Nets, ALICE, and the End of Emmy 

The final installment of the trilogy of Emmy appears in 2000 as The Algorithmic 

Composer.124 As with the other books Cope provides the reader with ample background 

                                            
120 Ibid., 79. 

121 Ibid., 79-80. 

122 Ibid., 81. 

123 Ibid., 83. 

124 Cope, The Algorithmic Composer. 
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information on algorithmic composition as a field. Further, Cope explains the importance 

of Markov chains, randomness and recognition, association nets, and something he 

calls “BackTalk” in his fundamentals chapter.125 The next chapter discusses different 

types of inference, tonal and PCS, but also how to derive rules along with a code 

example and musical examples. In the chapter Cope discusses creativity, and his 

approach to creativity, while he discusses structure and coherence in the ensuing 

chapter, particularly with respect to signatures and pattern-matching, hierarchical 

pattern recognition, unifications, structural analysis, earmarks, and a review of SPEAC. 

Rather than introducing the expected CUE software, Cope then introduces the ALICE 

software, and its operation. 

The ALICE program is based on the aforementioned principles in one unified 

software environment. Cope explains that ALICE is “a program that composes music in 

a user’s style whenever needed while composing,”126 meaning that a composer can 

input his/her music and continue that music in his/her style.127 Input to the program can 

be accomplished by loading MIDI files, or by simply entering music representations 

directly.128 The input can be saved into the database mechanism of the program. The 

analytical tools include “statistical graphs; pattern matching variables and results; 

mappings of SPEAC, texture, and rules; and lattice-type tree structure representations 

                                            
125 BackTalk can be seen as a predecessor of ALICE (since it is incorporated into the ALICE 

environment), and consequently Apprentice in CMMC.  

126 Cope, Tinman Too: A Life Explored, 477. 

127 Ibid., 300. 

128 Cope, The Algorithmic Composer, 208. 
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of user-chosen works.”129 The compositional process may involve all previously 

mentioned techniques combined, with the addition of being able to generate notation, 

and Cope provides pointers at evaluating the output generated by ALICE. In his quest to 

find ever more “intelligent” systems, Cope starts to move away from systems in which 

he defines rules that serve as proxies of compositional practice of historical style period 

rules, and begins to develop systems that can derive the rules themselves from music 

input.  

Cope’s trilogy really does not end until 2001, when his coda, a book titled Virtual 

Music: Computer Synthesis of Musical Style, is published.130 Cope divides the book into 

three distinct sections: (1) fundamentals – a history, a philosophical discussion with 

Douglas Hofstadter, composing style specific music, part-writing rules, recombinancy, 

variations, texture, pattern-matching (signatures and earmarks), structure and form; (2) 

process and output – databases and database format, database selection, analytical 

data, importance of pattern-matching; and (3) commentary by music scholar on topics 

as far ranging as “Composition, Combinatorics, and Simulation: A Historical and 

Philosophical Inquiry” by Eleanor Selfridge-Field, “Experiments in Musical Intelligence 

and Bach” by Bernard Greenberg, “Dear Emmy: A Counterpoint Teacher’s Thoughts on 

the Experiments in Musical Intelligence Program’s Two-Part Inventions” by Steve 

Larson, “Who Cares if It Listens? An Essay on Creativity, Expectations, and 

Computational Modeling of Listening to Music” by Jonathan Berger, “Collision Detection, 

                                            
129 Ibid., 214. 

130 Cope, Virtual Music: Computer Synthesis of Musical Style. 
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Muselot, and Scribble: Some Reflections on Creativity” by Daniel Dennett, “A Few 

Standard Questions and Answers” by Douglas Hofstadter, all followed with a response 

by David Cope. 

Emmy’s career produced a large corpus of music, which has been recorded, and 

has been published as sheet music (Table 4-3). But as the ephemerality of computer 

generated art moved mercilessly forward in time, and obsolescence eventually won, “on 

a late evening in mid-September of 2013, the last usable version of Experiments in 

Musical Intelligence died on the machine that died with it.”131 Perhaps, Cope’s wishes 

become reality; all that remains are Emmy’s compositions, and what “caused” the 

compositions becomes irrelevant. 

 

Table 4-3: Published music of Emmy.132 

Title Details Year, Book 
After Albinoni, Adagio Strings, 3’ 1981-2003 
After Bach, J. S., Brandenburg 
Concerto Orchestra, 21’ 1981-2003 

After Bach, J. S., Cantata Strings, choir, solos, 25’ 1981-2003 
After Bach, J. S., Chorales 
(371) SATB, 960’ 1981-2003 

After Bach, J. S., Cello Suite Cello solo, 20’ 1981-2003 
After Bach, J. S., Lute Suite133 Lute, 8’ 1981-2003 
After Bach, J. S., Inventions 
(15) Piano solo, 30’ 1988, CMS 

                                            
131 Cope, Tinman Tre: A Life Explored, 508. 

132 Compiled from CMMC and Cope’s web site. Cope, Computer Models of Musical Creativity, 
385-389. Cope, "Music of Experiments in Musical Intelligence". 

133 Also referred to as “Guitar Suite.” Cope, "Music of Experiments in Musical Intelligence". 
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Title Details Year, Book 
After Bach, J. S., Keyboard 
Concerto Keyboard and orchestra, 21’ 1981-2003 
After Bach, J. S., Well-
Programmed Clavier Keyboard, 240’ 1981-2003, CMS 
After Bach, C. P. E., Flute 
Sonata Piano and flute, 16’ 1981-2003, CMS 

After Bartók, Kosmos Piano, 1’ 1981-2003, CMS 
After Bartók, Bulgarian Dance Piano, 1’ 30’’ 1981-2003 
After Beethoven, Bagatelle Piano, 4’ 1981-2003 
After Beethoven, Sonata Piano, 10’ 1981-2003, EMI 
After Beethoven, Symphony 10 Orchestra, 60’ 1981-2003 
After Brahms, Intermezzo Piano, 3’ 1981-2003, CMS 
After Brahms, Rhapsody Piano, 2’ 40’’ 1981-2003 
After Chopin, Mazurkas (56) Piano, 240’ 1987, CMS, AC 
After Chopin, Nocturne Piano, 3’ 1981-2003 
After Chopin, Variations Piano, 10’ 1981-2003 
After Cope, Horizons Orchestra, 10’ 1981-2003 
After Cope, Vacuum Genesis Piano, 4’ 1981-2003 
After Cope, Preludes and 
Fugues (48)134 Piano, 180’ 1981-2003 

After Debussy, Le Prelude Piano, 4’ 1981-2003 
After Experiments in Musical 
Intelligence, Inventions (48) Piano, 120’ 1981-2003 
After Experiments in Musical 
Intelligence, L'Histoire du 
Musique  

Orchestra and soloists, 24’ 1981-2003 

After Experiments in Musical 
Intelligence, World Anthem Voice and piano, 3’ 1981-2003 
After Experiments in Musical 
Intelligence, The Ugly Duckling Orchestra, 22’ 1981-2003 
After Experiments in Musical 
Intelligence, 48 Inventions135 Piano, 120’ 1981-2003 

                                            
134 CMMC only lists 24. Cope, Computer Models of Musical Creativity, 385. 
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Title Details Year, Book 
After Gershwin, Prelude Piano, 2’ 40’’ 1981-2003, CMS 
After Joplin, Rags (2) Piano, 7’ 10’’ 1988, CMS, EMI 
After Mahler, Adagio Strings, 8’ 1981-2003 
After Mahler, Four Songs Soprano and ensemble, 28’ 1981-2003 
After Mahler, Lieder von Leben 
und Tod Orchestra and soloist, 25’ 1981-2003 

After Mahler, Mahler (opera)136  Orchestra, choir, soloists, 
240’ 1981-2003 

After Mahler, Mahler (opera) 
short version 

Orchestra, choir, soloists, 
120’ 1981-2003 

After Mahler, Symphony of 
Songs Orchestra, 30’ 1981-2003 

After Mahler, Suite for Winds Wind ensemble, 40’ 30” 1981-2003 
After Mahler, The Mahler 
Canticles 

Choir and wind ensemble, 
14’ 1981-2003 

After Mahler, Three Songs Tenor and piano, 12’ 1981-2003 
After Mahler, Three Duets Piano, alto, tenor, choir, 20’ 1981-2003 
After Mendelssohn, Song 
Without Words Piano, 3’ 1981-2003 

After Messiaen, Debut du 
Temps  Chamber orchestra, 4’ 1981-2003 

After Messiaen, l'eternite Organ, 4’ 1981-2003 
After Messiaen, l'eternite String orchestra, 4’ 1981-2003 
After Mozart, Concerto Piano and orchestra, 29’ 1981-2003 
After Mozart, Mozart in Bali Piano and orchestra. 10’ 1981-2003, CMS 
After Mozart, Mozart (opera)137  Orchestra, soloists, 180’ 1981-2003 
After Mozart, Mozart (opera, 
short version) Orchestra, soloists, 120’ 1981-2003 

                                                                                                                                             
135 Listed in CMMC, not listed on web site - indicating a non-published status. Ibid. Cope, "Music 

of Experiments in Musical Intelligence". 

136 CMMC indicates the title of the opera being “Mahler.” Cope, Computer Models of Musical 
Creativity, 385. 

137 CMMC lists ”Mozart” as title. Ibid., 386. 
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Title Details Year, Book 
After Mozart, Sonatas (3)  Piano, 31’ 1988, CMS 
After Mozart, Quartet  String quartet, 19’ 1981-2003 

After Mozart, Rondo Capriccio Violoncello and orchestra, 
15’ 1981-2003 

After Mozart, Symphony Orchestra, 27’ 1981-2003 
After Palestrina, Mass Chorus, 16’ 1981-2003, CMS 

After Prokofiev, Sonata 10 Piano, 12’ 1981-2003, CMS, EMI 
After Rachmaninoff, Concerto Piano and orchestra, 48’ 1981-2003 
After Rachmaninoff, Suite Piano, 8’ 1981-2003, EMI 
After Scarlatti, Sonata Piano, 2’ 30’’ 1981-2003 
After Schoenberg, Ein Kleines 
Stück138 Piano, 2 1981-2003 
After Schumann, Schumann 
(opera) Orchestra and soloists, 180’ 1981-2003 
After Schumann, Schumann 
(opera short version) Orchestra and soloists, 120’ 1981-2003 

After Scriabin, Poeme Piano, 3’ 1981-2003 
After Vivaldi, Signs of the 
Zodiac  Strings and soloists, 56’ 1981-2003 

After Vivaldi, Violin Concerto Strings and violin, 12’ 1981-2003 
After Vivaldi, Cello Concerto Strings and cello, 13’ 1981-2003 
After Vivaldi, Violin/Cello 
Concerto Strings, violin and cello, 12’ 1981-2003 

After Vivaldi, 2 Violin Concerto Strings and 2 violins, 11’ 1981-2003 
After Webern, Drome Piano, 1’ 1981-2003 
After Bach, Puccini, Mozart, R. 
Strauss, Schubert, Five 
Songs139 

Voice and piano, 14’ 1981-2003 

After Bach/Barber, Prokofiev, 
Stravinsky, Dedications Orchestra, 22’ 1981-2003 

                                            
138 Both CMMC and Cope’s site list the title of the piece as “Eine kleine Stücke,” which is 

grammatically incorrect in German. Ibid. Cope, "Music of Experiments in Musical Intelligence". 

139 CMMC provides the title “Five Songs.” Cope, Computer Models of Musical Creativity, 386. 



   140 

Title Details Year, Book 
After Grieg, Liszt, Strauss, 
Mussorgsky, Ravel, 
Rearrangements140  

Two pianos, 16’ 1981-2003 

After Broadway, Five Songs141 Voice and Piano, 7’ 1981-2003 
After Bach/Barber, Prokofiev, 
Stravinsky, Suite for 2 
pianos142 

Two pianos, 20’ 1981-2003 

After Bach, Barber, 
Adagietto143 Orchestra 1981-2003 

 

 

4.3. Emily Howell 

4.3.1. Intersystem Period - Between Emmy and Emily 

In 2002, Cope was still working with Emmy, but its ALICE incarnation. In 

“Computer Analysis and Composition using Atonal Voice-Leading Techniques” Cope 

discusses ALICE’s strategies for analyzing voice-leading procedures, and explains that 

voice-leading analyses are as important for “atonal” procedures, as it is for “tonal” 

procedures.144 Cope shows “a method for analyzing, reducing, and representing voice-

                                            
140 CMMC lists “Rearrangements” as the title. Ibid. 

141 Listed in CMMC, but not Cope’s site. Ibid. Cope, "Music of Experiments in Musical 
Intelligence". 

142 Listed in CMMC, but not Cope’s site. Cope, Computer Models of Musical Creativity, 386. 
Cope, "Music of Experiments in Musical Intelligence".  

143 Not listed in CMMC, not listed on Cope’s site, but published by Spectrum Press. Cope, "Music 
of Experiments in Musical Intelligence". David Cope, Adagietto after Bach Barber: For String Orchestra 
(Los Angeles CA: Spectrum Press, 1995). 

144 David Cope, "Computer Analysis and Composition Using Atonal Voice-Leading Techniques," 
Perspectives of New Music 40, no. 1 (2002): 121. 
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leading.”145 He proceeds to discuss groupings in forms of three segmentations 

applicable to voice-leading procedures, (1) “segmentation by metrical spans,” (2) 

“segmentation by voice,” and “segmentation by rests.”146 Further, Cope also describes 

how to add simple vertical beat segmentations, and how to connect one PCC to another 

with voice-leading matrices.147  

With the acquisition of the rules derived from the voice-leading analyses, Cope 

demonstrates how to compose with the acquired rules.148 Subsequently, Cope shows 

how to manipulate learned voice-leading procedures through permutations, e.g.: (0 1 0 -

2) => (-2 0 0 1); (0 1 -4 -2 3 1 -2 4) and (3 1 4 -4 -2 0 1 -2) can be reduced through re-

rodering.149 Another form of reduction suggested, is the removal of redundancies from 

(1 0 2 1 4 0 2) and (4 0 1 2) => (0 1 2 4).150 Cope suggests several additional 

processes, and concludes that voice-leading analysis in atonal music reveals hidden 

order, and that voice-leading analysis “should be an adjunct, and not the exception, to 

the analysis of melody, harmony, and all other dimensions of music.”151 

                                            
145 Ibid., 122. 

146 Ibid., 123. 

147 Ibid., 125. 

148 Ibid., 126-129. 

149 The numbers in the parentheses indicated the movement steps/leap in between notes. Ibid., 
130. 

150 Ibid. The procedure suggested by Cope is easily recreated in Common Lisp due to its built-in 
functions of remove-duplicates and sort. Thus a call of (sort (remove-duplicates '(1 0 2 
1 4 0 2)) #'<) at the REPL results in (0 1 2 4). Perhaps its Common Lisp as language that 
influenced Cope’s thought process here. 

151 Ibid., 144. 
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While the aforementioned article still leaned more or less on Emmy, Cope’s 

following article in 2003 titled “Computer Analysis of Musical Allusions” leans further into 

Emily, especially since musical allusions, and the Sorcerer program become topics in 

CMMC.152 Cope categorizes musical allusions into five groups: (1) quotations - “exact 

note and/or rhythm duplication;” (2) paraphrases - “different pitches but similar intervals 

paired with rhythmic freedom;” (3) likenesses - “different pitches, intervals, and rhythms” 

that “have some underlying similarities such as overall likeness of directions or interval 

size,” etc.; (4) frameworks - “incorporation of interpolated notes so that potential 

similarity surfaces only after these notes are removed during analysis;” and (5) 

commonalities - “patterns which, by virtue of their simplicity–scales, triad outlines, and 

so on–appear everywhere.”153 

Cope finds that the semantic and referential analysis of musical allusions leads to 

a greater understanding of music.154 Sorcerer is Cope’s answer to Huron’s Humdrum 

toolkit, except that according to Cope with Sorcerer sub-pattern searches do not have to 

be reinitiated.155 Therefore, Sorcerer is a tool to enable corpus analysis with the 

gradation described within Cope’s five definitions of musical allusion. These gradations 

are represented in Sorcerer as different types of pattern-matching algorithms. The 

corpora, or database selection of music “for a particular target work is critical to 

                                            
152 David Cope, "Computer Analysis of Musical Allusions," Computer Music Journal 27, no. 1 

(2003): 11-28. 

153 Ibid., 11-17. 

154 Ibid., 28. 

155 Ibid., 17. Sorcerer also becomes part of the software provided with CMMC described in the 
chapter “Allusions.” Cope, Computer Models of Musical Creativity, 126-176. 
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producing useful results.”156 The depth of a chosen corpus is only limited by the 

processing power of a computing system, but Cope illuminates, “a few judiciously 

chosen phrases can be as effective in producing useful results as a series of poorly 

chosen complete works,” and that the corpus used in the article only consisted “of thirty 

or less well-chosen phrase.”157  

In 2004 Cope publishes “A Musical Learning Algorithm” in CMJ.158 The article 

discusses how a machine learning algorithm named Gradus (in honor of Fux’s 1725 

species counterpoint treatise) can learn how to write species counterpoint “using a given 

fixed voice called a cantus firmus.”159 Gradus “learns” by retracing its steps from 

encountered impasses, then “catalogs the conditions that led to these” impasses “as 

rules,” and consequently “avoids these conditions on subsequent runs with the same 

cantus firmus, until backtracking is no longer necessary.”160 The nature of the 

contrapuntal machine learning process is algorithmic. The article re-appears as part of 

the “Learning, Inference, and Analogy” chapter in CMMC, but Cope alludes to how an 

extended version of the program, and the backtracking process contributed to the 

creation of the WPC.161 

 
                                            

156 Cope, "Computer Analysis of Musical Allusions," 19. 

157 Ibid. 

158 David Cope, "A Musical Learning Algorithm," Computer Music Journal 28, no. 3 (2004): 12-27. 

159 Ibid., 12. 

160 Ibid. 

161 Cope, Computer Models of Musical Creativity, 177-219. Cope, "A Musical Learning Algorithm," 
24-25. 
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4.3.2. The Sorcerer’s Apprentice 

After having worked on EMI for 20 years, David Cope decided to shelve the 

program in 2003,162 and began developing new composition software named Emily 

Howell.163 The beginnings of Emily can already be seen in Cope’s program BackTalk, 

and ALICE, described in The Algorithmic Composer.164 The new program “uses Emmy’s 

output to create music in new styles.”165 Emily integrates “a basic process of analysis” 

as well.166 However, “Emily produces music in new styles rather than remaining faithful 

to a particular style.”167 The program is build around an association network. CMMC 

discusses how Emily Howell works, and provides a software example called Apprentice, 

on which it is based.168 

Cope publishes CMMC in 2005, and the title of the book represents a nod to 

Margaret Boden’s eponymous articles “Computer Models of Creativity.”169 As with 

                                            
162 David Cope, "The Well-Programmed Clavier: Style in Computer Music Composition," XRDS 

19, no. 4 (2013): 17. 

163 Cope, Tinman Too: A Life Explored, 475. Emily Howell is at the heart of the “integrated model 
of musical creativity” in CMMC. Cope, "Computer Analysis of Musical Allusions," 269-375. 

164 Cope, The Algorithmic Composer, 58-65, 94. 

165 Cope, Tinman Too: A Life Explored, 475. Cope specifies, Emily uses a “well-selected” corpus, 
or database, of Emmy’s output. Cope, "The Well-Programmed Clavier: Style in Computer Music 
Composition," 20. 

166 Cope, "The Well-Programmed Clavier: Style in Computer Music Composition," 20. 

167 Ibid. 

168 (Personal email correspondence with David Cope, May 14, 2013). 

169 Cope, Computer Models of Musical Creativity. Margaret A. Boden, "Computer Models of 
Creativity," in Handbook of Creativity, ed. Robert J. Sternberg, (New York: Cambridge University Press, 
1999), 351-372. Margaret A. Boden, "State of the Art: Computer Models of Creativity," The Psychologist 
13, no. 2 (2000): 72-76. 
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previous books by Cope, the author provides the reader with background information 

and principles that include his definitions, a background, and current models of musical 

creativity.170 The second sections of the books discusses experimental models of 

musical creativity, and include: (1) recombinance – previously discussed in the Emmy 

trilogy; (2) allusion – previously partially discussed in the article "Computer Analysis of 

Musical Allusions;”171 (3) learning, inference, and analogy – previously discussed in part 

in the article “A Musical Learning Algorithm”;172 (4) form and structure – revisiting 

SPEAC analysis from Emmy trilogy; and (5) influence – use of databases to hybridize 

styles.173 In the third section of CMMC, Cope presents an “integrated model of musical 

creativity,” in which he describes, (1) association, (2) musical association, (3) 

integration, and (4) aesthetics.174 

In the association chapter of CMMC, Cope discusses how he defines 

“association networks.”175 The networks “are initially empty databases in which the 

user’s input is placed, and in which all discrete entries of that input are connected to all 

other discrete entries.”176 Further, the “network consists of inputs, outputs, and 

                                            
170 Cope, Computer Models of Musical Creativity, 1-84. 

171 Cope, "Computer Analysis of Musical Allusions," 11-28. 

172 Cope, "A Musical Learning Algorithm," 12-27. 

173 Cope, Computer Models of Musical Creativity, 85-267. 

174 “Association networks” can be considered “a model of unsupervised learning.” Ibid., 269-375. 

175 Roger B. Dannenberg, "Book Review," Artificial Intelligence 170, no. 10 (2006): 1219-1220. 

176 Cope, Computer Models of Musical Creativity, 274. 
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universally connected nodes that store…information and analysis.”177 Unlike artificial 

neural networks (ANNs), “association networks do not have hidden units” that make 

“decisions” on mathematical outcomes.178 Neural networks also do not “compare output 

with input values.”179 Additionally, “neural networks typically chain backwards,” also 

known as “back propagation.”180 The advantage, or perhaps disadvantage, of an 

association network over an ANN is that “one can always…figure out why the network 

solved a particular problem in the manner in which it did.”181  

The association network is build around information stored in nodes. The nodes 

are connected to each other by edges. The degree of “connectedness” is determined by 

weights of the edges to their associated nodes. While new information is provided to the 

association network, the weights of the connecting edges are in constant flux. The 

weighting of the edges can furthermore be manipulated by giving the network positive 

and negative reinforcements to network produced outcomes. The more information is 

provided the stronger the association network becomes. The information provided to the 

association network can be in any language, or it can be musical, or even mathematical. 

According to Cope, “over time, what began as output gibberish slowly becomes logical,” 

and eventually Emily’s output will more often be surprising, rather then be predictable.182  

                                            
177 Cope, "The Well-Programmed Clavier: Style in Computer Music Composition," 20. 

178 Ibid. 

179 Cope, Computer Models of Musical Creativity, 274. 

180 Ibid. 

181 Cope, "The Well-Programmed Clavier: Style in Computer Music Composition," 20. 

182 Ibid. 
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Cope’s association network is similar to the “semantic network,” which “originated 

in psychology,” in many respects.183 According to Russell and Norvig, “semantic 

networks provide graphical aids for visualizing a knowledge base and efficient 

algorithms for inferring properties of an object on the basis of its category 

membership.”184 In Common Lisp a semantic net can be constructed through the use of 

an association list. Example 4-2 shows a corrected version of the wikipedia example.185  

1. (defparameter *database* 
2.              '((canary  (is-a bird) 
3.                         (color yellow) 
4.                         (size small)) 
5.                (penguin (is-a bird) 
6.                         (movement swim)) 
7.                (bird    (is-a vertebrate) 
8.                         (has-part wings) 
9.                         (reproduction egg-laying))) 
10.   "Contains a database of creatures") 
11.  
12. ; (assoc 'canary *database*) 
13. ; => (CANARY (IS-A BIRD) (COLOR YELLOW) (SIZE SMALL)) 
14.  

Example 4-2: A simple semantic network in Common Lisp. 

Boden further explains, “a semantic net consists of nodes and links,” whereby 

“the nodes stand for specific ideas, while the” edges “represent various types of mental 

connection.”186 This becomes of importance to Cope, because “the structure of the 

                                            
183 Margaret A. Boden, The Creative Mind: Myths and Mechanisms, 2nd ed. (New York: 

Routledge, 2005), 107. 

184 Russell and Norvig, 453-454. 

185 "Semantic Network", Wikipedia http://en.wikipedia.org/wiki/Semantic_network (accessed 
September 30, 2014). The defparameter function defines a parameter called *database* in line 1 (in 
the wikipedia article an earmuff-ed function was declared). The *database* contains an association list 
(lines 2-10). Line 12 shows how the *database* can be accessed with the assoc function, and canary 
being the key, while line 13 shows the result of that query (also not appropriately described in the 
wikipedia article). 

186 Boden, The Creative Mind: Myths and Mechanisms, 108. 
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semantic net may enable ‘spontaneous’ inferences to be made by means of pre-existing 

links.”187 However, in Cope’s understanding, “semantic networks do not typically weigh 

relationships as association networks do.”188 Furthermore, Cope’s association networks 

have their origin in NLP, “a subset of computational linguistics.”189 

In Apprentice a word becomes a node.190 All words entered create different 

nodes, and all the nodes are interconnected by edges. Every node is connected with 

every node, and the edge to that node is weighed according to training, or occurrence.  

All questions and answers exchanged between Apprentice and the user are 

shown in Example 4-3. The nodes and their corresponding weighed edges generated by 

Apprentice look like Example 4-4. A similar conversation can be held in German, which 

Cope also shows in CMMC, but the outcome is not as smooth as Cope’s example 

seems to portray, and a lot more practice, or training of the network would be 

required.191 Example 4-5 shows the conversation in German, and Example 4-6 shows 

the nodes with their corresponding weighed edges. 

                                            
187 Ibid. 

188 Cope, Computer Models of Musical Creativity, 274. According to Wiggins, Cope’s “association 
networks” are in fact “semantic networks,” especially in regards to “Latent Semantic Analysis,” in which 
weighted edges “are used to represent associations strengths.” Geraint A. Wiggins, "Computer Models of 
Musical Creativity: A Review of Computer Models of Musical Creativity by David Cope," Literary and 
Linguistic Computing 23, no. 1 (2008): 113. A “Latent Semantic Analysis” can be achieved through “latent 
semantic indexing.” Russell and Norvig, 883. 

189 Cope, Computer Models of Musical Creativity, 274-275. 

190 The Apprentice software can still be run on legacy equipment. In this case an Apple PowerPC, 
running OSX 10.4.11 (tiger), with Macintosh Common Lisp 5.1b1 (which can be acquire at 
https://code.google.com/p/mcl/) was used. However, a few tweaks had to be applied to the init.lisp script 
that involved the directory structure. Even with these few tweaks, only the NLP functions of Apprentice 
worked, and all the MIDI function caused MCL to crash. 

191 Cope, Computer Models of Musical Creativity, 277. 
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1. (setq *conversation*  
2.       '((hello!)         ; user 
3.         (what is your name?)    ; user 
4.         (is your what hello!)    ; apprentice 
5.         (my name is reiner!)    ; user 
6.         (name?)          ; apprentice 
7.         (your name is apprentice!) ; user 
8.         (name?)          ; apprentice 
9.         (what is your name?)    ; user 
10.       (apprentice!)       ; apprentice 
11.       (what is my name?)     ; user 
12.       (reiner!)))        ; apprentice 
13.  

Example 4-3: Sentences exchanged between Apprentice and user. 

1. (setq *weighted-edges* '((apprentice! 
2.   ((reiner! 0.1) (name 0.2) (my 0.5) (name? 3.14) (your 0.6) (is 1.0) 
3.    (what 0.9) (hello! 0.1))) 
4.  (reiner! 
5.   ((name 0.6) (my 0.6) (name? 3.14) (your 0.9) (is 1.4) (what 0.9) (hello! 

0.1) 
6.    (apprentice! 1.52))) 
7.  (name ((apprentice! 2.47) (is 2.7) (reiner! 2.19) (my 0.9) (name? 3.24) 
8.         (your 1.0) (what 1.0) (hello! 0.2))) 
9.  (my 
10.   ((name? 4.69) (apprentice! 1.62) (reiner! 2.57) (name 1.4) (your 1.0) 
11.    (is 1.8) (what 1.0) (hello! 0.2))) 
12.  (name? 
13.   ((apprentice! 1.72) (reiner! 1.72) (name 1.0) (my 1.0) (your 1.2) (is 

2.0) 
14.    (what 1.2) (hello! 0.3))) 
15.  (your 
16.   ((name? 6.9) (apprentice! 2.57) (reiner! 1.72) (name 1.5) (my 1.0) (is 

2.1) 
17.    (what 1.3) (hello! 0.3))) 
18.  (is 
19.   ((name? 7.43) (my 1.7) (apprentice! 3.17) (reiner! 3.27) (name 1.2) 
20.    (your 2.5) (what 1.6) (hello! 0.5))) 
21.  (what 
22.   ((name? 7.61) (is 3.7) (apprentice! 1.72) (reiner! 1.72) (name 1.0) (my 

1.0) 
23.    (your 1.4) (hello! 0.3))) 
24.  (hello! 
25.   ((what 1.2) (is 2.0) (your 1.2) (name? 4.56) (my 0.8) (name 0.8) 
26.    (reiner! 1.52) (apprentice! 1.52))))) 
27.  

Example 4-4: Nodes and weighed edges produced by Apprentice. 

1. (setq *conversation*  
2.       '((hallo!)       ; user 
3.         (was ist dein name?)  ; user 
4.         (ist dein was hallo!)  ; apprentice 
5.         (ich heisse reiner!)  ; user 
6.         (heisse ich was name?) ; apprentice 
7.         (du heisst lehrling!)  ; user 
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8.         (heisst du name?)   ; apprentice 
9.         (wie heisst du?)    ; user 
10.       (heisst lehrling!)   ; apprentice 
11.       (wie heisse ich?)   ; user 
12.       (heisst lehrling!)   ; apprentice 
13.       (ich heisse reiner!)  ; user 
14.       (heisst heisse ich?)  ; apprentice 
15.       (wie heisse ich?)   ; user 
16.       (heisse reiner!)))  ; apprentice 
17.  

Example 4-5: Sentences exchanged between Apprentice and user in German. 

The conversation with Apprentice in German is not as gratifying as the 

conversation in English (Example 4-5), and the output can only be described as 

“Pidgeon” German. Nonetheless, the output is contextually comprehensible. After 

asking Apprentice for its name in line 9, its response is correct, albeit grammatically 

weak, because the program should respond with “Ich heisse Lehrling,” or “my name is 

apprentice,” instead of the somewhat crude answer of “named apprentice.” Appropriate 

words conjugations therefore would require much more time consuming training 

sessions as in comparison to English. 

1.  (setq *weighted-edges* '((ich? 
2.   ((heisse 3.52) (du? 0.2) (wie 0.6) (lehrling! 0.2) (heisst 0.2) (du 0.2) 
3.    (reiner! 1.34) (ich 0.5) (name? 0.2) (dein 0.2) (ist 0.2) (was 0.2) 
4.    (hallo! 0.2))) 
5.  (du? 
6.   ((heisst 1.23) (wie 0.8) (lehrling! 0.1) (du 0.1) (reiner! 1.24) 
7.    (heisse 2.68) (ich 0.4) (name? 0.1) (dein 0.1) (ist 0.1) (was 0.1) 
8.    (hallo! 0.1) (ich? 0.6))) 
9.  (wie 
10.   ((heisse 5.38) (ich? 1.1) (du? 0.7) (lehrling! 0.3) (heisst 2.69) (du 

0.3) 
11.    (reiner! 1.44) (ich 0.6) (name? 0.3) (dein 0.3) (ist 0.3) (was 0.3) 
12.    (hallo! 0.3))) 
13.  (lehrling! 
14.   ((heisst 1.34) (du 0.2) (reiner! 1.24) (heisse 2.68) (ich 0.4) (name? 

0.1) 
15.    (dein 0.1) (ist 0.1) (was 0.1) (hallo! 0.1) (wie 0.9) (du? 0.3) (ich? 

0.6))) 
16.  (heisst 
17.   ((du? 1.0) (wie 1.0) (lehrling! 2.31) (du 0.4) (reiner! 1.34) (heisse 

2.78) 
18.    (ich 0.5) (name? 0.2) (dein 0.2) (ist 0.2) (was 0.2) (hallo! 0.2) 
19.    (ich? 0.6))) 
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20.  (du 
21.   ((lehrling! 2.09) (heisst 1.94) (reiner! 1.24) (heisse 2.68) (ich 0.4) 
22.    (name? 0.1) (dein 0.1) (ist 0.1) (was 0.1) (hallo! 0.1) (wie 0.9) (du? 

0.3) 
23.    (ich? 0.6))) 
24.  (reiner! 
25.   ((ich? 0.7) (du? 0.4) (wie 1.0) (lehrling! 1.24) (heisst 1.54) (du 0.4) 
26.    (heisse 2.88) (ich 0.6) (name? 0.2) (dein 0.2) (ist 0.2) (was 0.2) 
27.    (hallo! 0.2))) 
28.  (heisse 
29.   ((ich? 2.2) (du? 0.6) (wie 1.2) (lehrling! 1.44) (heisst 1.74) (du 0.6) 
30.    (reiner! 5.1) (ich 0.9) (name? 0.4) (dein 0.4) (ist 0.4) (was 0.4) 
31.    (hallo! 0.4))) 
32.  (ich 
33.   ((reiner! 4.28) (heisse 3.98) (ich? 0.7) (du? 0.4) (wie 1.0) (lehrling! 

1.24) 
34.    (heisst 1.54) (du 0.4) (name? 0.2) (dein 0.2) (ist 0.2) (was 0.2) 
35.    (hallo! 0.2))) 
36.  (name? 
37.   ((dein 0.2) (ist 0.2) (was 0.2) (hallo! 0.1) (ich 0.6) (heisse 2.88) 
38.    (reiner! 2.28) (du 0.3) (heisst 1.44) (lehrling! 1.14) (wie 0.9) (du? 

0.3) 
39.    (ich? 0.6))) 
40.  (dein 
41.   ((name? 2.21) (ist 0.3) (was 0.3) (hallo! 0.1) (ich 0.6) (heisse 2.88) 
42.    (reiner! 2.28) (du 0.3) (heisst 1.44) (lehrling! 1.14) (wie 0.9) (du? 

0.3) 
43.    (ich? 0.6))) 
44.  (ist 
45.   ((name? 2.09) (dein 0.8) (was 0.4) (hallo! 0.1) (ich 0.6) (heisse 2.88) 
46.    (reiner! 2.28) (du 0.3) (heisst 1.44) (lehrling! 1.14) (wie 0.9) (du? 

0.3) 
47.    (ich? 0.6))) 
48.  (was 
49.   ((name? 2.47) (ist 0.9) (hallo! 0.1) (dein 0.4) (ich 0.6) (heisse 2.88) 
50.    (reiner! 2.28) (du 0.3) (heisst 1.44) (lehrling! 1.14) (wie 0.9) (du? 

0.3) 
51.    (ich? 0.6))) 
52.  (hallo! 
53.   ((was 0.4) (ist 0.4) (dein 0.4) (name? 1.52) (ich 0.6) (heisse 2.88) 
54.    (reiner! 2.28) (du 0.3) (heisst 1.44) (lehrling! 1.14) (wie 0.9) (du? 

0.3) 
55.    (ich? 0.6))))) 
56.  

Example 4-6: Nodes with weighed edges in German. 

In the following chapter (“Musical Association”) Cope describes how to have a 

musical conversation with Apprentice and uses note names. Since the association 

network is independent of language one can easily use solfège syllables as well. 

Creating a monophonic musical conversation becomes quite simple: 
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1. (setq *conversation*  
2.       '((do re mi fa sol?) ; user 
3.         (sol fa mi re do!) ; user 
4.         (sol fa sol?)   ; apprentice 
5.         (do ti do do!)   ; user 
6.         (sol?)      ; apprentice 
7.         (ti re?)     ; user 
8.         (do!)))     ; apprentice 
9.  

Example 4-7: Monophonic musical conversation with Apprentice. 

The variable *conversation* captures the conversation for Apprentice. The 

user asks (do re mi fa sol?) in line 2, to which Apprentice has no reply, but the 

user replies with (sol fa mi re do!) in line 3. Apprentice asks (sol fa sol?) in 

line 4, and the user replies with (do ti do do!) in line 5. Apprentice posits a 

singular (sol?) question (line 6) that is answered by the user with a (ti re?) 

question (line 7). Almost out of nowhere, Apprentice surprises with the answer of  

(do!) in line 8, which makes sense from a tonal perspective. Example 4-8 shows the 

associated network with the nodes that are the solfège note representations, and the 

edges, now assuming the role of voice-leading procedure, along with their p value, or 

weight, while Figure 4-1 shows the voice-leading rules of the learned procedure.192 

1. (setq *weighted-edges*  
2.       '((re? 
3.          ((ti 0.2) (do! 0.1) (sol 0.1) (sol? 0.1) (fa 0.1) (mi 0.1) (re 

0.1)(do 0.1))) 
4.         (ti 
5.          ((re? 2.21) (do! 2.29) (sol 0.2) (sol? 0.2) (fa 0.2) (mi 0.2) (re 

0.2)(do 1.3))) 
6.         (do! 
7.          ((do 1.5) (ti 0.7) (sol 1.33) (sol? 0.2) (fa 0.3) (mi 0.3) (re 

0.3)(re? 0.76))) 
8.         (sol 
9.          ((do! 2.22) (fa 1.1) (sol? 0.1) (mi 0.6) (re 0.6) (do 0.9) (ti 

                                            
192 Wiggins is not entirely enthusiastic about these diagrams, since they are “utterly meaningless 

and can only be there to create an impression of technical content,” because the diagrams are not 
appropriately labeled, and are missing weight labels on the edges. Wiggins, "Computer Models of Musical 
Creativity: A Review of Computer Models of Musical Creativity by David Cope," 114. 
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0.6)(re? 0.76))) 
10.         (sol? 
11.          ((fa 0.7) (mi 0.7) (re 0.7) (do 1.0) (sol 1.9) (do! 2.02) (ti 

0.6)(re? 0.76))) 
12.         (fa 
13.          ((sol 2.75) (do! 2.22) (mi 1.4) (sol? 2.31) (re 0.9) (do 1.2) 

(ti 0.6)(re? 0.76))) 
14.         (mi 
15.          ((sol 2.75) (do! 2.22) (re 1.5) (sol? 2.19) (fa 1.4) (do 1.3) 

(ti 0.6)(re? 0.76))) 
16.         (re 
17.          ((sol 2.75) (do! 2.72) (sol? 2.57) (fa 1.0) (mi 1.5) (do 1.4) 

(ti 0.6)(re? 0.76))) 
18.         (do  
19.          ((do! 4.62)(ti 1.2)(sol 2.1)(sol? 3.05)(fa 1.2)(mi 1.2)(re 

1.7)(re? 0.76))))) 
20.  

Example 4-8: Notes with weighted voice-leading. 

 

Figure 4-1: Associative network showing learned voice-leading procedures. 

Harmonic representations can be placed into a conversation with apprentice 
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instead of PC representation. Therefore, a similar musical conversation can be held with 

Apprentice using common harmonic progressions utilizing PCCs. PCCs, instead of PCs, 

take the place of nodes. Reading Figure 4-2 from the top down shows in which order the 

conversation flowed, while the Example 4-9 shows what the weighted edges were in 

correlation to their nodes.  

1. (setq *weighted-edges*  
2.       '((acise ((dfa! 1.38) (gbd 0.3) (dfa 0.3) (acise? 0.86))) 
3.         (gbd ((acise 2.77) (dfa! 1.18) (dfa 0.8) (acise? 3.17))) 
4.         (dfa ((acise 2.27) (dfa! 1.18) (gbd 1.8) (acise? 3.05))) 
5.         (acise? ((acise 1.72) (gbd 1.0) (dfa 1.0) (dfa! 1.18))) 
6.         (dfa! ((acise 2.47) (gbd 0.9) (dfa 0.9) (acise? 2.48))))) 
7.  

Example 4-9: Node/edge weights from a harmonic conversation. 
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Figure 4-2: Associate network showing chord successions. 

Clearly, composing with Emily Howell is both intimate and laborious, especially 

considering that the composer also integrated pattern-matching, recombinance, and 

SPEAC into the process. Table 4-4 shows compositions written by Cope utilizing Emily. 

Cope’s next project, named Annie, will further explore aspects of machine learning.193 

                                            
193 Christopher Steiner, Automate This (New York, New York: Penguin Group, 2012), 100-101. 
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As was the case with previous software developed by Cope, Annie arises from 

language processing, and the book of 2000 haikus titled Comes the Fiery Night was in 

part written by Annie.194 

Table 4-4: Works completed with the aid of Emily Howell.195 

Title Instrumentation & Length Year 
From Darkness, Light (opus 
1) Two Pianos, 20’57” 2004 

Shadow Worlds (op. 2) Three Pianos, 20’01” 2005 
Land of Stone (op. 3) Chamber Orchestra, 17’14” 2007 
From the Willow's Keep 
(op. 4) 

Tenor and Chamber 
Orchestra, 16’ 2010 

Prescience (op. 5) Chamber Orchestra, 15’30” 2012 

SpaceTime (op. 6) Orchestra, 24’24” 2010 
Silver Blood (op. 7) Chamber Orchestra, 10’10” 2009 
Coming Home (op. 8) Chamber Orchestra, 7’39” 2009 
Breathless (op. 9) Chamber Orchestra, 8’53” 2012 
 
 
 
4.4. Cope’s Algorithmic Analyses 

All of Cope’s work to this point utilizes algorithms to analyze music, and the 

analyses are integral to Cope’s compositional process (when composing algorithmic 

music). In 2009, Cope releases the book Hidden Structure.196 As was the case with 

                                            
194 Ibid. Cope, Comes the Fiery Night. 

195 Opus numbers 7, 8, and 9 were obtained from the composer (personal email correspondence 
April 19, 2014). 

196 Cope, Hidden Structure: Music Analysis Using Computers.  
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CMMC, the title suggests a nod to Holland’s Hidden Order.197 In HS, Cope provides: (1) 

a background to how algorithmic analysis and composition are closely interlinked 

practices; (2) a quick Lisp tutorial; (3) his views on algorithmic information theory - 

including pattern-matching algorithms, and compression algorithms; (4) set analysis 

functions - especially in regards to range;198 (5) thoughts on scale analysis in post-tonal 

music - including mathematical sequences (fibonacci, additive, polynomial) (6) function 

and structure in post-tonal music - acoustic theory of chords, musical tension, SPEAC; 

(7) generative models of music - modeling, recombinancy, probabilities, Markov chains; 

and (8) a look to the future - the use of mathematical principles (cryptography, 

complexity theory, combinatorics, game theory, graph theory, probability theory, logic, 

number theory).199 However, Cope is not alone in utilizing computing power to analyze 

music. 

 

                                            
197 Cope directly quotes from Holland in Hidden Structure, while explaining that “no current 

complex adaptive system yet exists for musical analysis.” John H. Holland, Hidden Order (New York: 
Helix Books, 1995).  

198 Cope provides set-theory functions on the accompanying CD-ROM, but the code contains 
errors, and not all of the functions work appropriately. 

199 Cope, Hidden Structure: Music Analysis Using Computers, 294-295. 
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CHAPTER 5  

ALGORITHMIC ANALYSIS 

 

5.1. Brief History 

Milton Babbitt acts as a visionary through his conceptualization of the role of the 

computer in future musicology and music theory.1 Computer assisted music analysis 

has been in existence almost as long as computers themselves, as is the case with 

computer-assisted composition.2 Curtis Roads sees 1968 as the beginning “of modern 

research into AI and music,” and points to two papers: (1) “Pattern in Music” – by 

Herbert Simon, and Richard Sumner at Carnegie-Mellon University, in which the authors 

“formalize musical patterns in tonal music in terms of rhythm, melody, harmony, and 

form;” and (2) “Linguistics and the Computer Analysis of Tonal Harmony” – Terry 

Winograd (then MIT), in which the primary task was to label chords occurring in 

harmony, utilizing “systemic grammar,” or choice trees that can be represented by 

conditional statements.3 Forte “feels that the musical questions that will be asked in the 

future will become increasingly similar to those being asked in the field of artificial 

                                            
1 Milton Babbitt, "The Use of Computers in Musicological Research," Perspectives of New Music 

3, no. 2 (1965): 74-83. 

2 For a detailed history of the computer-assisted music analysis consult Nico Schuler’s 
dissertation. Nico Stephan Schuler, “Methods of Computer-Assisted Music Analysis: History, 
Classification, and Evaluation” (Michigan State University, 2000). Heinrich Taube at UIUC started to 
develop an analysis application titled Music Theory Workbench. The application has been re-written and 
is now called Harmonia. Taube’s application is mostly designed with the music theory student in mind, 
rather than the music scholar. 

3 Curtis Roads, "Artificial Intelligence and Music," Computer Music Journal 4, no. 2 (1980): 15. 
Winograd used Lisp to build his program. Ibid., 16. 
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intelligence.”4 

In 1972, Otto Laske “started working in a theory of music cognition based on 

information processing psychology and generative grammar models developed by A. 

Newell, H. Simon, G. Miller, and N. Chomsky.”5 As part of Laske’s theory was his 

concept of the musical robot that contained “a sensory pattern recognition part, a 

particular grammar for music, and a general problem-solving part.”6 By the 1980s, 

pursuing algorithmic analysis of music becomes more common. Alphonce conjectures 

that “many projects in music analysis are in need of a music theory comprehensive 

enough to account for a wide range of musical behavior.”7 Smoliar “feels that the 

structure of AI languages like Lisp can provide a useful analogy to certain musical 

structures.”8 Meehan suggests “that some major features of music could be 

characterized in terms of Conceptual Dependency formalism, akin to Roger Schank’s AI 

mode for” NLP.9 Furthermore, Rahn unifies Rothgeb’s, Smoliar’s, and Meehan’s 

papers.10 

                                            
4 A. Wayne Slawson, "Computer Applications in Music by Gerald Lefkoff," Journal of Music 

Theory 12, no. 1 (1968): 106. 

5 Roads, "Artificial Intelligence and Music," 17. 

6 Ibid. 

7 Ibid., 18. Bo H. Alphonce, "Music Analysis by Computer: A Field for Theory Formation," 
Computer Music Journal 4, no. 2 (1980): 26-35. 

8 Roads, "Artificial Intelligence and Music," 18. Stephen W. Smoliar, "A Computer Aid for 
Schenkerian Analysis," Computer Music Journal 4, no. 2 (1980): 41-59. 

9 Roads, "Artificial Intelligence and Music," 18. James R. Meehan, "An Artificial Intelligence 
Approach to Tonal Music Theory," Computer Music Journal 4, no. 2 (1980): 60-65. 

10 Roads, "Artificial Intelligence and Music," 18. Rahn, "On Some Computational Models of Music 
Theory," 66-72. 
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5.2. Current Systems 

Since the 1990s options for computer based analyses move from prototypes to 

actual usable systems. Currently the question arises of what type of pre-existing 

software should be used. Humdrum, released in 1999 and still completely usable at 

present, was developed by David Huron at Ohio State University is perhaps one of the 

earlier unified systems, consisting of several command line tools that can be assembled 

into programs to handle all kinds of searches on musical scores. On the Humdrum 

website a list of sample problems that can be solved with Humdrum is listed; for 

example:11 

 Determine the rhyme scheme for a vocal text. 1.
 Identify any French sixth chords. 2.
 Locate instances of the pitch sequence D-S-C-H in Shostakovich's music. 3.
 Are German drinking songs more likely to be in triple meter. 4.
 Determine whether Haydn tends to avoid V-IV progressions. 5.
 Locate any doubled seventh scale degrees. 6.
 Are dynamic swells (crescendo-diminuendos) more common than dips 7.

(diminuendos-crescendos)? 
 Determine which English translation of a Schubert text best preserves the 8.

vowel coloration. 
 Find all woodwind quintets in compound meters that contain a change of 9.

key. 
  Identify all works that end with a “tierce de Picardie,” etc. 10.

 
In 2008, a new open source tool emerges through Michael Cuthbert at MIT. The 

project is a collection of python classes that can be assembled to create programs for 

specific computer based analytical tasks, which is philosophically similar to Huron’s 

Humdrum project. On music21’s website some of the programs features are highlighted, 

                                            
11 David Huron, "Sample Problems Using the Humdrum Toolkit", Ohio State University 

http://www.musiccog.ohio-state.edu/Humdrum/sample.problems.html (accessed March 30, 2014). 
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for example: 12 

1. Finding Solutions with Small Scripts 
2. Getting Musical Data 
3. Visualizing Musical Data 
4. Authoring and Transforming Musical Data 
5. Creating a Reduction and Labeling Intervals13 
6. Searching a Large Collection of Works for Ultimate Chord Quality 
7. Searching the Corpus by Locale 
8. Finding Chords by Root and Collecting their Successors 
9. Pitch and Duration Transformations 
10. Basic Counting of and Searching for Musical Elements, etc.  

 
Both Humdrum and music21 represent an important turning point in computer-

assisted music analysis, since they are the first to have their source code freely 

published online on the world wide web, and available to anybody, thereby providing a 

free clearinghouse, and a center of information, enabling interscholastic dialogue.14 

Thus, development of other future computer-assisted analysis programs will have 

previously used and developed algorithms to solve music analytical problems available 

for further development by enthusiasts, musicians, and hackers. Some of the models 

developed in the analyses will be based on both Humdrum and music21, while other 

tools will be original. 

                                            
12 1-4. Michael Scott Cuthbert, "What Is Music21?", Massachusetts Institute of Technology 

http://web.mit.edu/music21/doc/about/what.html (accessed October 30, 2014). 

13 5-10. Michael Scott Cuthbert, "Examples and Demonstrations", Massachusetts Institute of 
Technology http://web.mit.edu/music21/doc/about/examples.html (accessed October 30, 2014). 

14 The need for a “clearinghouse” was established through a quote by Bowles, which appeared in 
Schuler’s dissertation. Schuler, 33. Edward Bowles, "Discussion," in Musicology and the Computer: Three 
Symposia, ed. Barry S. Brook, (New York: The City University of New York Press, 1970), 37-38. It should 
also be noted that IRCAM’s OpenMusic composition software, as well as the Sibelius Academy’s PWGL 
composition software contain music analysis algorithms, which in both cases have been implemented in 
Common Lisp. Both environments feature documentation, which is not very clear, and expert Common 
Lisp and programming expertise is required to start “hacking” in both of these environments.  
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Figure 5-1: Input/Output Formats. 

The three most important issues that need to be addressed with any kind of 

computer-assisted music analysis are (Figure 5-1): (1) reading musical data, or input, 

(2) representing musical data for internal computations, and (3) output of outcome to 

either text-based, graphics, sound, or other music representation formats. In this project 

input music data will be processed in the form of MIDI files that are being read via a 

Common Lisp program designed to read MIDI data. As intermediary format the acquired 

MIDI data will be encoded into events as summarized in Cope’s Virtual Music.15 In this 

format events look like Example 5-1 in Common Lisp.  

((0 38 147 2 90) (0 26 147 4 90) (147 41 147 2 90) (147 33 147 4 90) (294 45 
147 2 90) (294 38 147 4 90)) 

                                            
15 Cope, Virtual Music: Computer Synthesis of Musical Style, 141-143. 
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Example 5-1: Musical event representation as summarized in Virtual Music. 

The events are enclosed as lists of attributes within a list that holds all the events 

of some music. Example 5-1 consists of six musical events. The six events occur during 

three different points in time. Each musical events contains five values that represent 

musical information about that event: (1) start time in milliseconds, (2) MIDI pitch value, 

(3) end time, (4) channel number, and (5) intensity or dynamic level.16 Cope’s event 

system, or MIDI event system then can be used to communicate between different 

output systems, such as text, abc, MusicXML, MIDI, and LilyPond.17 In this study the 

output of the analytical tools generated will be in text form, graphics will be represented 

with .svg, .png, and .pdf files, scores will be generated as LilyPond and MIDI files.  

 

5.3. Set Theory Analysis 

One of the earlier integrations of mathematical group theory within music theory 

is Milton Babbitt’s essay “Set Structure as a Compositional Determinant” (1961), in 

which Babbitt discusses an algorithmic procedure to devise normal form.18 Straus 

mentions two more of Babbitt’s essays as influential in the development of musical set 
                                            

16 The described event system was used by Cope for EMI. A more modern system would be 
better suited to read musical score data in via MusicXML. Since the event system is based upon MIDI a 
lot of actual musical data potentially can be lost. For example the system above does not differentiate 
between the PC B# or C and will always assign one number even though from a theoretical perspective 
both pitch classes distinctively function in two different ways. Systems that use MusicXML as musical 
input data format are Humdrum and music21. However, since Cope used MIDI representation as 
described, used these representation to compose FDL, and because of the widespread freely available 
MIDI representations online, MIDI representations will be used in this work. 

17 LilyPond is a text-based music-typesetting tool, and can be scripted via the Scheme language, 
another Lisp dialect. 

18 Milton Babbitt, "Set Structure as a Compositional Determinant," Journal of Music Theory 5, no. 
1 (1961): 72-94. 
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theory, (1) “Twelve-Tone Rhythmic Structure and the Electronic Medium” (1962), and (2) 

“Contemporary Music Composition and Music Theory as Contemporary Intellectual 

History” (1972).19 Further, Straus points to three more milestones in the development of 

musical set theory: (1) The Structure of Atonal Music by Allen Forte, (2) Basic Atonal 

Theory by John Rahn, and (3) General Musical Intervals and Transformations by David 

Lewin.20  

The formalized procedures of set theory in music can be easily adapted into 

algorithms in computer programs. A quick Internet search yields numerous results 

where to find such algorithmic manifestations in computer programs. The basic 

operations can also be easily represented in Lisp.21  

 

5.3.1. The Set-Theory-Functions.lisp library 

1. ;;;; ----- Set-Theory-Functions.lisp ----- ;;;; 
2.  
                                            

19 Milton Babbitt, "Twelve-Tone Rhythmic Structure in the Electronic Medium," Perspectives of 
New Music 1, no. 1 (1962): 49-79. Milton Babbitt, "Contemporary Music Composition and Music Theory 
as Contemporary Intellectual History," in The Collected Essays of Milton Babbitt, ed. Stephen Peles et al., 
(Princeton, New Jersey: Princeton University Press, 2012), 270-307. 

20 Joseph N. Straus, Introduction to Post-Tonal Theory, 3rd ed. (Upper Saddle River, N.J: 
Prentice Hall, 2005), 61. Allen Forte, The Structure of Atonal Music (New Haven, CT: Yale University 
Press, 1977). John Rahn, Basic Atonal Theory (Upper Saddle River, New Jersey: Prentice Hall Press, 
1981). David Lewin, Generalized Musical Intervals and Transformations (New York: Oxford University 
Press, 2011). 

21 “Common Lisp provides several functions for performing set-theoretic operations.” Peter Seibel, 
Practical Common Lisp (New York: Apress, 2005), 155. One of the built-in Common Lisp functions that 
will be used frequently is the set-difference function to find complements. Why does there have to be 
yet another set of set music theory tools in a computer program? For one, most programs available for 
free online do not always complete the set theoretical operations in an accurate manner, or follow the 
procedures in the most efficient manner. Second, this study is about the algorithmic process in music, and 
thus omitting a discussion on how to program the common algorithms set forth in musical set theory 
would leave a lacuna. Third, most other music analysis tools will feature set theoretical tools at their very 
foundation in how music data is interpreted by the computer. Finally, the set theoretical tools will be used 
as a library in algorithmic music / analysis tools later on in this study. 
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3. (defparameter *testset* '(5 2 9)) 
4. (defparameter *major-chord* '(6 9 2)) 
5. (defparameter *opus-16-3* '(0 4 8 9 11)) 
6.  

Example 5-2: Set-Theory-Functions.lisp library global variables. 

The first line re-iterates the name of the script in a comment preceded with 4 

semicolons color coding the source code comment in red (Clozure CL). At the beginning 

of the library, three test sets are defined as parameters or variables.22 The first one (line 

3) is simply titled *testset* and contains the PCC {5, 2, 9}, or a D Minor triad.23 The 

*major-chord* variable consists of PCC {6, 9, 2} (line 4), while the *opus-16-3* variable 

(line 5) is used by Straus to explain the algorithm of how to devise the normal form of a 

PCC, in which a reduction for two pianos of the first three mm. from Schoenberg’s 

Orchestral Piece, Op. 16, No 3 is utilized.24 

7. ;; ----- Stable Sort ----- ;; 
8.  
9. (defun safe-sort (alist &optional (predicate '<)) 
10.   "Safer sorting." 
11.   (let ((temporary  
12.          (loop for x in alist  
13.            collect x))) 
14.     (stable-sort temporary predicate))) 
15.  

Example 5-3: The utility safe-sort function in Set-Theory-Functions.lisp. 

Lines 7-15 define the safe-sort utility function to sort a list. Common Lisp’s 
                                            

22 A library is a type of script or program that can be placed into another program by reference, 
such as a link, so that a duplication of the code is not required, in which the “libraries” code is being re-
used. Because the Set-Theory-Functions.lisp library contains more than just a few lines of code, 
the code has been broken up into several bits. The unifying feature of the library is the continuous line 
numbering scheme. Each code example will feature one extra line number at the end of the example, 
since the code will be continued within the narrative. If a line number is missing from a particular line in 
the code, then the line of code extended beyond the width of the page in this study. 

23 Interestingly enough, the variable *testset* is a palindrome. This particular *testset* will 
appear later in the analysis. 

24 Straus, 35-38. 
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built-in sort function sometimes can destroy a list, and it is therefore recommended 

that before sorting a list to apply the copy-seq function in combination with the 

stable-sort function to the list to be sorted. A comment that organizes and 

delineates the script is provided in line 7.  The safe-sort function (line 9) smoothly 

completes a similar operation, by using alist and the predicate '< as arguments. 

Line 10 provides a documentation string, while in line 11 the local variable temporary 

is declared via the let function (i.e. a variable that only lives in its enclosing function, 

unlike a global variable that can be used anywhere in the script), which is populated by 

a loop macro that iterates through each item of the alist, and creates a new list of x 

values with collect. The temporary variable is then used, along with the 

predicate (sort in ascending order – '<), as an argument for the stable-sort 

function in line 14. Therefore, only a copied list was actually sorted and becomes the 

outcome of the function, while the original list stays intact without having been operated 

on. 

 

5.3.2. Finding the Complement 

In pitch space the complement set is a set that is produced from the finite 

assumption that a particular pitch space consists of 12 distinct pitch classes, numbered 

0-11. Therefore, if a set A contains three PCs than its complement, set B, will consist of 

PCs that are ⊄ of A. The chromatic scale is a PCC consisting of {0, 1, 2, 3, 4, 5, 6, 7, 8, 

9, 10, 11}. Set A is a ⊂ of the chromatic scale. Set B, its complement, will be the PCs 

that are ∉ of Set A, but still a ⊂ of the chromatic scale. So, if PCC {0, 2, 4, 6, 8, 10} is A, 
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then PCC {1, 3, 5, 7, 9, 11} is PCC A’s complement.  

16. ;; ----- Complement ----- ;; 
17.  
18. (defun chromatic-scale (&optional (alpha 0) (omega 11)) 
19.   "Chromatic scale." 
20.   (loop for i from alpha to omega append (list i))) 
21.  
22. (defun complement-set (pcc-a) 
23.   "Complement set." 
24.   (let ((pcc-c (chromatic-scale))) 
25.     (safe-sort (set-difference pcc-c pcc-a) #'<))) 
26.  
27. ; (complement-set '(0 1 2 4 7 8)) 
28. ; => (3 5 6 9 10 11) 
29.  

Example 5-4: Finding a complementary set. 

Line 16 provides an organizational delimiter to keep the script readable and 

organized. In lines 18-20 the function chromatic-scale creates a chromatic scale 

with the beginning, or alpha - PC 0, and ending, or omega - PC 11, supplied as default 

arguments. Line 19 supplies the documentation string, while in line 20 a loop macro 

creates a current value i for a singular iteration and counts from alpha to omega. 

During each one of the iterations, the new count i is append-ed to a list that results 

in an ascending PCC, the chromatic scale. The chromatic-scale function is used as 

a subroutine for the complement-set function in lines 22-25. The complement-set 

function takes a PCC as an argument. In line 24, let creates space for the local 

variable pcc-c that is populated with the outcome of the chromatic-scale function. 

The built-in Common Lisp function set-difference automatically finds the 

complement with pcc-c (chromatic scale) and pcc-a as supplied arguments.25 

Additionally, the set-difference function is wrapped by the safe-sort function 

                                            
25 Common Lisp is clearly showing off its mathematical heritage here. 
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and its corresponding #'< predicate to ensure that the complement will be displayed in 

ascending order. A call to the complement-set function with the PCC {0, 1, 2, 4, 7, 8} 

(the all-trichord hexachord) supplied looks the following way: (complement-set '(0 

1 2 4 7 8)) (line 27). The result at the REPL reads: (3 5 6 9 10 11) (line 28). 

 

5.3.3. Transposition 

30. ;; ----- Transposition ----- ;; 
31.  
32. (defun transpose (pcc n) 
33.   "Transpose set." 
34.   (mapcar #'(lambda (i) (mod (+ n i) 12)) pcc)) 
35.  
36. ; (transpose *testset* 6) 
37. ; => (11 8 3) 
38.  

Example 5-5: Transposition in Set-Theory-Functions.lisp. 

An organizational comment is provided in line 30 of the script. Lines 32-34 show 

a variation of the transpose function from Example 3-9. The supplied arguments to 

the transpose function, (1) pcc, and (2) transposition level n, remain to be the same. 

However, the difference is that (+ n i) in the lambda function is supplied with a pcc 

as arguments to the mapcar function, and is wrapped by the mod function to ensure 

that the newly transposed value n will be a number within the range of 0-11. Calling the 

(transpose *testset* 6) function (line 36) results at the REPL in: (11 8 3) (line 

37). 

 

5.3.4. Inversion 

39. ;; ----- Inversion ----- ;; 
40.  
41. (defun invert (pcc n) 
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42.   "Invert set." 
43.   (mapcar #'(lambda (i) (mod (- n i) 12)) pcc)) 
44.  
45. ; (invert *testset* 0) 
46. ; => (7 10 3) 
47. ; (invert *testset* 1) 
48. ; => (8 11 4) 
49.  

Example 5-6: Inversion in Set-Theory-Functions.lisp. 

Since inversion in set theory is different than melodic inversion, as shown in 

Example 3-7, a new invert function has to be defined. In set theory 0 inverts to 0, 1 to 

11, 2 to 10, 3 to 9, 4 to 8, 5 to 7, 6 to 6, 7 to 5, 8 to 4, 9 to 3, 10 to 2, and 11 to 1. 

Surprisingly, the invert function looks almost identical to the transpose function 

(Example 5-5), with one major difference in the lambda function: instead of adding the 

transposition level n to i (PC), the i is subtracted from n (line 43). Two tests ensure 

the accuracy of the invert function: (1) a call to (invert *testset* 0) (line 45) – 

resulting in (7 10 3) at the REPL (line 46), and (2) a call to (invert *testset* 

1) (line 47) – which accurately results in (8 11 4) at the REPL (line 48). 

 

5.3.5. CPP-Forms 

The CPP-Form, or “Common Practice Period” form simply stacks a chord in 

ascending numeric order from bottom to top, for quickly viewing a PCC in order. These 

forms may seem redundant and are not part of the commonly used set theory canon, 

but give the analyst a quick way of defining chords with a more “traditional” naming 

convention.26 

                                            
26 David Cope introduces these forms as well in Hidden Structure, as t-normal form, or t-normal 

pitch class set. However, this document’s t-normal forms are actually based on normal forms, and 
therefore Cope’s t-normal forms have been renamed cpp-form, and t-cpp-form in this context. 
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50. ;; ----- CPP-Form  ----- ;; 
51.  
52. (defun cpp-form (pcc) 
53.   "Stacks all members of a PCC into numerical order." 
54.   (stable-sort pcc #'<)) 
55.  
56. ; (cpp-form *testset*) 
57. ; => (2 5 9) 
58. ; (cpp-form *opus-16-3*) 
59. ; => (0 4 8 9 11) 
60.  
61. (defun t-cpp-form (pcc) 
62.   "Stacks all members of a PCC into numerical order and start at 0." 
63.   (let ((sorted-pcc (cpp-form pcc))) 
64.     (mapcar #'(lambda (x) (mod (- x (car sorted-pcc)) 12)) sorted-pcc))) 
65.  
66. ; (t-cpp-form *testset*) 
67. ; => (0 3 7) 
68. ; (t-cpp-form *opus-16-3*) 
69. ; => (0 4 8 9 11) 
70.  

Example 5-7: CPP-Forms. 

The script delimiter comment is set in line 50. The cpp-form function is declared 

in lines 52-54, and a pcc needs to be supplied as an argument. A call to the stable-

sort function is made with the pcc and an ascending sort predicate supplied as 

arguments (line 54). The function can be tested with a function call (cpp-form 

*testset*) provided in line 56 (and second call (cpp-form *opus-16-3*) in line 

58), which results in the answer shown in line 57 (2 5 9), or line 59 (0 4 8 9 11) 

respectively. The ensuing t-cpp-form function also takes a pcc as an argument, 

stacks all members into numerical order, but zeroes the result (lines 61-64). A local 

variable sorted-pcc is declared with the let function and the result from a call to the 

cpp-form with the pcc provided as an argument is assigned to the sorted-pcc local 

variable (line 63). The enclosed mapcar function is provided a lambda function as an 

argument that quickly transposes all members of the sorted-pcc, whereby the first 

member is set to 0. Two test calls to the t-cpp-form function are provided in lines 66 
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(t-cpp-form *testset*) and 68 (t-cpp-form *opus-16-3*), and the desired 

results are indicated in lines 67 (0 3 7) and 69 (0 4 8 9 11) respectively.    

 

5.3.6. Normal Form 

With these very basic set theoretical operations examined, attention needs to 

turn to how to generate the normal form of a PCC. The operation requires numerous 

subroutines, which will be unified into one function call at the very end. The first step is 

finding all the possible rotations of a PCC.  

71. ;; ----- Normal Form ----- ;; 
72.  
73. (defun rotations (pcc) 
74.   "Create all possible rotations from a sorted set." 
75.   (let ((sorted-pcc (safe-sort pcc #'<))) 
76.     (loop for i from 0 below (length sorted-pcc) 
77.       collect (append  
78.                (subseq sorted-pcc i (length sorted-pcc)) 
79.                (subseq sorted-pcc 0 i))))) 
80.  
81. ; (rotations '(4 9 1)) 
82. ; => ((1 4 9) (4 9 1) (9 1 4)) 
83.  

Example 5-8: Finding rotations - normal form. 

The script is first delimited by a comment in line 71. The rotations function 

takes a pcc as an argument and is declared in lines 73-79. The let function in line 75 

declares a local variable sorted-pcc by making a call to the safe-sort function that  

is provided with the pcc and an ascending sort predicate as arguments. A for loop 

macro is initiated in line 76, and iterates through the length of the sorted-pcc. Each 

repetition builds a list by rotating the substring index i at the position indicated by the 

length of the sorted-pcc that then is appended by the substring index i at position 

0 (lines 77-79). Making a call to the function rotations with the PCC '(4 9 1) 
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provided in an argument (line 81), results in the ((1 4 9) (4 9 1) (9 1 4)) 

rotations at the REPL (line 82). 

84. (defun fast-normal-form (rotations) 
85.   "Finds set with smallest interval from first and last PC in set, and 

adds that interval as key to the set." 
86.   (if (null rotations) nil 
87.     (cons 
88.      (list 
89.       (mod (- (car (last (car rotations))) (caar rotations)) 12) 
90.       (car rotations)) 
91.      (fast-normal-form (cdr rotations))))) 
92.  
93. ; (fast-normal-form (rotations '(4 9 1))) 
94. ; => ((8 (1 4 9)) (9 (4 9 1)) (7 (9 1 4))) 
95.  

Example 5-9: Finding intervals between first and last pitches in rotated PCCs. 

The purpose of the fast-normal-form function (which takes the previously 

generated rotations of a PCC as an argument) is to figure out the smallest interval 

between the first and last PC of one of the rotations, and adds that interval as a key 

to the rotation (lines 84-91). The task is completed through a recursion that is initiated 

via an if/else condition that checks whether or not all rotations have been processed 

(line 86). When all rotations have been processed the recursion ends. Otherwise a list is 

assembled via the cons function that consists of a key/value pair, where the key is the 

interval calculated from the first and last PC of a rotation PCC (line 89), and the value 

contains the corresponding rotation from whence the interval originated (line 90). The 

recursion begins anew with a call to itself with the remaining rotations provided as 

argument (line 91). Calling the fast-normal-form function with the rotations 

function – holding the PCC '(4 9 1) as an argument – provided as an argument (line 

93) should result at the REPL with ((8 (1 4 9)) (9 (4 9 1)) (7 (9 1 4))). 

96. (defun min-list (lst) 
97.   "Builds keys only list." 
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98.   (if (null lst) nil 
99.     (cons 
100.      (caar lst) 
101.      (min-list (cdr lst))))) 
102.  
103. ; (min-list '((8 (1 4 9)) (9 (4 9 1)) (7 (9 1 4)))) 
104. ; => (8 9 7) 
105.  

Example 5-10: List of keys (Intervals) from previous example. 

The min-list function (lines 96-101) generates a list of only the keys (intervals) 

from the key/value pair list generated with the fast-normal-form function. The 

recursive min-list function requires a key/value pair list as an argument, and the 

recursion terminates with an if/else condition that checks whether or not any values 

have not been processed in the provided list (line 98). The new list is assembled via the 

cons function by only utilizing the key from the key/value pair and adding it to the list 

(lines 99-100). The remainder of the key/value pair list is passed back to the top of the 

function with a call to itself (line 101). Running the min-list function (line 103) with an 

argument (min-list '((8 (1 4 9)) (9 (4 9 1)) (7 (9 1 4)))) results in 

the (8 9 7) list at the REPL (line 104) 

106. (defun find-smallest-key (closest) 
107.   "Finds the smallest key from a group of sets." 
108.   (reduce #'min (min-list closest))) 
109.  
110. ; (find-smallest-key '((7 (4 8 9 11 0)) (4 (8 9 11 0 4)))) 
111. ; => 4 
112.  

Example 5-11: Finding the smallest key from a group of sets. 

The find-smallest-key function finds the smallest interval key of a set of 

rotated PCCs (line 106). The results of the fast-normal-form are passed to this 

function as an argument (here locally called closest, which is a set of rotated PCCs). 

Two built-in Common Lisp functions (reduce and #’min) are used for this procedure in 
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combination with the min-list function (line 108). When passing a set of a rotated PCC 

with key (interval)/value pairs '((7 (4 8 9 11 0)) (4 (8 9 11 0 4))), or 

closest, to the find-smallest-key function (line 110), the result will be 4 (line 111), which 

is the rotation with the smallest interval between the first and last PC. 

113. (defun find-dupes (lst match) 
114.   "Find sets with duplicate keys and group them together." 
115.   (loop for i from 0 below (length lst) 
116.     if (equal (car (nth i lst)) match) 
117.     collect (cadr (nth i lst)))) 
118.  
119. ; (find-dupes '((8 (1 4 9)) (9 (4 9 1)) (7 (9 1 4))) 7) 
120. ; => ((9 1 4)) 
121.  

Example 5-12: Finding rotations with duplicate keys. 

Sometimes rotations of a PCC may contain duplicate keys, which should be 

eliminated. The feature is useful when two rotations have the same key, and a new key 

needs to be found by measuring the interval from the first PC of a rotated PCC to the 

penultimate PC in a PCC. The find-dupes function receives a list (lst) and a match 

for its argument (line 113). A for loop macro reiterates, for the duration of the passed 

in list, through the keys and selects the PCC that is matched with the match, i.e. key, of 

the PCC (lines 115-117). A call to the find-dupes function with a list of '((8 (1 4 

9)) (9 (4 9 1)) (7 (9 1 4))) and 7 as a match provided as arguments (line 

119), results in ((9 1 4)) (line 120). The find-dupes function itself is a matching 

function, but used in conjunction with the next-to-last function as an argument 

serves the purpose of a duplicate finder function. 

122. (defun next-to-last (dupes &optional (i 0)) 
123.   "Drills down to find smallest interval between first and second to last 

PC in set." 
124.   (if (null dupes) nil 
125.     (cons 
126.      (list 
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127.       (mod (- (car (subseq (car dupes) (- (length (car dupes)) (+ i 2)) 
(- (length (car dupes)) (+ i 1)))) (caar dupes)) 12) 

128.       (car dupes)) 
129.      (next-to-last (cdr dupes) i)))) 
130.  
131. ; (next-to-last '((4 8 9 11 0) (8 9 11 0 4))) 
132. ; => ((7 (4 8 9 11 0)) (4 (8 9 11 0 4))) 
133.  

Example 5-13: Finding the interval from first PC to second to last PC. 

The next-to-last recursive function is a subroutine for the inter-normal-

form function, and can be used in a recursion to determine whether or not the interval 

between the first PC and the next to last PC of a rotated set needs to be found (line 

122). Additionally, the position of the penultimate PC can be shifted to the 

antepenultimate PC of a rotated PCC, or a pre-antepenultimate PC of a rotated PCC, 

meaning a position i to the right from the end of the PCC. The function receives the 

results of the find-dupes function as an argument (called simply dupes here). The 

recursion ends when no more dupes are available and otherwise creates a new 

key/value pair list that features the interval between the first PC of a passed in rotated 

set of PCCs and a penultimate PC as a key, and the corresponding PCC as a value 

(lines 124-128). The next-to-last function calls itself with the remainder of the 

dupes variable and position i from the end (line 129). To simulate what the next-to-

last function accomplishes two PCC rotations that have the same interval value 

between the first and last PC are passed in as the dupes argument '((4 8 9 11 0) 

(8 9 11 0 4)) (line 131), which results in the following key/value pair list (line 132): 

((7 (4 8 9 11 0)) (4 (8 9 11 0 4))). 

134. (defun inter-normal-form (keyed-pcc &optional (i 0)) 
135.   "Recursively finds smallest key." 
136.   (let* ((matcher (find-smallest-key keyed-pcc)) 
137.          (dupes (find-dupes keyed-pcc matcher)) 
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138.          (no-dupes (cadar (stable-sort (copy-seq keyed-pcc) #'< :key 
#'car)))) 

139.     (cond ((equal (length (cadar keyed-pcc)) (length dupes)) no-dupes) 
140.           ((> (length dupes) 1)  
141.            (inter-normal-form (next-to-last dupes (+ i 0)) (+ i 1))) 
142.           (t no-dupes)))) 
143.  
144. ; (inter-normal-form (fast-normal-form (rotations '(1 4 9)))) 
145. ; => (9 1 4)   
146. ; (inter-normal-form (fast-normal-form (rotations '(5 2 8 11)))) 
147. ; => (2 5 8 11) 
148.  

Example 5-14: Pulling all subroutines together to find normal form. 

The inter-normal-form finds the normal form of a set by pulling all previously 

discussed subroutines together into one function (lines 134-142). The function is 

recursive and takes the key/value-paired rotations (keyed-pcc) as the first argument, 

and a count i as the second argument. In lines 136-138 three local variables are 

defined with the let* function: (1) matcher – which is populated with the results of a 

call to the find-smallest-key function and the keyed-pcc provided as an 

argument, (2) dupes – which is populated with the results of the find-dupes function 

which is provided with the keyed-pcc and the previously assigned matcher variable, 

and (3) no-dupes – which is provided with the first PCC of the ascending sorted 

keyed-pcc.27 A conditional decision tree, built with cond, then checks if there is more 

than one duplicate key, meaning if there is more than one PCC that has the same 

interval as its key (line 139). If there is no duplicate key then the recursion ends and the 

function returns the normal form, taken from the no-dupes variable. However, if there 

is more than one duplicate, then a function call to the inter-normal-form, or itself, is 

made with the first argument supplied through a call to the next-to-last function 
                                            

27 The safe-sort function could not be used here, since the stable-sort function is supplied 
here with more than two arguments.  
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(that takes the dupes variable, and a count i value as its argument), and the second 

argument with a count plus 1 (lines 140-141). The inter-normal-form function can 

be tested, by supplying the results of the rotations function with a PCC supplied as 

an argument that is supplied as an argument to the fast-normal-form function. The 

fast-normal-form function consequently is supplied as an argument to the inter-

normal-form function (line 144) or: (inter-normal-form (fast-normal-form 

(rotations '(1 4 9)))). The result of the operation is displayed in line 145: (9 1 

4). Another function call – (inter-normal-form (fast-normal-form 

(rotations '(5 2 8 11)))) – is provided in line 146, which results in (line 147): 

(2 5 8 11). 

149. (defun normal-form (pcc) 
150.   "Find normal form." 
151.   (inter-normal-form (fast-normal-form (rotations (remove-duplicates 

pcc))))) 
152.  
153. ; (normal-form *testset*) 
154. ; => (2 5 9) 
155. ; (normal-form *major-chord*) 
156. ; => (2 6 9) 
157. ; (normal-form '(3 1 5 2 8 9)) 
158. ; => (1 2 3 5 8 9) 
159. ; (normal-form '(0 8 11 4 9)) 
160. ; => (8 9 11 0 4) 
161. ; (normal-form '(4 9 1)) 
162. ; => (9 1 4) 
163. ; (normal-form '(5 2 8 11)) 
164. ; => (2 5 8 11) 
165.  

Example 5-15: Normal form. 

The call to the inter-normal-form with two nested functions as arguments is 

cumbersome to use as part of another script in an analysis situation and it would be 

more useful to query the normal form of a PCC by simply writing the following 

statement: (normal-form '(5 2 9)). This is accomplished by the normal-form 
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function, which takes a pcc as its argument (line 149). In line 151 the function simply 

assembles the more complex function call to the inter-normal-function with its 

two nest functions supplied as arguments. Lines 153-164 show different PCCs supplied 

as arguments to the normal-form function and their corresponding results. 

 

5.3.7. T0-Normal-Form 

Sometime, it is useful to view the PCC of the normal form transposed to 0 (e.g.: 

major or minor chords), which can be achieved with the following t-normal-form 

function: 

166. ;; ----- T-0-Normal Form ----- ;; 
167.  
168. (defun t-normal-form (pcc) 
169.   "Create transposed (to '0') normal form." 
170.   (let ((nf (normal-form pcc))) 
171.     (mapcar #'(lambda (x) (mod (- x (car nf)) 12)) nf))) 
172.  
173. ; (t-normal-form *testset*) 
174. ; => (0 3 7) 
175. ; (t-normal-form *major-chord*) 
176. ; => (0 4 7) 
177. ; (t-normal-form '(3 1 5 2 8 9)) 
178. ; => (0 1 2 4 7 8) 
179. ; (t-normal-form '(0 8 11 4 9)) 
180. ; => (0 1 3 4 8) 
181. ; (t-normal-form '(4 9 1)) 
182. ; => (0 4 7) 
183. ; (t-normal-form '(11 2 8 4)) 
184. ; => (0 3 6 8) 
185.  

Example 5-16: Normal form T0 in Set-Theory-Functions.lisp. 

Delineation for the script has been implemented in line 166 in the form of a 

comment. The t-normal-form function takes a pcc as its argument (line 168). The 

local variable nf is declared via the let function, and the outcome of a call to the 

normal-form function with a pcc as its argument is bound to nf (line 170). The 
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following mapcar function (line 171) is supplied by two arguments: (1) a lambda 

function that takes the first item via the car function of the nf and subtracts it from the 

remaining PCs, or x, in the nf list, and mod 12s all numbers representing PCs (e.g: a -

4 value becomes 8); and (2) the nf PCC. Six test calls to the t-normal-form function 

along with their solutions have been provided in line 173-184. The necessity for 

establishing the t-normal-form function becomes clear by observing line 175: with 

t-normal-form the PCC is displayed as a major chord (line 176), or (0 4 7). 

 

5.3.8. Prime Form 

Prime form can provide additional information on a PCC. Like the normal-form 

algorithm the prime-form algorithm also uses several subroutines: (1) all-

transpositions – created with help of the transpose function (Example 5-5), and 

(2) all-inversions – created with help of the invert function (Example 5-6). The 

prime-form function then unifies the information resulting from its subroutines, to one 

convenient function that only needs to be supplied with a PCC for its argument. 

186. ;; ----- Prime Form ----- ;; 
187.  
188. (defun all-transpositions (pcc) 
189.   "Creates transposition scheme for prime form." 
190.   (remove-duplicates  
191.    (loop for i from 0 below 12  
192.      collect (transpose pcc i)) :test 'equalp)) 
193.  
194. ; (all-transpositions *testset*) 
195. ; => ((5 2 9) (6 3 10) (7 4 11) (8 5 0) (9 6 1) (10 7 2) (11 8 3) (0 9 4) 

(1 10 5) (2 11 6) (3 0 7) (4 1 8)) 
196.  

Example 5-17: Finding all transpositions of a PCC. 

Line 186 shows a script organizational delineation. Lines 188-192 show the all-
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transpositions function that takes a pcc as its argument. A loop macro is initiated 

(lines 191-192) in which the transpose function, supplied with the pcc and 

transposition level i, is iterated 12 times from 0 to 11. The representative count I 

assumes a new number with each corresponding count of its iteration, in order to collect 

a list of all possible transpositions of a pcc. The loop is wrapped with the built-in 

Common Lisp remove-duplicates function (line 190) where the resulting list of 

transposed PCCs is trimmed with any multiples that may have occurred by running the 

'equalp predicate as a :test in line 192. A call to the (all-transpositions 

*testset*) function (line 194) – recall that the *testset* consisted of PCC {5, 9, 2} – 

reveals all possible transpositions of the supplied PCC (line 195): ((5 2 9) (6 3 

10) (7 4 11) (8 5 0) (9 6 1) (10 7 2) (11 8 3) (0 9 4) (1 10 5) 

(2 11 6) (3 0 7) (4 1 8)). 

197. (defun all-inversions (pcc) 
198.   "Creates inversion scheme for prime form." 
199.   (remove-duplicates  
200.    (loop for i from 0 below 12  
201.      collect (invert pcc i)) :test 'equalp)) 
202.  
203. ; (all-inversions *testset*) 
204. ; => ((7 10 3) (8 11 4) (9 0 5) (10 1 6) (11 2 7) (0 3 8) (1 4 9) (2 5 

10) (3 6 11) (4 7 0) (5 8 1) (6 9 2)) 
205.  

Example 5-18: Finding all inversions of a PCC. 

The all-inversions function (lines 197-201) operates identically to the all-

transpositions function, with the exception of iterating through the invert function 

instead of the transpose function, and when called with the (all-inversions 

*testset*) function (line 203) results in a list consisting of all possible inversions: 

((7 10 3) (8 11 4) (9 0 5) (10 1 6) (11 2 7) (0 3 8) (1 4 9) (2 
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5 10) (3 6 11) (4 7 0) (5 8 1) (6 9 2)). The two helper-functions will now 

be unified in the prime-form function. 

206. (defun prime-form (pcc) 
207.   "Prime form of a set, by summing all rotations. Smallest sum is prime 

form." 
208.   (let* ((clean-pcc (remove-duplicates pcc)) 
209.          (all-ti-forms  
210.           (append (all-transpositions clean-pcc) (all-inversions clean-

pcc))) 
211.          (sums  
212.           (loop for ti in all-ti-forms  
213.             collect (cons (loop for pc in ti sum pc) ti)))) 
214.     (safe-sort (cdar (stable-sort (copy-seq sums) #'< :key #'car)) #'<))) 
215.  
216. ; (prime-form '(3 1 5 2 8 9)) 
217. ; => (0 1 2 4 7 8) 
218. ; (prime-form '(7 1 8)) 
219. ; => (0 1 6) 
220. ; (prime-form '(2 6 9)) 
221. ; => (0 3 7) 
222. ; (prime-form '(0 4 8 9 11)) 
223. ; => (0 1 3 4 8) 
224. ; (prime-form *major-chord*) 
225. ; => (0 3 7) 
226.  

Example 5-19: Prime form in Set-Theory-Functions.lisp. 

 The prime-form function takes a pcc as its argument (lines 206-214). After the 

documentation string, the let* function creates three local variables needed to find the 

prime form of a PCC: (1) clean-pcc – a variable bound with the outcome of a call to 

the built-in remove-duplicates function with the pcc supplied as an argument, (2) 

all-ti-forms – a variable created by append-ing the outcome of the all-

transpositions function with the outcome of the all-inversions functions that 

both use the clean-pcc variable as an argument, and (3) sums – a variable created 

through the use of a loop macro that iterates through the all-ti-forms list, and 

within this list uses another loop macro that iterates through each PC in the sets of the 

all-ti-forms variable and sums (here a keyword within the loop macro) these PCs 
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of the set to one number. A list of sums with its corresponding set is created. The PCC 

with the lowest sum is the prime form. The prime-form function sorts and picks the 

aforementioned set in line 214, by first sorting the sums list according to the first item 

(#'car) in a set as its :key, and with the #'< predicate in ascending order utilizing the 

copy-seq function in combination with the stable-sort function. Consequently, the 

cdar function picks the set without its key value, which is then supplied to the safe-

sort function in order to ensure that the prime form is displayed in ascending order with 

the #'< function as predicate. Lines 216-225 show test scenarios for the prime-form 

function with different PCCs supplied as arguments and the possible outcomes of these 

calls. Observing the call with PCC *major-chord* (line 224), properly results in SC (0 3 

7) in line 225. 

Furthermore, using the aforementioned method to devise the prime form leaves 

one question open: Is the resulting prime form like Forte’s algorithm, packed from the 

right, or is the resulting prime form like Rahn’s algorithm, packed from the left? Running 

the (prime-form '(9 10 2 3 5)) function reveals that the procedure described 

results with the same outcome as Rahn’s algorithm: SC (0 1 3 7 8). It is very clear why 

Rahn’s algorithm has become the more dominantly used one: (1) for its mathematical 

“purity,” and (2) because of its more elegant implementation in computer code. The 

following table shows the six SCs that are different:28 

                                            
28 Cope, Hidden Structure: Music Analysis Using Computers, 108-111. At a later point if one of 

these six SCs occurs an appropriate substitution algorithm will be defined. 
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Table 5-1: SC differences. 

Forte Number SC Forte Algorithm SC Rahn Algorithm 

5-20 (0 1 5 6 8) (0 1 3 7 8) 

6-Z29 (0 2 3 6 7 9) (0 1 3 6 8 9) 

6-31 (0 1 4 5 7 9) (0 1 3 5 8 9) 

7-Z18 (0 1 4 5 6 7 9) (0 1 2 3 5 8 9) 

7-20 (0 1 2 5 6 7 9) (0 1 2 4 7 8 9) 

8-26 (0 1 3 4 5 7 8 10) (0 1 2 4 5 7 9 10) 
 

 

5.3.9. Interval Vectors 

The interval-vector function is used to find the interval vector of a given 

PCC and uses two subroutines: (1) all-intervals-from – a utility to check what 

types of intervals are in a set, and (2) all-intervals – a utility to check how many 

times certain interval types occur in a set. 

227. ;; ----- Interval Vectors ----- ;; 
228.  
229. (defun all-intervals-from (pc pcc) 
230.   "Type of intervals in a set." 
231.   (loop for i in pcc  
232.     collect (min (abs (mod (- i pc) 12)) 
233.                  (abs (mod (- pc i) 12))))) 
234.  
235. ; (all-intervals-from (car '(0 8 11 4 9)) (cdr '(0 8 11 4 9))) 
236. ; => (4 1 4 3) 
237.  

Example 5-20: Finding interval vectors. 

A delineation of the script (for organizational purposes) occupies line 227. The 

all-intervals-from function takes a pc, and a pcc as its arguments (line 229). 
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The function essentially determines what types of intervals occur in a given set, and 

serves as a subroutine for the all-intervals function. After the documentation string 

in line 230, the loop macro is initiated (line 231). The loop iterates as many times as 

the pcc has members and assembles a list with collect by determining an absolute 

number value through the abs function, in which first a pc is subtracted from the 

numerator i, and then uses the abs function where the numerator i is subtracted from 

the pc. In both instances of the abs function, the outcome of the subtractions is filtered 

through mod 12 functions to ensure a result ranging from 0-11. Both absolute number 

values are then supplied as the two required arguments to the min function that returns 

the real number that is closest to negative infinity. Line 235 shows how a call to the all-

intervals-from is performed with (all-intervals-from (car '(0 8 11 4 9)) 

(cdr '(0 8 11 4 9))). The car of PCC {0, 8, 11, 4, 9} is PC 0, while the cdr of 

the same PCC is {8, 11, 4, 9}. The result is shown in line 236. 

238. (defun all-intervals (pcc) 
239.   "Amount of interval types in a set." 
240.   (if (null pcc) nil 
241.     (append  
242.      (all-intervals-from (car pcc) (cdr pcc))  
243.      (all-intervals (cdr pcc))))) 
244.  
245. ; (all-intervals '(0 8 11 4 9)) 
246. ; => (4 1 4 3 3 4 1 5 2 5) 
247.  

Example 5-21: Enumerating interval types in a set. 

The all-intervals function determines how many intervals of a given type 

are contained within a given set, which is provided as a pcc argument (line 238). The 

all-intervals function is recursive in character and is terminated by an if 

statement that determines to stop the recursion as soon as the end of a pcc is reached 
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(line 240). The recursion appends the outcome of the all-intervals-from function 

(with the supplied arguments of the first, or car, value of the pcc, and the rest, or 

cdr, of the same values) with a call to the top of the all-intervals function with the 

remaining PCs of the pcc supplied as argument. The function can be tested with the 

PCC {0, 8, 11, 4, 9} provided as an argument to the all-intervals function (line 245), and 

results in the enumeration of the following intervals (line 246): (4 1 4 3 3 4 1 5 2 

5). 

248. (defun interval-vector (pcc) 
249.   "Set interval vector." 
250.   (let* ((clean-pcc (remove-duplicates pcc)) 
251.          (intervals  
252.           (all-intervals clean-pcc))) 
253.     (loop for i below 6  
254.       collect (count (1+ i) intervals)))) 
255.  
256. ; (interval-vector *testset*) 
257. ; => (0 0 1 1 1 0) 
258. ; (interval-vector '(0 8 11 4 9)) 
259. ; => (2 1 2 3 2 0) 
260.  

Example 5-22: Interval vectors in Set-Theory-Functions.lisp. 

 Lines 248-254 show the interval-vector function that uses a pcc as its 

argument. The let* function creates two local variables, (1) clean-pcc, populated 

with the outcome of the pcc supplied as an argument to the built-in remove-

duplicates function, and (2) intervals, populated with the outcome of the all-

intervals function with the clean-pcc as argument (lines 250-253). Since the 

interval vector consists of six slots the ensuing use of the for loop macro iterates from 

0 to 5 (below 6) and collect(s) a list by counting the intervals that are added to 

themselves via (1+ i). The interval-vector function is called the following way: 

(interval-vector '(0 8 11 4 9)) (line 258), which results in the interval vector 
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of (2 1 2 3 2 0) (line 259), sometimes notated as <212320>.29 

 

5.3.10. Transpositional and Inversional Relationships 

In set theory analysis sometimes questions arise how two different sets may be 

related to each other. There are three methods listed by Straus that accomplish these 

tasks: (1) transpositional relationships – Tn, (2) inversional relationships – TnI, and (3) 

inversion – Iyx, “where x and y are pitch classes that invert onto each other.”30 

 

5.3.11. Transpositional Relationships 

261. ;; ----- Transpositional Relationships ----- ;; 
262.  
263. (defun transpositionally-related (pcc-1 pcc-2) 
264.   "Are two sets transpositionall related?" 
265.   (if (equal (length pcc-1) (length pcc-2)) 
266.     (let* ((nf-set-1 (normal-form pcc-1)) 
267.            (nf-set-2 (normal-form pcc-2)) 
268.            (results (remove-duplicates (mapcar #'(lambda (x) (mod x 12)) 

(mapcar #'- nf-set-2 nf-set-1))))) 
269.       (if (> (length results) 1) 
270.         'no-relationship 
271.         (car results))) 
272.     'cardinality-mismatch)) 
273.      
274. ; (transpositionally-related '(0 1 4) '(3 4 7)) 
275. ; => 3 
276.  

Example 5-23: Calculating transpositional relationships between two sets. 

A comment demarcates the script for organizational purposes in line 261, and 

indicates the purpose of the following section. The transpositionally-related 

function (line 265) requires two arguments, (1) set-1, and (2) set-2. The first 

                                            
29 Rahn, Basic Atonal Theory. Michael L. Friedmann, Ear Training for Twentieth-Century Music 

(New Haven, CT: Yale University Press, 1990). 

30 Straus, 35-38. 
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condition determines whether or not the two sets are of the same length, or if they 

contain the same amount of PCs (line 265). If the sets are not of the same length the 

user will be provided with a brief error message at the REPL (line 272). However, if the 

sets are of the same length, three local variables are established via the let* 

function: (1) nf-set-1 – which is bound to the outcome of a call to the normal-form 

function call with a set-1 argument, (2) nf-set-2 – variable bound to the outcome of 

a call to the normal-form function with a set-2 argument, and (3) results – 

assigned to the outcome of a call to a mapcar function that maps a subtractive 

operation to each member of the two sets, which then are fed to an anonymous lambda 

function that mod twelve(s) the resulting values (lines 266-268). If the results variable 

is larger than 1, not the PC but the length of the set, then the sets are not 

transpositionally related, but if the results variable contains one number, then the 

sets are inversionally related by that number. Using the PCC {0, 1, 4} as set-1 

argument, and the PCC {3, 4, 7} as set-2 argument for the transpositionally related 

function (line 274) results in 3 (line 275). Thus {0, 1, 4} and {3, 4, 7} are transpositionally 

related by T3.  

 

5.3.12. Index Sum 

277. ;; ----- Index Sum ----- ;; 
278.  
279. (defun ixy (pc-1 pc-2) 
280.   "Translates from Ixy (x & y are stacked), and creates the index sum." 
281.   (mod (+ pc-1 pc-2) 12)) 
282.  
283. ; (ixy 0 2) 
284. ; => 2 
285. ; (ixy 11 4) 
286. ; => 3 
287. ; (ixy 9 4) 
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288. ; => 1 
289. ; (ixy 2 1) 
290.  

Example 5-24: Calculating index sums between PCs. 

The “index number offers a simpler way of inverting sets” and being able to tell “if 

two sets are inversionally related.”31 Line 277 delimits the script with a comment. The 

function ixy creates the index sum from two PCs supplied as arguments (line 279-281). 

The pc-1 and pc-2 variables are added to each other and the results are mod 

twelve(d). Lines 283-289 show a series of test calls to the ixy function with their 

corresponding results. Supplying PC 11, and PC 4 to the ixy function (line 285) results 

in the index sum of 3 (line 286). The ixy function will be used as a subroutine in the 

inversionally-related function. 

 

5.3.13. Inversional Relationships 

291. ;; ----- Inversional Relationships ----- ;; 
292.  
293. (defun inversionally-related (set-1 set-2) 
294.   "Are two sets inversionally related?" 
295.   (if (equal (length set-1) (length set-2)) 
296.     (let* ((nf-set-1 (normal-form set-1)) 
297.            (rnf-set-2 (reverse (normal-form set-2))) 
298.            (results (remove-duplicates (mapcar #'ixy nf-set-1 rnf-set-

2)))) 
299.       (if (> (length results) 1) 
300.         'no-relationship 
301.         (car results))) 
302.     'cardinality-mismatch)) 
303.        
304. ; (inversionally-related '(11 8 7) '(4 1 5)) 
305. ; => 0 
306. ; (inversionally-related '(7 8 11) '(7 10 11)) 
307. ; => 6 
308. ; Berios Sequenza for Flute: 
309. ; (inversionally-related '(1 4 6) '(9 11 2)) 
310. ; => 3 
311. ; (inversionally-related '(9 11 2) '(0 3 5)) 
                                            

31 Ibid., 47. 
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312. ; => 2 
313.  
314. ; - Inversional relationship from Ixy pairs manually - ; 
315. ; ----- Berio Sequenza for Flute, Straus, p. 51 ----- ; 
316. ; (mapcar #'ixy (normal-form '(1 4 6)) (reverse (normal-form '(9 11 2)))) 
317. ; => (3 3 3) 
318. ; (mapcar #'ixy (normal-form '(9 11 2)) (reverse (normal-form '(0 3 5)))) 
319. ; => (2 2 2) 
320.  
321. ; ----- Schoenberg Op. 11, No. 1, Straus, p. 56 ----- ; 
322. ; (mapcar #'ixy (normal-form '(7 8 11)) (reverse (normal-form '(7 10 

11)))) 
323. ; => (6 6 6) 
324. ; (ixy 7 11) 
325. ; => 6 
326. ; (mapcar #'ixy (normal-form '(7 10 11)) (reverse (normal-form '(8 9 

0)))) 
327. ; => (7 7 7) 
328. ; (ixy 11 8) 
329. ; => 7 
330.  

Example 5-25: Calculating inversional relationships between Two PCCs. 

The comment in line 291 separates the inversionally-related function 

from the rest of the script for structural intentions. The inversionally-related 

function takes two sets, set-1, and set-2, as arguments (line 293). As was the case 

with the transpositionally-related function, an if/else statement checks 

whether the sets are of equal length, and provides an error message if they are not 

(line 302). Three local variables are defined with the let* function in lines 296-298: (1) 

nf-set-1 – which holds the result of a call to the normal-form function with set-1 

provided as an argument, (2) rnf-set-2 – which is assigned the results of function 

call to the normal-form function with set-2 provided as an argument that is then 

wrapped into the built-in reverse function, and (3) results – which binds the results 

of a call to a mapcar function that maps the ixy function to all members of nf-set-1 

and rnf-set-2 that then is wrapped within the built-in remove-duplicates function. 

If the results variable holds more than 1 number then a 'no-relationship 
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message is supplied to the user at the REPL (line 300). However, if the length of the 

results is exactly 1, then that results variable holds the number representing the 

inversional relationship. By providing PCC {1, 4, 6} and PCC {9, 11, 2} from Berio’s 

Sequenza for Flute to the inversionally-related function as arguments (line 309), 

the resulting inversional relationship would be T3I or I3 (line 310),32 meaning that all 

three mapped PCC members were inversionally related by I3. Extracting the mapcar 

function further illustrates this: (mapcar #'ixy (normal-form '(1 4 6)) 

(reverse (normal-form '(9 11 2)))). The operation results in (3 3 3), and 

is the equivalent of the following expression: IAF# = IEB  = IDC# . Lines 314-329 show the 

extraction functions 

 

5.3.14. Batch Relationships 

Most of the analysis functions will be used repetitively to label chords. The two 

relationship functions can either operate by themselves, as referential look-up functions, 

or they can be used as subroutines in a batch operation. A batch operation involves all 

identified pitch class sets (PCCs in normal form) of a composition that have been 

grouped together into a collection, or PCSC. Here is an example of a PCSC: [[3, 7, 10], 

[4, 7, 11], [6, 9, 1]]. The batch operations will check all PCS in a PCSC against each 

other and determine whether they are related to one another by transposition, or 

inversion. The batch size is not limited by how large a PCSC may be. 

331. ;; ----- Batch Relationships ----- ;; 
332.  

                                            
32 Ibid. 
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333. (defun relations (pccs type) 
334.   "Check for inversional or transpositioan relationships amongst a PCSC." 
335.   (labels ((cleaner (unclean-relations) 
336.                     (if (null unclean-relations) nil 
337.                       (cons 
338.                         (remove '(not-related) (car unclean-relations) 

:test #'equal) 
339.                         (cleaner (cdr unclean-relations)))))) 
340.           (let* ((type-function (cond ((equal type 't) 

#'transpositionally-related) 
341.                                       ((equal type 'i) #'inversionally-

related))) 
342.                  (type-relation (cond ((equal type 't) 

'transpositionally) 
343.                                       ((equal type 'i) 'inversionally))) 
344.                  (dirty-relations 
345.                    (loop for j from 0 below (- (length pccs) 1) 
346.                          collect (loop for i from 0 below (- (length 

pccs) 1)  
347.                                        collect (cond ((or (equal (funcall 

type-function (nth j pccs) (nth i pccs)) 'no-relationship) 
348.                                                           (equal (funcall 

type-function (nth j pccs) (nth i pccs)) 'cardinality-mismatch))  
349.                                                       (list 'not-

related)) 
350.                                                      (t  
351.                                                       (list 
352.                                                         'PCS 
353.                                                         (nth j pccs) 
354.                                                         'and 
355.                                                         (nth i pccs) 
356.                                                         (append 
357.                                                           '(are) (list 

type-relation) '(related by T) 
358.                                                           (list (funcall 

type-function (nth j pccs) (nth i pccs))) 
359.                                                           (cond ((equal 

type 'i) (list 'I))))))))))) 
360.             (cleaner dirty-relations)))) 
361.  
362. ; ----- Using (relations) function ----- ; 
363.  
364. (setf *pcsc* '((3 7 10) (4 7 11) (6 9 1))) 
365.       "A PCS Collection.") 
366.  
367. (setf *pcsc-t-relations* (relations *pcsc* 't)) 
368. ; => (((PCS (3 7 10) AND (3 7 10) (ARE TRANSPOSITIONALLY RELATED BY T 

0))) ((PCS (4 7 11) AND (4 7 11) (ARE TRANSPOSITIONALLY RELATED BY T 0)))) 
369.  
370. (setf *pcsc-i-relations* (relations *pcsc* 'i)) 
371. ; => (((PCS (3 7 10) AND (4 7 11) (ARE INVERSIONALLY RELATED BY T 2 I))) 

((PCS (4 7 11) AND (3 7 10) (ARE INVERSIONALLY RELATED BY T 2 I)))) 
372.  
373. (defun print-relations (relations) 
374.   "Provides a more readible format of the transpositionally and 

inversionally related PCSC." 
375.   (loop for i from 0 below (length relations) 
376.         do (loop for j from 0 below (length (nth i relations)) 
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377.                  do (fresh-line) (princ (nth j (nth i relations)))))) 
378.  
379. (print-relations *pcsc-t-relations*) 
380. ; => 
381. #| 
382. (PCS (3 7 10) AND (3 7 10) (ARE TRANSPOSITIONALLY RELATED BY T 0)) 
383. (PCS (4 7 11) AND (4 7 11) (ARE TRANSPOSITIONALLY RELATED BY T 0)) 
384. |# 
385.  
386. (print-relations *pcsc-i-relations*) 
387. ; => 
388. #| 
389. (PCS (3 7 10) AND (4 7 11) (ARE INVERSIONALLY RELATED BY T 2 I)) 
390. (PCS (4 7 11) AND (3 7 10) (ARE INVERSIONALLY RELATED BY T 2 I)) 
391. |# 

Example 5-26: Batch processing relationships. 

Example 5-26 features the relations function, which takes a PCSC, here 

named pccs, and the type, inversional, or transpositional, as arguments. At its core, 

the algorithm consists of two nested loops that check each PCS against itself and every 

other occurring PCS in the PCSC (lines 345-359). The first loop initiates the counter j 

ranging from 0 to the size of the PCSC and groups all occurring comparisons together 

by PCS (line 345-346). The second nested loop initiates the counter i ranging from 0 

to the size of the PCSC as well, but now iterates through the individual PCS that are 

being compared to the PCS by which they have been grouped (lines 346-347). Before 

the relationships are assembled into a list, two conditions are being checked: (1) does a 

function call to either the transpositionally-related or inversionally-

related function – substituted by a funcall to type-function, which determines 

in its local assignment (lines 340-341) which one of the two functions to use – result in 

either a cardinality-mismatch, or no-relationship (lines 347-348); or (2) what 

to do – t – if no error flag had been raised. In the former case a list is assembled with 

the flag 'not-related (line 349), and in the latter case a list is assembled with 
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what two PCS have been used, and how they are related, or type-relation. The 

results of the doubly nested loops are assigned to the local variable dirty-

relations.  

The type-function local variable (lines 340-341) is bound to either the 

transpositionally-related, or the inversionally-related function 

depending on the outcome of a condition that checks which type has been provided as 

an argument to the relations function. The type-relation variable is bound to 

either the word 'transpositionally, or 'inversionally, depending on the 

conditional outcome provided through the type argument supplied to the relations 

function, and is used in line 357. The local variables have been wrapped by the let* 

function (line 340), and are nested within the labels function (line 335). The local 

recursive cleaner function cleans the dirty-relations variable (line 360), and 

takes the dirty-relations, for clarity called unclean-relations locally, as an 

argument. The recursion ends when all unclean-relations have been processed. 

Each process checks whether or not the '(not-related) flag has been set within the 

unclean-relations, and removes the flag via the remove function with an equality 

:test. That means that all PCS in the PCSC that do not have any relations will be 

filtered out of a list of relations. 

Lines 364-370 display how to use the relations function. In line 364 the global 

variable *pcsc* is bound to PCSC [[3, 7, 10], [4, 7, 11], [6, 9, 1]]. In line 367 the 

*pcsc* variable is supplied along with 't, for “transpositionally related,” to the 

relations function as arguments. The outcome of the function is bound to the 
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*pcsc-t-relations* global variable, and an outcome is listed in line 368. The same 

procedures is applied to binding the *pcsc-i-relations* global variable, except 

that instead of 't, 'i, for “inversionally related,” has been supplied along with *pcsc* 

as an argument to the relations function. The outcome is shown in line 371.  

When the PCSC consists of more than three PCS, as above, reading the 

outcomes of the relations functions displayed at the REPL on one line, can be slightly 

cumbersome to read. For this purpose the print-relations function that takes the 

relations as an argument has been supplied. The function is a doubly nested loop, 

and works the same way as the relations function worked. The function groups the 

relationships together by the first PCS, and lists each relationship on an individual line at 

the REPL. The result of calling the print-relations function with *pcsc-t-relations* 

as an argument is displayed in lines 379-384, and the result of calling the same function 

with the *pcsc-i-relations* argument is shown in lines 366-391. 

 

5.3.15. Set Theory Functions Epilogue 

Many other functions can be added to the Set-Theory-Functions.lisp 

library as needed, as long as they follow the established pattern of creating a specific 

function that uses a supplied PCC as its argument to calculate a value. Yet, the most 

basic set theory functions have been covered and are ready to be integrated in any 

other script. 
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CHAPTER 6  

ANALYSIS 

 

6.1. General Remarks 

From Darkness, Light is listed as Opus 1 in the liner notes of its compact disc.1 

Opus 2 (Shadow Worlds), and Opus 3 (Land of Stone) are included on the same audio 

recording. All three opuses were composed, utilizing the same Emily Howell process, as 

previously described. Opus 2 is written for Disklavier and is reminiscent of Conlon 

Nancarrow’s corpus of player piano pieces, while Opus 3 is a single movement 

composition for a large chamber orchestra partially leans on compositions by Messiaen 

and Ives.2 

Cope explains that all of Opus 1 is a six-movement composition for two pianos 

“built on a decidedly triadic base.”3 Furthermore, Cope explains that even though triadic 

material is being used as the harmonic basis for the composition that the “musical 

syntax no longer follows traditional tonal order,” or that post-tonal tonality is being 

applied throughout.4 In addition, the composer explains that the composition follows “a 

prelude-fugue pairing and the work could have been titled Three Preludes and Fugues 

                                            
1 David Cope, liner notes to Emily Howell: From Darkness, Light, Erika Arul and Mary Jane Cope, 

Centaur CRC 3023, CD, 2010. 

2 Ibid. 

3 Ibid. 

4 Ibid. 
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for Two Pianos.”5 Finally, “From Darkness, Light requires that the two pianists negotiate 

severely gymnastic technical demands while keeping within a tight ensemble 

performance.”6 In addition to Cope’s description of his pieces in the liner notes, it also 

becomes important what the terms prelude and fugue suggest.  

The title of the composition From Darkness, Light, could have been generated 

with the program itself. However, it turns out that Cope, who had named the program 

with the idea to show its relation to Emmy, and in honor of his father’s first name 

(Howell), whom Cope considers a great role model, had become aware, through a quick 

Internet search by his wife, that a real person named Emily Howell actually existed.7 A 

dedicated website to the “real” Emily Howell, was a tribute site to a young woman who 

had been murdered on a semester abroad in Costa Rica.8 Upon learning about the fate 

of this young woman, Cope decided to dedicate all of Emily’s music to the woman, after 

whom it was accidentally named.9 The memorial website featured the alleged Nelson 

Mandela quote that stood out to Cope, which reads, “It is our light, not our darkness, 

that most frightens us.”10 

                                            
5 Ibid. 

6 Ibid. 

7 Ibid. Cope, Tinman Too: A Life Explored, 475-476. Laurabelle Melton, "Emily Brook Howell", 
Mount Holyoke College http://www.mtholyoke.edu/~lbmelton/emily/ (accessed April 12, 2014). 

8 Cope, Tinman Too: A Life Explored, 476. 

9 Ibid., 477. 

10 Ibid., 476. In either case the quote has been widely misattributed to Nelson Mandela, but is 
actually from Marianne Williamson’s book A Return to Love. Brian Morton, "Falser Words Were Never 
Spoken," The New York Times, August 30, 2011. Marianne Williamson, A Return to Love: Reflections on 
the Principles of a Course in Miracles (New York, New York: HarperCollins, 1992), 190-191. 
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6.1.1. Prelude 

The definition found in the Harvard Dictionary of Music explains that the prelude 

is “a piece of music designed to be played as an introduction, e.g., to a liturgical 

ceremony, or, more usually, to another composition, such as a fugue or suite.”11 This 

description clearly defines the prelude as it was commonly used during the baroque 

period, one only has to think of the 48 preludes preceding the 48 fugues of books one 

and two of Bach’s Well-Tempered Clavier (BWV 846–893).  

However, the “genre” dates to the fifteenth and sixteenth centuries, in which 10-

20 measure pieces “remarkable for their free keyboard style, made up of passages and 

chords, in marked contrast to the strict contrapuntal style of contemporary vocal 

music.”12 This meaning is completely obscured during the nineteenth and early twentieth 

centuries through the use of the term by pianistic composers, such as Chopin, Scriabin, 

Debussy, Rachmaninov, describing improvisatory-like alone standing compositions, also 

described as “pianistic character pieces.”13 Wagner’s term Vorspiel is often translated to 

prelude in English.14 

                                            
11 Harvard Dictionary of Music, Second ed. s.v. "Prelude." 

12 Ibid. 

13 Ibid. 

14 Ibid. 
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Figure 6-1: Algorithmic shorthand notation of BWV 846a. 

Bach drew a few figures (Figure 6-1) that show an ascending arpeggiation (first 6 

mm.), followed by half note value blocked chords (mm. 7-14), which then is further 

reduced to just whole note blocked chord values, while leaving the outer shells (highest 

and lowest parts), and the compound inner voice-leading intact.15 Bach could have 

easily just written the prelude in blocked chord notation (Figure 6-2), and thereby would 

clearly have outlined the voice-leading of the five voices (top three voices, and the 

                                            
15 The score clearly indicates that Bach follows a recursive thought pattern in how to realize the 

suggested blocked chord. The example here draws upon the Bach Gesellschaft’s Dörffel edition. Another 
instance in which Bach creates this type of shorthand notation is for the Prelude of the French Suite No. 4 
in E-Flat Major, BWV 815. 
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bottom two voices), but chose to be more explicit, and perhaps left it up to the listener to 

discover the voice-leading. 

David Cope wrote 48 preludes that precede 48 fugues titled The Well-

Programmed Clavier. These sets of preludes and fugues were a result of his re-

combinatory Emmy program. Cope connects his practice of the prelude to the 

conceptually fifteenth-sixteenth-century understanding of the term, by explaining that 

Bach notated an earlier version of his not-yet-famous prelude in C major (BWV 846a) as 

a set of instructions (Figure 6-1), or as Cope calls it an “explicit algorithm.”16 But, Cope 

also explores the idea of combining a Bach style prelude – BWV 846 – with a nineteenth 

century piano character piece – Beethoven’s Moonlight Sonata – as exemplified by 

Sonata for piano (in the style of Beethoven): Part 2.17 

 

Figure 6-2: BWV 846a as blocked chords. 

 

                                            
16 Cope, Computer Models of Musical Creativity, 165. This prelude appears in the Notebook of 

Wilhelm Friedeman Bach, and is also known as BWV 846a, while the prelude appearing in the Well-
Tempered Clavier book is designated with BWV 846b. Cope shows a facsimile print of Bach’s 
handwriting. There are preludes without explicit or orthodox realizations, namely the Prélude non mesuré. 

17 Ibid., 257. Cope, Virtual Music: Computer Synthesis of Musical Style, 469-471, 480-483. 
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6.2. FDL-1 

6.2.1. Traditional Analysis 

Cope describes the first movement as “a Romantic variant of a Bach prelude 

from his Well-Tempered Clavier,” since it “consists almost entirely of upward flowing 

sixteenth notes relentlessly progressing through a chromatic and triadic chord 

progression.”18 The immediate pressing issues brought forth are whose or what type of 

Romantic music language is being utilized, and of which Bach prelude is David Cope 

speaking. In order to answer these questions about FDL-1, a traditional – or “manual,” 

meaning sans ordinateur – chord type analysis will be provided as a point of departure 

to preliminarily map the composition. Since the composition is not provided with a key 

signature (the computer does not care in what “key” it writes a composition), but implies 

the existence of some type of “key” center, at least to humanoids, a few current key-

finding algorithms will be employed and tested even if the key can be determined 

“manually.” 

After the establishment of chord movement and key, creating an algorithm that 

automatically will reduce the triadic PCCs to their smallest possible representation will 

initiate a voice-leading analysis. The results are used in the establishment of voice-

leading, and chord succession rules through the use of machine learning techniques.19 

The machine learning technique stems from one of Cope’s algorithms described in 

                                            
18 Cope, "Emily Howell: From Darkness, Light." 

19 Chord “succession” is used as a substitute for the term “progression,” since “progression” 
implies CPP “tonal” language. 
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Hidden Structure: Music Analysis Using Computers.20 The results of the analysis will be 

expressed in various chord labels, histograms, tables, probability tables, and digraphs.  

The prelude consists of 66 measures, and is about 2 minutes and 35 seconds 

long, according to David Cope’s notes at the beginning of the score. The tempo marking 

is q = 112. However, in order for the piece to last 2:35, the tempo should actually have 

been marked q = 102, which comes close to the performance on the Centaur label 

recording. The intensity level is set to ff and does not change for the duration of the 

piece. FDL-1 belongs to preludes written in a style reminiscent to the style brisé, in 

which “the various members of a sustained chordal texture are sounded not 

simultaneously, but in irregular successions of jagged arpeggiation.”21 However, the 

pattern established here is highly regular, which is sometimes also described as a 

“broken style,” in the “older manner of a digitally motoric German keyboard prelude 

sometimes called an applicatio.”22 The chords are mechanically spun-out according to a 

“preexistent local,” or “arpeggiation pattern,” “into a whole sixteen-note sequence,” an 

                                            
20 Cope, Hidden Structure: Music Analysis Using Computers. 

21 Richard Troeger, Playing Bach on the Keyboard: A Practical Guide (Prompton Place, NJ: 
Amadeus Press, 2003), 52. The “term originated in the twentieth-century to describe seventeenth-century 
lute textures and keyboard textures derived from the lute style,” since “the lute’s technique relies on 
broken chords,” because “full simultaneous chords are not always feasible.” Rings describes, “the 
arpeggio space is highly relevant to the historical and stylistic context of the prelude, which imitates the 
French lutenists' style brisé.” Steven Rings, Tonality and Transformation (New York: Oxford University 
Press, 2011), 9. Ledbetter explains, “during the seventeenth century the expressive moulding of a 
continuum of sound became a fundamental part of the keyboard idiom, equal in importance to the shaping 
of individual contrapuntal lines.” David Ledbetter, "Style Brisé", Grove Music Online. Oxford Music Online. 
Oxford University Press. http://www.oxfordmusiconline.com/subscriber/article/grove/music/27042 
(accessed September 4, 2014). Ledbetter further describes that “these competing compositional priorities 
were ultimately, but straightforwardly, reconciled in the opening prelude of J.S. Bach’s Das 
wohltemperierte Clavier BWV 846. Ibid. 

22 Laurence Dreyfus, Bach and the Patterns of Invention, 3rd ed. (Cambridge, MA: Harvard 
University Press, 2004), 37-38. 
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example of “texture-matching.”23 Additionally, Cope explains: 

Thus, a purely vertical C-E-G triad could be spun out, for instance, into a C-G-E-
G figure to be incorporated into an Alberti-type bass-line, or into a very wide E-C-
G arpeggio to match the widely arpeggiated pattern of the bass-line of a Chopin-
like nocturne. It could even be turned into the very long sequences of notes ‘C-E-
G-C-E-G-C-E; C-E-G-C-E-G-C-E,’ which you may recognize as the melody in the 
first measure of the C major Prelude of Book I of Bach’s Well-Tempered 
Clavier.24 

 

Figure 6-3: BWV 846b, M. 1 - repetition as ornamentation. 

Observing BWV 846b (Figure 6-3), one of the characteristics of baroque 

keyboards music are the elaborate ornamentations, which give the musical gestures 

irregular shapes, one of the literal meanings of baroque’s etymology. Examining m. 1 of 

BWV 846b, the ornamentation is indirect, since it is not represented as a traditional 

mordents, or trill, etc., that is usually connected to a dissonance, but instead is 

represented as a consonant curlicue, bounce-back, or repetition of the first iteration of a 

PCC {G, C, E} triad, over a PCC {C, E} dyad. However, if the curlicue that makes the 

gesture baroque is removed and instead is stretched, then a different representation of 

the musical gesture becomes apparent (Figure 6-4). Furthermore, another 
                                            

23 Cope, Virtual Music: Computer Synthesis of Musical Style, 45-46. “Texture-matching” is one of 
two parts that contribute to “syntactic meshing.” The other part is called “voice-hooking,” which is 
explained later. Ibid., 45. 

24 Ibid. 

1

Repetition
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transformation, or perhaps evolution, of the specific gesture, in which an octave would 

be displaced, the held over dyadic values would be integrated into the arpeggio, and the 

second iteration would happen sequentially octave-sliced above the previous iteration, 

is also possible (Figure 6-5). 

 

Figure 6-4: BWV 846b, M. 1 - stretched. 

 

Figure 6-5: BWV 846b, M. 1 - arpeggio integration, octave displacement & slice. 

The missing item is the anacrusis figure of the dyad. When the dyad from BWV 

846b is placed into retrograde with exact values, then {E, C}, would appear at the very 

end of the measure at b. 4.5, and instead of being held across the measure would 

sound merely as attacks. Once the rhythmic operation is complete the dyad itself can be 

transformed to an octave-displaced dyad of scale degree 5, and two accent marks are 

1

Stretched

1

Dyad Integrated

Octave Sliced
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added. The gesture acts as the hook. Further, the modality is changed from major to 

minor by lowering the third of the arpeggios.  The arpeggiated group of sixteenth notes 

will be grouped together under one large slur (Figure 6-6). Finally, the arpeggio’s 

modality is transformed through a T2 from a C minor arpeggio, to a D minor arpeggio, 

not shown, and the result is the first measure of FDL-1. 

 

Figure 6-6: BWV 846b, M. 1 - final transformations. 

Measures 1-2 contain a d-minor triad that is arpeggiated over the span of six 

octaves. The first piano iterates the d-minor triad (or the unordered collection of pitches 

{D, F, A}) from the D below the left hand bass clef staff (or D2) up to D7, strictly 

adhering to the ascending {D, F, A} structure of its content. The left hand and the right 

hand alternate from four notes of an iteration of the minor triad, so that the first 

arpeggiation consists of the pitch class collection {D, F, A, D}, the second permutation – 

re-ordering – consists of the PCC of {F, A, D, F}, the third permutation of the 

arpeggiation consists of the PCC of  {A, D, F, A}, and the final iterated permutation 

1

Slur added

Dyad reversed and now based on scale degree 5
Modality changed
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consists of {D, F, A, D}.25 Thus, the arpeggiation can be regarded as containing a phase 

shift ratio of 5:4. The ascending motion of the d-minor triad, or PCC {D, F, A}, is 

smoothly connected though a slur spanning from D2-D7. On the second half of b. 4 (or 

b. 4.5) a disruption is introduced to the arpeggiation of the {D, F, A} through the use of 

an octave displaced A3/A2 (scale degree 5, or chord degree 3, or an octave 

transformation has been applied to A3 that results in A2) marked with an accent mark 

(>). However, upon closer inspection the disruption is actually used as the introduction 

or anacrusis to the repetition of the entire ascending d-minor figure in m. 2, functioning 

as a hook that chains itself from the previous to the next measure through this overlap. 

  

Figure 6-7: Chord-A. 

The second piano includes almost an identical arpeggiation of {D, F, A}, with the 

exception that the first permutation in the left hand of the piano begins with D1, but then 

skips to scale degree 5 – A1, and begins ascending from there, so that the first 

permutation consists of {D, A, D, F}, the second permutation consists of {A, D, F, A}, the 

                                            
25 It should be noted that the permutations indicate a suggested performance practice, by which 

the hands cross over, creating a visual effect of the performance that is similar to Webern’s Op. 27. 
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third permutation includes {D, F, A, D}, and the final permutation consists of {F, A, D, F}. 

The final note of the fourth rotation F6 pairs up with the D7 in the right hand of the first 

piano. The second piano features the same type of disruption consisting of an A2/A1 

octave displaced accented anacrusis, or hook. PC A completes the d-minor triad that 

appears vertically on b. 4.75 in the right hands of the first and second piano, and 

creates a strong sense of instability (or tension) through its second inversion, a PCC of 

{A, F, D}. The procedure underlines the anacrusis hypothesis from earlier, since in this 

configuration the PC A longs to move to PC D, which happens in the exact repetition of 

the material in m. 2.  

The procedure is a coupling of {D, F, A} that has been permutated through four 

sixteenth note iterations which are phrase grouped through a slur with an octave-

displaced monad (or dyad), here on scale degree 5, that acts as an anacrusis and 

chains two ascending groups of chords together, i.e. a “hook.”26 This shape is used as 

the template, or macro, for all remaining chords, except for the final chord in m. 66, and 

is directly reminiscent of Cope’s example of Bach’s algorithmic thinking in Figure 6-1 

above. The chord will be labeled as “Chord-A,” and, as previously mentioned; m. 2 is 

populated with another iteration of Chord-A (Figure 6-7).  

In mm. 3-4 the pitch class content of the procedure, or algorithm above, changes. 

Piano 1 keeps D2 as a pedal functioning note at the bottom, but now the content on b. 1 

is {D, E, G, C#}. The content changes on the second b. through a permutation and a 

                                            
26 Cope considers “voice-hooking” as the other important part of “syntactic meshing” (the other 

being “texture matching” – explained above), where “a given fragment’s melodic line should link up 
smoothly with the melodic line of its successor fragment.” Cope, Virtual Music: Computer Synthesis of 
Musical Style, 45. 



   207 

transposition function to {E, G, C#, E}, and now is permutated first on b. 3 to {G, C#, E, 

G}, and then to {C#, E, G, C#} on b. 4, clearly reflecting a fully diminished triad. On the 

second half of b. 4 the octave displaced anacrusis to m. 3 is assigned to G3/G4, which 

represents scale degree five of a diminished scale, or scale degree six in the key of d-

minor. The second piano initiates its ascending arpeggiation with a D1 as a pedal as 

well, so that the first PCC reads as {D, G, C#, E}, which is a permutation from what 

piano 1 plays on b. 1. However, the second piano settles into the diminished PCC of {G, 

C#, E, G} on b. 2, which is permutated to {C#, E, G, C#} on b. 3, and to {E, G, C#, E} on 

b. 4. As the algorithm prescribes scale degree five of the diminished scale G is used as 

an octave displaced (G2/G1) anacrusis to the following measure. As was the case in 

mm. 1-2, b. 4.75 consists of {G, E, C#}, or really {G, G, G, C#, E, E, C#}. The top note in 

the right hand of piano 1, C#7, then acts as a catalyst to return to D, which it does in its 

re-iteration in m. 4 (namely the pedal D2, and D1), and mm. 5-6 where Chord-A is being 

re-used. The {C#, E, G} is labeled Chord-B.27 Therefore, mm. 1-6 include a motion that 

can be understood, from the common practice period perspective, as a move from a d-

minor i chord, to a c#-diminished viiº chord that returns to a d-minor I chord, or 

downward lower neighbor wavelet with a D anchor. 

Whereas mm. 3-4, represented an overall downward motion away from what now 

can be seen only as a D key center, and mm. 7-8 represent an overall upward motion 

that returns to D, or Chord-A in mm. 9-10. Piano 1 in mm. 7, b. 1., begins with the pedal 

D-2, from which the PCC {D, G, Bb, E} emerges. A transposition and permutation 
                                            

27 Even though the D1/D2s are not held over the course of the measure as a whole note, they still 
act as a pedal, since they are re-annunciated with each new measure until the end of the composition. 
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function is applied, and the second beat in the piano 1 part settles in for its next series 

of permutations based upon {G, Bb, E, G}, which would be a iiº chord, from a d-minor 

scale. On b. 3 the transformation brings forth {Bb, E, G, Bb}, and on b. 4 {E, G, Bb, E}. 

However, the anacrusis now just explores the root of the iiº chord, with an octave 

displacement between E3 and E2. But, since E is scale degree 2 a strong downward 

motion or return to D is implied.  

 

Figure 6-8: Chained FDL-1 algorithm. 

The second piano part continues the D pedal, still on D1, and the ascend begins 

with the following PCC: {D, Bb, E, G}. The first transformation occurs, as previously was 

the case on b. 2, and the PCC consists of {Bb, E, G, Bb}, followed by {E, G, Bb, E} on b. 

3, and {G, Bb, E, G} on b. 4. The anacrusis is transposed by on octave, and uses an 

octave displacement between E2 and E1, whose implication was previously discussed. 

etc.
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The iiº chord is labeled Chord-C. Figure 6-8 provides an overview of what has been 

explained so far, in regards of how the algorithm that organizes the PCCs in FDL-1 

works. Additionally, Figure 6-8 also points to how the Chord-A, becomes a sort of a 

node from where other areas are explored in a wave-like motion. 

Chord-A reappears in mm. 9-10, and the pitches in the ascending lines in both 

pianos are identical, but the octave-displaced dyad now utilizes a F3-F2 transformation 

in the first piano, and a F2-F1 transformation in the second piano, hinting at a possible 

new chord or transformation in mm. 11-12. The new chord in mm. 11-12 shall be called 

Chord-D, and consists of the following notes: {G, Bb, D} + D1/D2 pedal. Table 6-1 

shows the previous 12 mm., and how the rest of FDL-1 unfolds. 

Table 6-1: Chord successions in FDL-1. 

M. Trichord 
PPC 

Trichord 
Label 

Dyad 
PPC 

Dyad 
Label Combined Pedal RN 

1-2 {D, F, A} Chord-A {A, A} Dyad-A {D, F, A} D i 
3-4 {C#, E, G} Chord-B {G, G} Dyad-B {C#, E, G} D viiº 
5-6 {D, F, A} Chord-A {A, A} Dyad-A {D, F, A} D i 
7-8 {E, G, Bb} Chord-C {E, E} Dyad-C {E, G, Bb} D iiº 
9-10 {D, F, A} Chord-A {F, F} Dyad-D {D, F, A} D i 
11-12 {G, Bb, D} Chord-D {D, A} Dyad-E {G, A, Bb, D} D (iv) 
13-14 {F, Ab, C} Chord-E {F, F} Dyad-D {F, Ab, C} D iii 
15-16 {C#, E, G} Chord-B {G, G} Dyad-B {C#, E, G} D viiº 
17-18 {D, F, A} Chord-A {A, A} Dyad-A {D, F, A} D i 
19-20 {A, C, E} Chord-F {E, E} Dyad-C {A, C, E} D v 
21-22 {Ab, B, D} Chord-G {F, F} Dyad-D {B, D, F, Ab} D viº 
23-24 {G, Bb, D} Chord-D {Bb, Bb} Dyad-F {G, Bb, D} D iv 

25-26 {F#, A, C#} Chord-H {C#, C#} Dyad-G {F#, A, C#} D #iii 
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M. Trichord 
PPC 

Trichord 
Label 

Dyad 
PPC 

Dyad 
Label Combined Pedal RN 

27-28 {F, Ab, C} Chord-E {F, F} Dyad-D {F, Ab, C} D iii 
29-30 {E, G, B} Chord-I {E, E} Dyad-C {E, G, B} D ii 
31-32 {Eb, G, Bb} Chord-J {Eb, Eb} Dyad-H {Eb, G, Bb} D bII 
33-34 {D, F, A} Chord-A {A, A} Dyad-A {D, F, A} D i 
35-36 {C#, E, G} Chord-B {G, G} Dyad-B {C#, E, G} D viiº 

37-38 {D, F, A} Chord-A {A, A} Dyad-A {D, F, A} D i 
39-40 {E, G, Bb} Chord-C {E, E} Dyad-C {E, G, Bb} D iiº 
41-42 {D, F, A} Chord-A {A, A} Dyad-A {D, F, A} D i 
43-44 {G, Bb, D} Chord-D {D, A} Dyad-E {G, A, Bb, D} D (iv) 
45-46 {F#, A, C#} Chord-H {C#, C#} Dyad-G {F#, A, C#} D #iii 
47-48 {F, Ab, C} Chord-E {F, F} Dyad-D {F, Ab, D} D iii 
49-50 {E, G, B} Chord-I {E, E} Dyad-C {E, G, B} D ii 
51-52 {Eb, G, Bb} Chord-J {Eb, Eb} Dyad-H {Eb, G, Bb} D bII 
53-54 {D, F, A} Chord-A {A, A} Dyad-A {D, F, A} D i 
55 {A, C, E} Chord-F {E, E} Dyad-C {A, C, E} D v 
56 {Ab, B, D} Chord-G {F, F} Dyad-D {B, D, F, Ab} D viº 
57 {G, Bb, D} Chord-D {D, A} Dyad-E {G, A, Bb, D} D (iv) 

58 {F#, A, C#} Chord-H {C#, C#} Dyad-G {F#, A, C#} D #iii 
59 {F, Ab C} Chord-E {F, F} Dyad-D {F, Ab, C} D iii 
60 {E, G, B} Chord-I {E, E} Dyad-C {E, G, B} D ii 
61-62 {Eb, G, Bb} Chord-J {Eb, Eb} Dyad-H {Eb, G, Bb} D bII 
63-65 {D, F, A} Chord-A {A, A} Dyad-A {D, F, A} D i 
66 {D, F, A} Chord-A n/a n/a {D, F, A} D i 

 

Table 6-1 shows how the PPCs contribute to the form of the piece. Several PCC 

groupings emerge: (1) Group 1, consisting of chords A, B, A, C, A, and dyads A, B, A, 

C, D in mm. 1-10, which is repeated in mm. 33-42 with the exception that the dyads are 



   211 

now combined as A, B, A, C, A; (2) Group 2, consisting of chords A, D, E, B, A, and its 

corresponding dyads D, E, D, B, A; and (3) Group 3, consisting of chords A, F, G, D, H, 

E, I, J, A, and dyads A, C, D, F, G, D, C, H, A in mm. 17-34, its literal repetition in mm. 

53-65, or its expanded repetition in mm. 41-65, whereby the chord sequence D, H, E, I, 

J, and its corresponding dyads E, G, D, C, H (note that the sequence here starts with E, 

rather than F, as in mm. 23-24) is inserted between two iterations of {D, F, A} before its 

literal repetition in mm. 41-52. In all cases {D, F, A} always serves as the part of 

departure and arrival. 

Furthermore, the entire composition is based on different expansions of the 

chords in Group 1. The first expansion is based on the motion of chords A => B = > A in 

mm. 1-6, and is represented through the utilization of chords A => (D => E =>) B => A in 

group 2, whereby the parentheses represent the chords that were used for the 

expansion.28 The second expansion is based on the motion of chords A => C => A in 

mm. 5-10. Group 3’s expansion is veiled, since chord C, does not appear in the basic 

form of Group 3. However, chord C reappears transformed as chord I, and J, thus the 

expansion can be represented in the subsequent manner: A => (F => G => D => H => E 

=>) C (I =>, J =>) => A, whereby the first set of parentheses shows the expansion 

before chord C, and the second set of parentheses shows the two substitutions of chord 

C, namely the transformations I, and J. Additionally, as was the case with the micro 

level algorithm that determines how to arpeggiate the chord succession, the different 

                                            
28 The double arrow here is used to indicate the motion from one chord to another as explained 

by Tymoczko. Dmitri Tymoczko, A Geometry of Music: Harmony and Counterpoint in the Extended 
Common Practice (New York: Oxford University Press, 2011), 44. Cope, Virtual Music: Computer 
Synthesis of Musical Style, 45.  
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sections are chained together through the use of the overlapping {D, F, A} PCC on the 

macro level. 

The chord successions of Table 6-1 clearly indicate the abandonment of CPP’s 

functional harmony, and give rise to a different system typical of post-tonal “tonality” 

practice. One only has to notice the absence of the V chord and all its implications in the 

entire movement, unless the viiº chord is considered as a V chord an omitted root. The 

chord successions are governed by voice-leading principles, and their corresponding 

transformations. Creating a middle ground style PCC reduction, since the majority of the 

PCC members are repeated, can substantiate this claim. A middle ground PCC 

reduction can be created as an algorithmic procedure. 

Before any type of reduction is created though, a few parameters concerning the 

composition will need to be gathered in order to simplify the automated reduction 

process. Therefore a few statistics will be gathered: (1) how many notes are there in the 

composition, (2) what is the ambitus, or range of these notes, (3) a histogram of the 

pitch space, meaning how many discrete pitches occur how many time, and (4) a 

histogram of pitch classes that will be used to determine a pitch center.29 

 

6.2.2. Counting Pitches in FDL-1 

To know how many notes are contained in a composition helps in creating 

percentage values, or float point values between 0 and 1 when creating histograms. The 

0-1 values then can be used to create pitch weights for further probability studies. A 

                                            
29 A histogram is a graphical representation of distributed data. 
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note count is created the following way in Common Lisp: 

1. (defparameter *score* (score-loader-midi "Scores/" "1-Prelude.midi")  
2.   "Holds a score.") 
3.  
4. (defun pitch-count (score) 
5.   "Prunes score to include pitches only." 
6.   (labels ((pitches-only (score-data) 
7.                (if (null score-data) () 
8.                  (cons 
9.                   (cadr (car score-data)) 
10.                   (pitches-only (cdr score-data)))))) 
11.     (length (pitches-only score)))) 
12.  
13. ; (pitch-count *score*) 
14. ; => 2349 
15.  

Example 6-1: Counting pitches in a composition. 

Line 1 loads the MIDI data into the (defparameter *score*) variable via the 

(score-loader-midi) function (the (score-loader-midi) function is part of a 

subset of functions described in Appendix B, section B.1. – every time midi data is 

loaded a reference to that function will be made). Note that here defparameter is 

used, which is a way of declaring a global variable that can be changed anytime during 

the operation of the program, unlike defvar. In lines 4-11 the pitch-count function is 

declared. The pitch-count function uses a score as its argument. Its purpose it to 

strip each event (to recall, a note event contains the following information: (0 38 147 

2 90)) from all of its data, and assemble a list that only contains pitches, without start 

times, end times, channel numbers or velocities. The task is achieved through the 

label function that declares a local recursive pitches-only function (lines 6-10) that 

takes score-data as its argument. A conditional if statement terminates the 

recursion (line 7) by checking if the last item (null) of the score-data has been 

reached. If so, the pitches-only function returns a list of items, if not the function 
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builds a list (cons – line 8) by only including the second item (cadr – an “older way” 

of using second) of each first occurring event (car – an “older” way of using first) in 

line 9. The remaining events (cdr – another way of saying rest) are passed back to 

the top of the pitches only-function (line 10) as an argument. In order to calculate 

the note count of the composition, the built-in Common Lisp length function is called 

by utilizing the pitches-only function with the score-data as a supplied parameter, 

in line 11. Line 13 shows how to call the function (commented out, but if the cursor is 

place behind the closing parenthesis the function will evaluate at the REPL). The result ( 

; => ) of this operation is: FDL-1 consists of 2349 notes. The pitch count will be used 

in the following section to map the pitch space. 

 

6.2.3. Defining the Pitch Space of FDL-1 

The range of a composition shows what precise pitch space a composition 

occupies. Finding the lowest and the highest note of a composition calculates its range.   

Example 6-2 shows how this task can be completed in Common Lisp: 

1. (defparameter *score* (score-loader-midi "Scores/" "1-Prelude.midi") 
2.   "Loads MIDI data from file and stores it in a variable.") 
3.  
4. (defun pitches-only (score) 
5.   "Prunes MIDI list to include pitches only." 
6.   (if (null score) () 
7.     (cons 
8.      (cadr (car score)) 
9.      (pitches-only (cdr score))))) 
10.  
11. (defun midi->pc (pitch) 
12.   "Translate MIDI pitches into numeric pitch classes." 
13.   (mod pitch 12)) 
14.  
15. (defun pitch-space (pitches) 
16.   "Find the ambitus, or range of a composition." 
17.   (let* ((only-pitches (pitches-only pitches)) 
18.          (low (first (sort (copy-list only-pitches) #'<))) 
19.          (high (first (last (sort (copy-list only-pitches) #'<))))) 
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20.     (format t "~%Lowest Note: ~T~a~T(~a)~%Highest Note: ~a~T(~a)~%Range: 
~14T~a Semitones" 

21.             low (midi->pc low) 
22.             high 
23.             (midi->pc high) 
24.             (- high low)))) 
25.  
26. ; (pitch-space *score*) 
27. ; => 
28. #|  
29. Lowest Note:  22 (10) 
30. Highest Note: 105 (9) 
31. Range:        83 Semitones 
32. |# 
33.  

Example 6-2: Finding the range of a composition. 

As was the case with Example 6-1, first, a defparameter *score* is set to 

hold the MIDI data of the composition to be examined in line 1 (again, the (score-

loader-midi) function is explained in Appendix B, on p. 400).30  Lines 4-9 prune the 

midi data to only include pitches (this function has been re-used from Example 6-1). The 

(defun midi->pc) function translates MIDI pitch numbers to PC numbers, so MIDI 

pitch 60 equals PC 0, etc (lines 11-13). The following pitch-space function, lines 15-

24, requires the pitches from a score as an argument. Three local variables are 

created with the let* function (any local variable that is declared with a let* function 

is immediately available as a variable in the assignment of following local variables). 

The results of a call to the pitches-only function with pitches supplied as an 

argument (line 17) are assigned to the first variable only-pitches. The second 

variable low makes a copy of the list to be sorted (in Common Lisp the sort function 

destroys the contents of the only-pitches local variable, but since the parameter is 

                                            
30  A note in reading the code: If line 2 of the code appears to have skipped a line, it means that 

the previous code from line 1 did not fit into the same line from where it originally is located in the program 
file. 
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still needed later, a copy is made), sorts all the pitches from the lowest to the highest 

note of the composition, and then is populated with the first member of the sorted list, 

which is the lowest note (line 18). The third variable high uses exactly the same 

procedure, except that it is being populated with the last member of the sorted pitch list. 

The format function creates a readable output of the program, by creating a fill-in-the-

blanks sentence that (1) displays the lowest pitch in MIDI format, and provides its PC 

name by a call to the (midi->pc) function with a pitch supplied as an argument, (2) 

displays the highest pitch as both a MIDI number and a PC number, and (3) displays 

the range of the pitch space of the examined composition in semitones. In line 26 the 

pitch-space function is called with a *score* argument in order to process all the 

above-described procedures, and produces the following output:31 

Lowest Note:  22 (10) 
Highest Note: 105 (9) 
Range:        83 Semitones 

Example 6-3: Pitch space range of FDL-1. 

 

6.2.4. Histograms of FDL-1 

Now that the pitch space the composition occupies has been established by the 

analyst, the next step is to try to find out how the pitches are precisely distributed over 

the established range of the composition. Creating a pitch space histogram, can aid in 

this task. Several aspects of the previous two code examples can be reused, as follows: 

1. ;; ----- global variables ----- ;; 
2.  

                                            
31 Observing the output from the range, the lowest note of the composition occurs in mm. 23-24, 

while the highest not of the composition occurs in mm. 19-20, and m. 55. 
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3. (defparameter *score* (score-loader-midi "Scores/" "1-Prelude.midi") 
4.   "Holds MIDI data.") 
5.  
6. ;; ----- functions ----- ;; 
7.  
8. (defun pitches-only (score) 
9.   "Prunes MIDI list to include pitches only." 
10.   (if (null score) () 
11.     (cons 
12.      (cadr (car score)) 
13.      (pitches-only (cdr score))))) 
14.  
15. ; (pitches-only *score*) 
16. ; => (38 26 41 33 45 ... ) 
17.  
18. (defun ps-histogram (notes &optional (counter (first (sort (copy-list 

notes) #'<)))) 
19.   "Creates raw pitch space histogram." 
20.   (if (eq counter (+ 1 (first (last (sort (copy-list notes) #'<))))) () 
21.     (cons 
22.      (list counter (count counter notes)) 
23.      (ps-histogram notes (+ counter 1))))) 
24.  
25. ; (ps-histogram (pitches-only *score*)) 
26. ; => ((22 2) (23 0) (24 0) (25 5) ... (105 3)) 
27.  
28. (defun pitch-space-histogram (score) 
29.   "Prunes score first and then creates histogram." 
30.   (ps-histogram (pitches-only score))) 
31.  
32. ; (pitch-space-histogram *score*) 
33. ; => ((22 2) (23 0) (24 0) (25 5) ... (105 3)) 
34.  
35. (defun order-by-midi (psh direction) 
36.   "Orders pitch space histogram by MIDI pitches." 
37.   (let ((new-psh (sort (copy-list psh) direction :key #'first))) 
38.     new-psh)) 
39.  
40. ; (order-by-midi (pitch-space-histogram *score*) #'<) 
41. ; => ((22 2) (23 0) (24 0) (25 5) ... (105 3)) 
42.  
43. (defun order-by-count (psh direction) 
44.   "Orders pitch space histogram by count." 
45.   (let ((new-psh (sort (copy-list psh) direction :key #'second))) 
46.     new-psh)) 
47.  
48. ; (order-by-count (pitch-space-histogram *score*) #'>) 
49. ; => ((38 100) (45 90) (57 71) (41 69) ... (104 0)) 
50.  
51. (defun show (psh) 
52.   "Dumps histogram data to the screen." 
53.   (format t "~%~a ~a~{~%~{~T~A~^~5T~}~}" 'MIDI 'Count psh)) 
54.  
55. ; (show (pitch-space-histogram *score*)) 
56. ; =>  
57. #| 
58. MIDI COUNT 
59.  22   2 
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60.  23   0 
61.  24   0 
62.  25   5 
63.  ... 
64.  105  3 
65. |# 
66.  
67. (defun save (psh to-where) 
68.   "Saves histogram to a .csv file." 
69.   (with-open-file (csv  
70.                    (concatenate 'string *this-path* to-where) 
71.                    :direction :output 
72.                    :if-exists :supersede 
73.                    :if-does-not-exist :create) 
74.     (format csv "~%~a,~a~{~%~{~A~^,~}~}~%" 'MIDI 'Count psh))) 
75.  
76. ; (save (pitch-space-histogram *score*) "Data/Pitch-Space-Histogram.csv") 
77. ; =>  
78. #| 
79. MIDI,COUNT 
80. 22,2 
81. 23,0 
82. 24,0 
83. 25,5 
84. ... 
85. 105,3 
86. |# 
87.  

Example 6-4: Generating data for a pitch space histogram in Common Lisp. 

 In the first line a script delimiter is provided. Lines 3-4 have been reused from the 

previous example, and load the MIDI score. The function pitches-only in lines 8-13 

has been reused from the previous example, and removes all non-pitch data. An 

outcome of a call to the pitches-only function with a score supplied as an argument 

is proved in line 15, followed by an abridged result set in line 16. Lines 18-23 show how 

to create the pitch class histogram via the ps-histogram function: the list is built by 

(1) recursively iterating through all the pitches, (2) counting the pitches one at a time, (3) 

associating the midi pitches with their corresponding count, all while sorting the pitches 

from the lowest to the highest MIDI pitch value. Line 25 shows how to make a call to the 

ps-histogram function with the outcome of a call to the pitches-only function 
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supplied with a score parameter as an argument, while line 26 provides an abbreviated 

outcome. The pitch-space-histogram function in lines 28-30 is supplied with the 

score argument, and nests the following function call, (ps-histogram (pitches-

only score)), in order to create a one-step call to the pitch-space-histogram 

function with a *score* argument (line 32). A truncated outcome is shown in line 33. 

The order-by-midi function provides the possibility to order the histogram by 

MIDI pitches in lines 35-38. Line 40 shows how nesting the (pitch-space-

histogram *score*) function within the order-by-midi function with an additional 

direction argument can be used to sort the pitch space histogram (line 41 shows the 

outcome of the operation, which is also the default outcome when first creating the pitch 

space histogram). In lines 43-46, the possibility is given to order the pitch space 

histogram according to how many occurrences of a MIDI pitch occur through the 

order-by-count function. An example of a function call and a results set are shown 

in lines 48 and 49 respectively. 

The show function formats a pitch space histogram to a human readable format 

and displays the data to the screen in lines 51-53. Line 55 shows a function call, while 

lines 58-64 show the shortened result that will be displayed at the REPL. Finally, the 

save function (lines 67-74), formats the histogram as CSV output, and saves it to a 

CSV file. Line 76 show how the function can be used at the REPL, and lines 79-85 show 

a resulting abridged CSV list.   
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Figure 6-9: Pitch space histogram of FDL-1, sorted by MIDI. 

Figure 6-9 and Figure 6-10 show the pitch space histograms that can be 

generated with the two resulting CSV files, i.e. the first CSV file was generated by 

ordering the pitch space histogram according to MIDI pitches – (1) (order-by-midi 

(pitch-space-histogram *score*) #'<) (2) (save (pitch-space-

histogram *score*) "Data/Pitch-Space-Histogram-MIDI.csv")– while the 

second CSV file was created by ordering the pitches according to their count – (1) 

(order-by-count (pitch-space-histogram *score*) #'>), (2) (save 

(pitch-space-histogram *score*) "Data/Pitch-Space-Histogram-

Count.csv").32 The number on top of each bar in Figure 6-9 shows how many times a 

                                            
32 It would be no problem to add a graphing utility directly into the program at a later point. 
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MIDI pitch occurs, while the x-axis shows the pitch space utilized in ascending order, 

and provides an orientation of the pitch space contour. 

Figure 6-10 shows the same number on top of each bar, but provides a clearer 

view since its x-axis is sorted according to occurrences, rather than pitches. The pitch 

with the highest pitch count is D2 (= MIDI pitch 38), followed by A2, A3, and F2.33 The 

fifth bar is D1, followed by F3, and D3. Statistically that places the key center around PC 

2, or D. Observing the pitch space histogram provides a very broad picture of centricity. 

However, creating a pitch class histogram can shed more light on pitch centricity, by 

providing a more concentrated look around more generic PCs.  

 

Figure 6-10: Pitch space histogram of FDL-1, sorted by count. 

1. ;; ----- global variables ----- ;; 

                                            
33 Figure 6-10 clarifies the frequency of occurring pitches. 
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2.  
3. (defparameter *score* (score-loader-midi "Scores/" "1-Prelude.midi") 
4.   "Holds MIDI data.") 
5.  
6. ;; ----- functions ----- ;; 
7.  
8. (defun pitches-only (score) 
9.   "Prunes MIDI list to include pitches only." 
10.   (mapcar #'cadr score)) 
11.  
12. ; (pitches-only *score*) 
13. ; => (38 26 41 33 ... 26) 
14.  
15. (defun midi->pc (pitches) 
16.   "Converts list of MIDI pitches to a list of PCs 0-11." 
17.   (mapcar (lambda (x) (mod x 12)) pitches)) 
18.  
19. ; (midi->pc (pitches-only *score*)) 
20. ; => (2 2 5 9 ... 2) 
21.  
22. (defun pre-pc-histogram (notes &optional (counter 0)) 
23.   "Creates pitch class statistics." 
24.   (if (equal counter 12) () 
25.     (cons 
26.      (list counter (count counter notes)) 
27.      (pre-pc-histogram notes (+ counter 1))))) 
28.  
29. ; (pre-pc-histogram (midi->pc (pitches-only *score*))) 
30. ; => ((0 100) (1 130) (2 432) (3 84) (4 228) (5 319) (6 50) (7 304) (8 

94) (9 350) (10 178) (11 80)) 
31.  
32. (defun pc-histogram (score) 
33.   "Combines previous subroutine to create PC histogram." 
34.   (pre-pc-histogram (midi->pc (pitches-only score)))) 
35.  
36. ; (pc-histogram *score*) 
37. ; => ((0 100) (1 130) (2 432) (3 84) (4 228) (5 319) (6 50) (7 304) (8 

94) (9 350) (10 178) (11 80)) 
38.  
39. (defun order-by-pitch (pch direction) 
40.   "Orders pitch space histogram by MIDI pitches." 
41.   (let ((new-pch (sort (copy-list pch) direction :key #'first))) 
42.     new-pch)) 
43.  
44. ; (order-by-pitch (pc-histogram *score*) #'<) 
45. ; => ((0 100) (1 130) (2 432) (3 84) (4 228) (5 319) (6 50) (7 304) (8 

94) (9 350) (10 178) (11 80)) 
46.  
47. (defun order-by-count (pch direction) 
48.   "Orders pitch space histogram by count." 
49.   (let ((new-pch (sort (copy-list pch) direction :key #'second))) 
50.     new-pch)) 
51.  
52. ; (order-by-count (pc-histogram *score*) #'>) 
53. ; => ((2 432) (9 350) (5 319) (7 304) (4 228) (10 178) (1 130) (0 100) (8 

94) (3 84) (11 80) (6 50))  
54.  
55. (defun show (pch) 
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56.   "Dumps histrogram data to screen." 
57.     (format t "~%Histogram~%PC~2T~TCount~{~%~{~d~^~3T~T~}~}" pch)) 
58.  
59. ; (show (pc-histogram *score*)) 
60. ; => 
61. #| 
62. Histogram 
63. PC  Count 
64. 0   100 
65. 1   130 
66. 2   432 
67. ... 
68. 11  80 
69. |# 
70.  
71. (defun save (pch path filename) 
72.   "Saves histogram to a .csv file." 
73.   (with-open-file (csv  
74.                    (concatenate 'string path filename) 
75.                    :direction :output 
76.                    :if-exists :supersede 
77.                    :if-does-not-exist :create) 
78.     (format csv "~%~a,~a~{~%~{~A~^,~}~}~%" 'PC 'Count pch))) 
79.  
80. ; (save (pc-histogram *score*) *this-path* "Data/Pitch-Class-Histogram-

PC.csv") 
81. ; => 
82. #| 
83. PC,COUNT 
84. 0,100 
85. 1,130 
86. 2,432 
87. ... 
88. 11,80 
89. |# 
90.  

Example 6-5: Creating a PC histogram in Common Lisp. 

 The first line in Example 6-5 delineates and organizes the script. Lines 3-4 here 

are the same as in the previous examples (Example 6-1, Example 6-2, Example 6-4). 

The pitches-only function has been adapted from the previous two examples 

(Example 6-1, Example 6-2, Example 6-4) in lines 8-10, except that the recursion is now 

being handled by the higher-order mapcar function that maps the cadr function over 

the score to create the pitches only list. Line 12 show how to call the pitches-only 

function with the *score* argument, and line 13 shows a truncated results set. The 
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midi->pc function is new in this program, and through a lambda calculation converts 

MIDI pitches to PCs (lines 15-17). Line 19 shows how to use the midi->pc function 

with a nested pitches-only function and the *score* supplied as an argument. The 

result of the function call is listed in abbreviated form in line 20.  

 The following pre-pc-histogram function counts all pitches belonging to a 

certain PC through recursion, builds a list, and pairs the count results with the PCs 

(lines 22-27). The argument for the pre-pc-histogram function is provided through 

the use of the midi->pc function that itself nests the pitches-only function as an 

argument. The argument of the nested pitches-only function is the *score* 

variable. The function call is shown in line 29, and line 30 shows the resulting histogram. 

In order to create an easier to use function, the pc-histogram function has been 

provided. A *score* needs to be supplied as an argument to the pc-histogram 

function. The function includes the (pre-pc-histogram (midi->pc (pitches-

only score))) function call, and therefore the simplified function call becomes (pc-

histogram *score*) – line 36 – resulting in a histogram, line 37.  

The two following four function definitions of order-by-pitch, order-by-

count, show, and save (lines 39-89) are taken from Example 6-4, and have been 

slightly modified. Lines 44, 52, 59, and 80 show how the functions can be used to create 

two different PC histograms (again, see Example 6-4 for detailed description). Only the 

save function is used slightly differently, since two different file names need to be 

created (one presumably for the outcome of the order-by-pitch function, and one 

for the outcome of the order-by-count function. Thus the save function takes the 
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(pc-histogram *score*), a directory path (*this-path*), a local path, and a file 

name (e.g: “Data/Pitch-Class-Histogram-MIDI.csv”,” Data/Pitch-Class-

Histogram-Count.csv”) as its arguments. As is evident from this example, the 

previous examples can all be rolled out into one unified program. In either case Figure 

6-11 and Figure 6-12 show how the CSV data outcomes can be modeled graphically. 

 

Figure 6-11: PC histogram FDL-1, sorted by PCs. 

 
Figure 6-11 shows the pitch class distribution of FDL-1, and one can observe 

how the pattern actually maps onto the large pitch space histogram from Figure 6-9, as 

if it was a reduction of sorts. Figure 6-12 creates a clear picture of how the twelve equal 

tempered notes that divide the octave are distributed as PCs, and can be mapped onto 

the much larger histogram from Figure 6-10. The most common PC is D, followed by A 

and F, providing a definite key center of D, and a strong sense of D minor, which is 
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underlined by the use of PC F#, the least used PC.34 Interestingly enough though, PC G 

is only by 15 occurrences less common than PC F. 

                                            
34 This is somewhat of a simplification from other more sophisticated key finding schemes, and 

would have to be fleshed out further in the future. For example, an extra module of the Humdrum toolkit 
utilizes, which music21 also uses, called keycor consists of five different key-profile weights to which pitch 
content of a composition is compared through correlation. The correlations consist of values that indicate 
the likelihood of whether a pitch belongs to a certain key, for twelve pitches. In order to find the right 
scheme, provided the Humdrum command line tools are installed on a given system, a music 
representation file format would first need to be converted in to the Humdrum native data format (.krn) 
with the mid2hum, or xml2hum commands (e.g.: mid2hum [input] [> output]). The second step 
involves running the keycor command, with one of the supplied flags that control formatting what type of 
data, and what type of histogram is to be used. Thus, running keycor --temperley 1-Prelude.krn, 
results in: The best key is: D Minor. Furthermore, running keycor -f 1-Prelude.krn (the –f 
flag shows the extracted note histogram of the input), produced the subsequent values: 
 
The best key is: D Minor 

Pitch[0] = 6.25 
Pitch[1] = 8.125 
Pitch[2] = 31.6875 
Pitch[3] = 5.25 
Pitch[4] = 14.25 
Pitch[5] = 21.8125 
Pitch[6] = 3.125 
Pitch[7] = 19 
Pitch[8] = 5.875 
Pitch[9] = 23.75 
Pitch[10] = 11.125 
Pitch[11] = 5 
 
The results correspond to the results achieved with the algorithm presented in this study, except that it is 
expressed in percentage points. In either case, it should be noted, the weights of the key-profiles are 
based on CPP compositions. Harvard Dictionary of Music.  

In music21, at the python REPL called Idle, provided music21 has been installed on a given system, a 
musicXML file needs to be imported into the system as well, but then is assigned to a variable: sCope = 
converter.parse(‘/path/to/Corpus/1-Prelude.xml'). Once the variable has been assigned it can get attached 
to a process, the creation of one of the key analysis objects music21 provides:  
>>> p = analysis.discrete.KrumhanslSchmuckler() 
>>> p. getSolution(sCope) 
The solution the program provides reads: <music21.key.Key of d minor>. The consequent key finding 
algorithms are provided as objects in music21 (in addition to the one shown 
above): .TemperleyKostkaPayne(), .KrumhanslKessler(),  
.BellmanBudge(), .AardenEssen(). All of the algorithms are based on exhaustive studies for which the 
objects are named. 
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Figure 6-12: PC histogram FDL-1, sorted by count. 

 

6.2.5. The Chord Compression Script 

Now that a key center, and a probable key have been found a chord reduction 

can proceed. The following strategy will by used for the following reduction: (1) 

reduction for piano 1, (2) reduction for piano 2, and (3) combined reduction for both 

instruments. Here are some considerations in creating a reduction of the first piano part. 

A harmonic rhythm, or the interval at which chords are used needs to be specified, so 

that any rhythmic values will be fused into a blocked chord value. So, if four groups of 

sixteenth notes form one rhythmic harmonic interval (in FDL-1 one measure), they will 

be reduced to a stacked chord consisting of whole notes. 

Both the lowest and highest notes of each chord form the outer shell of a chord. 

The lowest note needs to be the bottom note of the reduced chord. The highest note of 

the chord needs to be the top note of the reduced chord. The resulting shell can be 

reduced to a two-octave range. The inner voices of a chord are being reduced to only 

2 9 5 7 4 10 1 0 8 3 11 6

50
808494100

130
178

228

304319
350

432



   228 

singular instances of themselves with their distribution in tact, in order to show the 

correct voice-leading procedure. That means that a chord consisting of a {D, F, A} PCC, 

begins with D2 and repeats the order of its content consecutively, as a D-minor triad as 

D2, F2, A2, D3…D7, can be reduced to contain a D3 as the lower shell member, a D5 

as its upper shell member, and a F4 and a A4 as its inner voice members. The dyad at 

the end of each measure acting as an anacrusis will be separated during this procedure. 

The resulting PCCs will then be labeled through an automated process that consists of 

creating an ordered PCS, and matching it up with a catalogued PCS name, such as 3-1 

(0 1 2) from a database. 

The procedure is not much different from what is known in algorithmic information 

theory, described by Cope in Hidden Structure, as data compression.35 Cope describes 

how a string of data with a recurring pattern can be reduced from 2, 4, 5, 7, 8, 2, 4, 5, 7, 

8 (10 characters) to 24578r (6 characters), requiring to be represented with only 60% of 

the data necessary, while at the same time still containing all the information necessary 

to be decompressed to its original version through the letter ‘r’ that indicates the pattern 

to be repeating once.36 However, the chord succession of Table 6-1, does not 

necessarily constitute being a real data compression, since there is no indication of how 

the chords in the succession can be decompressed accurately to their original state.  

A certain amount of data is lost with data compression in MIDI, which Cope cites 

                                            
35 Cope, Hidden Structure: Music Analysis Using Computers, 57-62. 

36 Ibid., 60. 
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as an example of “lossy” compressed music data representation.37 Therefore, Cope 

suggests prepending the term AIT with the letter M, for musical.38 As an example of 

compression as used in musical algorithmic information theory, Cope shows that the 

string 2 4 5 7 3 5 6 8 can be reduced to 2457t1, where t = transposition, and 1 = one 

(half) step.39 Thus it would be ideal to create a symbol for the range of each chord 

(easily done with the range finding algorithm previously mentioned), the outer shells of 

the chord will already have been calculated, and a symbol to count the iterations of each 

chord member, in order to be able to decompress the reduced information, if so 

desired.40 These two bits of data will be included as part of the chord labeling scheme. 

In previous examples (Example 6-1, Example 6-2, Example 6-4, Example 6-5) it 

was shown how an outside score representation was loaded into a program. It was also 

clarified that in this particular work the loaded score representation used is a MIDI 

score.41 While loading small bits of music, i.e. a single voice in a measure, or a few 

                                            
37 Ibid., 62. 

38 Ibid. 

39 Ibid., 57-62. 

40 The chord succession reduction, therefore, is not a chord reduction in the Schenkerian sense, 
since such a reduction would be destructive. 

41 The composer provided only a score in .pdf format, which shows the music represented in 
traditional notation. Therefore a midi score first had to be generated. Initially MakeMusic’s Finale, 
commercially available notation software, was used to create a MIDI representation of the score. 
However, it turns out that the byte data generated by Finale to encode the music representation as MIDI 
was inaccurate, i.e. a sixteenth note rather than being represented by a numeric value of 250, would 
range anywhere between 237 and 265, which made the Finale MIDI representation not very accurate. 
Since the entire piece was already typeset in Finale, the scores were exported via MusicXML into 
MuseScore, freely available open-sourced notation software, which was then able to generate very 
accurate MIDI representations without any inconsistencies. Cope, Hidden Structure: Music Analysis Using 
Computers, 57-62. Additionally, it was also found that MIDI representations generated by LilyPond were 
just as accurate as the MIDI representations generated in MuseScore. In fact, all musical examples in this 
dissertation have been typeset in LilyPond. "Musescore" http://musescore.org/ (accessed October 31, 
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measures of music, or a phrase of music is not very difficult to manipulate, a larger set 

of music becomes exponentially more difficult to manipulate and operate on. When 

loading a MIDI representation of FDL-1 into the program, it came to light that the 

composition consists of 2,349 distinct musical events. 

Therefore, a more efficient method is needed to be able to go through this data. 

In music21 one is able to select a specific voice, and specific measures, and measure 

subdivisions, or beats. The capability to select parts, measures, or beats and isolate 

them for “viewing,” seems to be a perfectly reasonable addition to any set of algorithms 

used for analysis. For further consideration, this set of capabilities should be re-useable 

for the rest of the composition in this study, and should be build in such a matter that it 

can be copied and pasted to any set of algorithms created for analysis, or even better, 

be able to be loaded into a program to be created. The following analysis prototype 

shows exactly how to create the needed score manipulation features.42 

 

6.2.6. Defining Global Variables 

35. ;; ----- Global Variables ----- ;; 
36.  
37. (defparameter *score* (score-loader-midi "Scores/" "score-fdl-prelude-

1.midi")  
38.   "Holds MIDI data.") 
39.    
40. (defparameter *piano-1* nil  
41.   "Contains the first piano part.") 
42.    
43. (defparameter *piano-2* nil  

                                                                                                                                             
2014). Furthermore, all MIDI score representations have been set 60 beats per minute, in order to ensure 
one type of label for a note length in milliseconds. 

42 Since the ensuing code example is quite a bit longer than all previous examples it will be 
broken up into several different sections. The reader will know that the same program is being discussed, 
by the use of sequentially continuous line numbers. 
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44.   "Contains the second piano part.") 
45.    
46. (defparameter *time-signature* nil  
47.   "The time signature of a composition.") 
48.    
49. (defparameter *measure-count* nil  
50.   "How many measures contained in a composition.") 
51.    
52. (defparameter *music-set* nil  
53.   "A set of numbered measures to complete analytical operations on.") 
54.    
55. (defparameter *segmented-music-set* nil 
56.   "Keeps a measured music set according to a segmentation scheme.") 
57.    
58. (defparameter *pitches-music-set* nil 
59.   "A set only containing measure numbers and pitches.") 
60.    
61. (defparameter *compressed-sets* nil 
62.   "Measured compressed music sets.") 
63.    
64. (defparameter *note-values* 
65.   '((maxima 32000) 
66.     (longa 16000) 
67.     (breve 8000) 
68.     (whole 4000) 
69.     (half 2000) 
70.     (quarter 1000) 
71.     (eighth 500) 
72.     (sixteenth 250) 
73.     (thirtysecond 125) 
74.     (sixtyfourth 63)) 
75.   "Note values and their corresponding MIDI representations in 

milliseconds.") 
76.  

Example 6-6: Analysis prototype - global variable bindings. 

 The first items loaded into the analysis script have been re-used from previous 

examples, and are listed on p. 402. Example 6-6 begins with line 35, and the code 

declares a series of global variables that will be used throughout the program prototype. 

Line 35 begins with a delineation of the script in order to maintain readable code. Lines 

37-38 place the MIDI representation of the music into a defparameter named 

*score*, as has been done with previous examples. Unlike in previous examples the 

defparameter variable also contains a documentation string. The code should ideally 

be self-documenting, so the documentation string was added. If at any point in the 
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programming process one wonders what type of information a particular variable 

contains, the built-in documentation function can be called, to access the specified 

documentation string. To access the documentation string for the defparameter 

*score* variable, the documentation function would be called at the REPL in the 

following way: (documentation '*score* 'variable). The following 

corresponding documentation string then would be displayed: "Holds a MIDI 

representation of the score."  

 In lines 40-41, the defparameter *piano-1* is declared, which will later hold 

the first piano part. However, here it will be bound to nil. The organization of the code 

is such that the defparameter will be set after an evaluation of a specific function. A 

documentation string is also provided describing what kind of information is held in the 

*piano-1* variable.43 Lines 43-44 create the defparameter *piano-2*, to hold 

the MIDI data for the second piano part, and nil is bound to the variable. In lines 46-47, 

the defparameter *time-signature* of the composition is declared and bound 

with nil. The defparameter *measure-count* is set to nil (lines 49-50), and will 

later be populated with how many measures the composition contains. In lines 52-53 

the defparameter *music-set* is created, and set to nil. The variable will be 

populated with a set of numbered measures on which music analysis operations can be 

completed.  

 The *music-set* variable should only be bound after a range of measures for 

analysis has been selected, while the following defparameter *segmented-music-
                                            

43 Lines 1-39, feature variable declarations, and all declarations feature corresponding 
documentation strings. 
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set* (lines 55-56) will contain a measured music set that has been organized 

according to a segmentation scheme. Lines 58-59, define the ante-penultimate 

defparameter called *pitches-music-set*, which is a measured set of music that 

has been stripped from non-relevant MIDI data, in this case it will only hold occurring 

pitches according to a measured amount. The penultimate defparameter 

*compressed-sets* (lines 25-26), is set to nil, and will be populated with 

measured compressed, or reduced, music sets at a later point. The last variable is 

declared with defparameter *note-values*, and holds a key/value pair list for 

common name note values, and their corresponding MIDI representations in 

milliseconds (lines 28-29).44 The next section of code, score handling, shows how to 

populate most of the declared variables for relevant musical information. The code in 

this section will be able to be re-used, either as a copy-paste item or in a separated file. 

 

6.2.7. Counting Measures 

77. ;; ----- Score Handling ----- ;; 
78.  
79. ; -- setting the time signature -- ; 
80. (setf *time-signature* '(4 quarter)) 
81.  
82. (defun round-number (number) 
83.   "Rounds a floating point number to a closest integer value." 
84.   (car (list (round number)))) 
85.  
86. ; (round-number '3.1415) 
87. ; => 3 
88. ; (round-number '1.618) 
89. ; => 2 
                                            

44 If the MIDI score has been set to 60 beats per minute, then a quarter note will be represented 
by 1000. A finer granularity can be achieved by simply decreasing the beats per measure value in an 
encoded MIDI file, for example 30 beats per minute would yield 2000 for a quarter note. Less granularity 
can be achieved by encoding the MIDI file as having 120 beats per minute, which in turn would yield 500 
as the quarter note value. The key/value pair list or as Lispers call the alist (association list) is used 
here as a database table. 
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90.  
91. (defun measure-count (score time-signature note-values) 
92.   "Determines how many measures are in a score." 
93.   (let ((last-note-start (caar (last score))) 
94.         (last-note-length (caddar (last score))) 
95.         (beat (car time-signature)) 
96.         (note-value (cadr (assoc (cadr time-signature) note-values)))) 
97.     (round-number (/ (+ last-note-start last-note-length) 
98.                      (* beat note-value))))) 
99.                         
100. ; (measure-count *score* *time-signature* *note-values*) 
101. ; => 66 ; if "score-fdl-prelude-1.midi" 
102.  
103. ; -- setting measure count -- ; 
104. (setf *measure-count* (measure-count *score* *time-signature* *note-

values*)) 
105.  

Example 6-7: Analysis prototype - counting measures. 

As with previous examples a demarcation of the script maintains code readability 

(lines 77-79). The first section of the score handling functions handles time signatures 

and how many measure numbers there are in a given composition. In line 80 the 

*time-signature* defparameter is bound to the list '(4 quarter), meaning 

that a measure contains four quarter notes, and that the quarter will receive a beat, i.e. 

4/4 time.45 The round-number function (lines 82-84) rounds a number to its closest 

integer in common rounding fashion (i.e. the floating point number 0.5 rounds up, and 

the floating point number 0.49 rounds down) by using the built-in round function, 

placing its results into a list, which would be an integer and its floating point number, 

and just selecting the first item from the list, the integer. Calling the round-number 

function with 3.1415 (line 86-87) results in 3, and providing 1.618 as a parameter, 

                                            
45 4/4 does not represent a fraction here, but represents two stacked numbers, as they would 

occur as the time signature in music notation. The input here has been designed to be input in a relatively 
easy human readable format. At a later point a command line interface can be introduced that would 
make the specification of the time signature even easier. Furthermore, at a yet even later point, and 
algorithm that determines the time signature by itself could be employed that will set the time signature 
variable automatically. 
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results in 2 (line 88-89). The round-number function does not do anything by itself, but 

is used as a subroutine (or helper function) for the next function, called measure-

count (lines 91-98). 

The measure-count function uses three arguments: (1) a MIDI data list – 

score, (2) how many beats there are in the time signature – time-signature, and 

(3) which note value receives the beat in a time signature – note-values (line 91). 

The let function (lines 93-96) declares four local variables: (1) last-note-start, 

generated from the first item of the last list within a list (…(260000 26 4000 4 

90)), i.e. 260,000, which appears in the supplied score argument; (2) last-note-

length, also generated from the score argument, whereby now the third item within 

the list of the list – the score – is elected, see (1), or 4000; (3) beat, which is generated 

from the first item (car) of the time-signature list that was supplied as an argument 

to the function; and (4) note-value, which assigns the appropriate length in 

milliseconds associated (assoc) through the second (cdar) item of the time-

signature list (4000ms = 1 quarter note), and the passed in note-values 

database. Consequently the sum of the last-note-start and the last-note-

length item is divided by the product of the beat and the note-value, resulting in an 

argument that is supplied to the previously defined round-number subroutine (lines 

97-98). The measure-count function is called with the *score*, *time-

signature*, and the *notes-values* variables as arguments (line 100), which 

results in 66 mm. numbers, if the *score* parameter was bound to the score-fdl-

prelude-1.midi file (line 101). Subsequently, the *measure-count* variable is 
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bound in line 104 to the outcome of the (measure-count *score* *time-

signature* *note-values*) function call. In the next section of the program a 

specific part is chosen, even though a specific part can be omitted if the entire score is 

to be selected. 

 

6.2.8. Part Selection 

106. (defun choose-part (score part) 
107.   "Split score into parts." 
108.   (if (null score) () 
109.     (if (or (eql (fourth (first score)) (first part))  
110.             (eql (fourth (first score)) (second part))) 
111.       (cons 
112.        (first score) 
113.        (choose-part (rest score) part)) 
114.       (choose-part (rest score) part)))) 
115.  
116. ; (choose-part *score* '(1 2)) ; piano 1 
117. ; => ((0 38 250 2 90) (250 41 250 2 90) (500 45 250 2 90) (750 50 250 2 

90)  
118. ;     (1000 53 250 1 63) (1250 57 250 1 63) (1500 62 250 1 63) (1750 65 

250 1 63) ... ) 
119. ; 
120. ; (choose-part *score* '(3 4)) ; piano 2 
121. ; => ((0 26 250 4 90) (250 33 250 4 90) (500 38 250 4 90) (750 41 250 4 

90)  
122. ;     (1000 45 250 3 63) (1250 50 250 3 63) (1500 53 250 3 63) (1750 57 

250 3 63) ... ) 
123.  
124. ; -- setting parts -- ; 
125. (setf *piano-1* (choose-part *score* '(1 2))) 
126.  

Example 6-8: Analysis prototype - selecting a part. 

Lines 106-114 show the choose-part function. The function uses the score 

and a list of part selections as its argument. This recursive function splits the score 

into piano parts. Each piano part consists of two channels (left hand = channel 1 / right 

hand = channel 2), so that the part of the first piano is split with a '(1 2) list, while the 

second piano part is split with a '(3 4) list. In line 108 the recursion is initialized with a 
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conditional if statement, and a nil is issued as soon as no more events remain in the 

provided score. Within the recursion the following condition has to be followed: (1) if 

the fourth item within an event of the score equals the first item in the part list, 

or (2) if the fourth item within an event of the score equals the second item in the 

part list. When the conditions are met a list is created by adding the first item of the 

midi-list to the remaining items of the same midi-list, and is being passed back 

to the beginning of the choose-part function. However, if the condition is not met, no 

list is created, and the remainder of the midi-list is passed back to the beginning of 

the choose-part function. Line 116-118 show a test function call (choose-part 

*score* '(1 2)), that results in the ((0 38 250 2 90) (250 41 250 2 90) 

(500 45 250 2 90) (750 50 250 2 90) (1000 53 250 1 63) (1250 57 

250 1 63) (1500 62 250 1 63) (1750 65 250 1 63)...).46 The result 

reflects that the right and left hand of the first piano part have been grouped together. 

Another test function call in which the second piano part is selected, and its result are 

shown in lines 120-122. In line 125 the *piano-1* variable is bound to the outcome of a 

call to the choose-part function with the *score* variable, and a channel list – 

representing the right and left hand of the piano – supplied as arguments.  

A MIDI representation of a score does not contain any measure numbers. In the 

next section measure numbers will group score events together and are assigned to the 

selected parts. 

 
                                            

46Here only the first two beats of the selected part of the score are listed. The truncation is 
specified through the ellipses.  
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6.2.9. Grouping Musical Events by Measure Numbers 

127. (defun fetch-measure (midi &optional (mm-start 0) (mm-end 4000)) 
128.   "Selects a measure range to examine." 
129.   (if (null midi) nil 
130.      (if (>= (caar midi) mm-start) 
131.        (if (< (caar midi) mm-end) 
132.          (cons 
133.           (car midi) 
134.           (fetch-measure (cdr midi) mm-start mm-end))) 
135.        (fetch-measure (cdr midi) mm-start mm-end)))) 
136.  
137. ; (fetch-measure *piano-1*) ; selects the first measure 
138. ; => 
139. #| 
140. ((0 38 250 2 90) (250 41 250 2 90) (500 45 250 2 90) (750 50 250 2 90)  
141.  (1000 53 250 1 63) (1250 57 250 1 63) (1500 62 250 1 63) (1750 65 250 1 

63)  
142.  (2000 69 250 2 90) (2250 74 250 2 90) (2500 77 250 2 90) (2750 81 250 2 

90)  
143.  (3000 86 250 1 63) (3250 89 250 1 63) (3500 93 250 1 63) (3500 57 250 2 

90) (3750 98 250 1 63) (3750 45 250 2 90)) 
144. |# 
145. ; (fetch-measure *piano-1* 0 1000) ; selects the first beat of measure 1 
146. ; => ((0 38 250 2 90) (250 41 250 2 90) (500 45 250 2 90) (750 50 250 2 

90)) 
147.  
148. (defun measure (m) 
149.   "Converts measure numbers to millisecond numbers." 
150.   (let ((note-count-measure (first *time-signature*)) 
151.         (note-value (second (assoc (second *time-signature*) *note-

values*)))) 
152.     (cond 
153.      ((= m 1) '0) 
154.      ((> m 1)  
155.       (- (* m (* note-count-measure note-value))  
156.          (* note-count-measure note-value))) 
157.      (t '(the input was not recognized))))) 
158.  
159. ; (measure 66) ; select measure 66 
160. ; => 260000    ; measure 66 starts at 260000 milliseconds 
161.  
162. (defun measure-numbers (score measure-count) 
163.   "Groups music according to measures." 
164.   (loop for i from 1 to measure-count  
165.     collect (append (list i) (fetch-measure score (measure i) (measure (+ 

1 i)))))) 
166.  
167. ; -- numbering measures -- ; 
168. ; (measure-numbers *piano-1* *measure-count*) 
169. ; =>  
170. #| 
171. ((1  
172.   (0 38 250 2 90) (250 41 250 2 90) (500 45 250 2 90) (750 50 250 2 90)  
173.   (1000 53 250 1 63) (1250 57 250 1 63) (1500 62 250 1 63) (1750 65 250 1 

63)  
174.   (2000 69 250 2 90) (2250 74 250 2 90) (2500 77 250 2 90) (2750 81 250 2 

90)  
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175.   (3000 86 250 1 63) (3250 89 250 1 63) (3500 93 250 1 63) (3500 57 250 2 
90) (3750 98 250 1 63) (3750 45 250 2 90)) 

176.  ... 
177.  (66  
178.   (260000 77 4000 1 63) (260000 86 4000 1 63) (260000 81 4000 1 63) 

(260000 74 4000 1 63)  
179.   (260000 62 4000 2 90) (260000 65 4000 2 90) (260000 69 4000 2 90))) 
180. |# 
181.  
182. ; -- assigning measure numbers to a score as *music-set* -- ; 
183. (setf *music-set* (measure-numbers *piano-1* *measure-count*)) 
184.  

Example 6-9: Analysis prototype - grouping musical events by measure numbers. 

The fetch-measures function (lines 127-135) is a subroutine for the 

measure-numbers function (lines 162-165). The main objective of the recursive 

fetch-measure function is to group four quarter notes, which sum to 4000, into one 

measure, also defined as a measure range. The function takes a score selection, 

represented as a midi events list, as its argument. Optionally, a mm-start (measures 

start) argument – set to 0 initially, and a mm-end (measures end) argument – set to 

4000 initially, can also be provided to the fetch-measure function. The if statement 

in line 129 terminates the recursion once the midi list has been finished parsing. The 

next condition checks whether the range of the start time MIDI events is larger or equal 

to the mm-start argument. If the condition is true, the recursion will check for another 

condition (line 131), but if it is false, a self-referential call with the remainder of the 

midi-list, the mm-start, and the mm-end arguments to the feature-measures 

function is initiated (line 135). Continuing in line 131, the next condition checks whether 

the start time of the MIDI event is smaller than the mm-end argument. If it is, then a 

range of MIDI events has been defined, and this range of MIDI events is grouped 

together into a measure by building a list (lines 132-133) with the first, or next, MIDI 
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event in the MIDI list, and the remainder of the list (line 134) is passed back with the 

midi, mm-start, and mm-end as arguments supplied to the beginning of the fetch-

measures function. However, if it is false, meaning if the MIDI event evaluated does not 

fall within the range of mm-start, and mm-end, then the entire events list (midi), the 

mm-start, and the mm-end arguments are passed back to the top of the fetch-

measures function (line 135). The fetch-measures function can be called with just a 

selected part, e.g. *piano-1* (lines 137-144), which results in the selection of events 

within one measure (since the default argument to the optional mm-end variable was set 

to 4000). However, if the fetch-measures function is called with *piano-1*, 0, and 

1000 as its arguments, only the musical events that fall within the first beat are selected 

(lines 146-146).  

The following measure function (lines 148-157) is the second subroutine utilized 

by the measure-numbers function (lines 162-165). Its purpose is to translate human-

readable measure values to corresponding machine readable numbers values, meaning 

that the statement (measure 1), will be translated to “all midi-events with a start time 

from 0-4000, etc. The measure function accepts one argument m, the human readable 

value for a measure number. Two local variables are established with the let function, 

(1) note-count-value, bound to the first value of the *time-signature* global 

variable (line 150), and (2) note-value, bound to the second value of a search result, 

where the second value of the *time-signature* global variable is being used to 

query the *note-values* table (line 151). Upon establishing the local variables, a list 

of conditions have to be fulfilled, which is achieved through the use of the cond function 
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(lines 152-157) – a conditional that evaluates not just to t (true), or nil (false), but can 

evaluate a series of different, but related conditions. The first condition checks whether 

the number entered is 1, and if it is 0 will be passed on to the measure-numbers 

function. The second condition checks whether m is larger than 1, in which case the 

passed-in number is subtracted by the product of the note-count-measure and 

note-value, and m arguments from the product of the note-count-measure and 

note-value arguments. If neither of these two conditions is met, an error message is 

provided. A test call and its result are shown in lines 159-160: 66 is provided as an 

argument to the measure function, resulting in 260000. 

The measure-numbers function (lines162-165) utilizes the aforementioned two 

functions (fetch-measure, and measure), and creates a list that groups a list of MIDI 

events, by measure numbers. In order to complete this task, two arguments have to be 

supplied to the measure-numbers function: (1) the score, i.e. MIDI event list, and (2) 

a measure-count. With these arguments supplied a loop is initiated that counts, i 

represents the current count, from one to the measure-count argument (which was 

66). During each one of the iterations of the loop a list is collected that calls upon the 

fetch-measures function with the music, the starting measure, and the ending 

measure numbers supplied as arguments. Both the starting and ending measure 

numbers are created by calling upon the measures function, and by using the i 

counter as its argument, whereby the second counter for the ending measure 

arguments is created throughout the addition of i to one. The list of MIDI events is then 

placed into an alist with the counter i (the measure number) as key. Creating this 
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type of alist will facilitate queries to the MIDI events list by measures. The function 

measure-number function is called with a selected part, or *piano-1*, and the 

*measure-count* variables as arguments and results in the (truncated) events list 

shown in lines 171-179. 

The *music-set* variable is bound to the outcome of the measure-number 

function (line 183). The next function shows how to select a specific range of measures. 

 

6.2.10. Selecting a Measure Range 

185. (defun select-measures (measure-range music) 
186.   "Select a range of measures." 
187.   (loop for i from (car measure-range) to (second measure-range)  
188.     collect (assoc i music))) 
189.  
190. ; (select-measures '(1 1) *music-set*) 
191. ; =>  
192. #| 
193. ((1 (0 38 250 2 90) (250 41 250 2 90) (500 45 250 2 90) (750 50 250 2 90)  
194.     (1000 53 250 1 63) (1250 57 250 1 63) (1500 62 250 1 63) (1750 65 250 

1 63)  
195.     (2000 69 250 2 90) (2250 74 250 2 90) (2500 77 250 2 90) (2750 81 250 

2 90)  
196.     (3000 86 250 1 63) (3250 89 250 1 63) (3500 93 250 1 63) (3500 57 250 

2 90) (3750 98 250 1 63) (3750 45 250 2 90))) 
197. |# 
198.  
199. ; -- selecting a range of measures and assigning them ti *selected-music-

set* -- ; 
200. (setf *selected-music-set* (select-measures '(1 66) *music-set*)) 
201.  

Example 6-10: Analysis prototype - selecting a measure range. 

The select-measures function (line 185-188) takes two arguments: (1) the 

measure-range, and (2) the music (measured MIDI events list). A loop is initiated in 

lines 187-188, in which a count, represented as i, ranges from the first (car) item in a 

measure-range list, to a second item in a measure-range list. Further, collect 

will assemble all of the measures specified with the measure-range argument list by 
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providing i to the assoc function, which queries the music list for the specified 

measures. A test call to the select-measures function is shown in line 190. The measure 

range argument is specified in list form, meaning to select mm. 1-4, the list argument 

would look like '(1 4). In the test call only m. 1 is selected with '(1 1). The second 

argument is the measured *music-set*. The result of the test function call is listed in 

lines 193-196). The *selected-music-set* variable can now be bound with the 

outcome to a call to the select-measures function, as shown in line 200. 

The select-measures function completes the re-usable score handling section 

of the analysis prototype. The next section will discuss how a selected measure range 

can be algorithmically segmented according to the previous established analytical 

results of FDL-1. There are other segmentation possibilities, and therefore a 

segmentation function should be fully modular, or substitutable. 

 

6.2.11. Segmentation 

Ideally, a segmentation scheme should be based on how the music is being 

perceived by a listener, or analysist. Figure 6-8 and Table 6-1 show an analysis that 

subdivides each measure into a group of successive ascending pitches outlining a type 

of chord, while being introduced, and supported by an ever present dyad. Therefore, a 

segmentation scheme has already been created. Thus the next function involves how to 

create this segmentation programmatically. A look at the first measure’s MIDI events will 

further illuminate how the music maybe organized (as has been previously established 

m. 1 is the algorithm that determines the handling of the rest of the chord successions in 
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the entire composition). The *music-set* has been populated with the *piano-1* 

part, and the first measure can be selected with (select-measures '(1 1) 

*music-set*). Here, again, is the outcome of that operation:47 

((1 (0 38 248 2 90) (250 41 248 2 90)  
(500 45 248 2 90) (750 50 248 2 90)  
(1000 53 248 1 63) (1250 57 248 1 63)  
(1500 62 248 1 63) (1750 65 248 1 63)  
(2000 69 248 2 90) (2250 74 248 2 90)  
(2500 77 248 2 90) (2750 81 248 2 90)  
(3000 86 248 1 63) (3250 89 248 1 63)  
(3500 93 248 1 63) (3500 57 248 2 90)  
(3750 98 248 1 63) (3750 45 248 2 90))) 

Example 6-11: Selected m. 1 - MIDI representation. 

The key (as in key/value pair, not as in key signature) is 1, which is also the 

measure number. The fourth position in the MIDI event list shows the channel number. 

Since the example was typeset in LilyPond, the left hand was automatically assigned to 

channel 2, for the first group of four sixteenth notes. The second group of four sixteenth 

notes, even though the pitches ascend in order through the registers, was assigned to 

channel 1, since the group appears in the right hand of the first piano part. The pattern 

repeats until beat 3.5 (each beat is represented by 1000, so beat 3.5 is shown as 3500). 

The dyad is introduced into the left hand on beat 3.5 and beat 3.75 on channel 2, 

through the use of a {A3, A4} (or {57, 45}) octave displaced dyad. The needed 

segmentation scheme becomes clear: every note that is played on or after beat 3.5, and 

belongs to channel 2, is part of the dyad, while other notes are part of the rising 

arpeggio. The result are three possible segmentation scenarios: (1) all notes in a 

measure – no segmentation, (2) all notes from the rising arpeggio – without the dyad, 

                                            
47 The events list (of the first measure, from Example 6-10, lines 193-196) has been re-organized 

by two pairs of sixteenth notes, for easier readability. 
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and (3) the dyad – without the arpeggio. The next function of the program takes care of 

the second scenario, since it has been previously discussed in the analysis.  

202. (defun measure-segmentation-pattern-1 (music &optional (beat 3500) 
(isolate 'arpeggio)) 

203.   "Separates arpeggios from dyads and vice versa." 
204.   (if (null music) nil 
205.     (cond ((equal isolate 'arpeggio) 
206.            (if (and (>= (caar music) beat) (equal (cadddr (car music)) 

2)) 
207.              (measure-segmentation-pattern-1 (rest music) beat isolate) 
208.              (cons 
209.               (car music) 
210.               (measure-segmentation-pattern-1 (rest music) beat 

isolate)))) 
211.           ((equal isolate 'dyad) 
212.            (if (and (>= (caar music) beat) (equal (cadddr (car music)) 

2))  
213.              (cons 
214.               (car music) 
215.               (measure-segmentation-pattern-1 (rest music) beat isolate)) 
216.              (measure-segmentation-pattern-1 (rest music) beat isolate))) 
217.           (t '(no isolation pattern has been specified))))) 
218.  
219. ; (measure-segmentation-pattern-1 *selected-music-set* '4000 'arpeggio) 
220. ; => 
221. #| 
222. ((1  
223.   (0 38 250 2 90) (250 41 250 2 90) (500 45 250 2 90) (750 50 250 2 90)  
224.   (1000 53 250 1 63) (1250 57 250 1 63) (1500 62 250 1 63) (1750 65 250 1 

63)  
225.   (2000 69 250 2 90) (2250 74 250 2 90) (2500 77 250 2 90) (2750 81 250 2 

90)  
226.   (3000 86 250 1 63) (3250 89 250 1 63) (3500 93 250 1 63) (3500 57 250 2 

90) (3750 98 250 1 63) (3750 45 250 2 90)) 
227. |# 
228.  
229. (defun select-measures-segmentation-pattern-1 (music m-range isolate) 
230.   "Specifies a range of measures to use measure segmentation pattern." 
231.   (loop for i from (car m-range) to (cadr m-range) 
232.     collect (append (list i)  
233.                     (measure-segmentation-pattern-1 (cdr (assoc i music)) 

(- (* i 4000) 500) isolate)))) 
234.  
235. ; (select-measures-segmentation-pattern-1 *selected-music-set* '(1 1) 

'arpeggio) ; also works with just *music-set*; 
236. ; => 
237. #| 
238. ((1 (0 38 250 2 90) (250 41 250 2 90) (500 45 250 2 90) (750 50 250 2 90)  
239.     (1000 53 250 1 63) (1250 57 250 1 63) (1500 62 250 1 63) (1750 65 250 

1 63)  
240.     (2000 69 250 2 90) (2250 74 250 2 90) (2500 77 250 2 90) (2750 81 250 

2 90)  
241.     (3000 86 250 1 63) (3250 89 250 1 63) (3500 93 250 1 63) (3750 98 250 

1 63))) 
242. |# 
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243.  
244. ; (select-measures-segmentation-pattern-1 *selected-music-set* '(1 1) 

'dyad) ; also works with just *music-set* 
245. ; => ((1 (3500 57 250 2 90) (3750 45 250 2 90))) 
246.  
247. ; -- segment a music set according to dyads, as relevant to 1-prelude, or 

arpeggios -- ; 
248. (setf *segmented-music-set* (select-measures-segmentation-pattern-1 

*selected-music-set* '(1 66) 'arpeggio)) 
249.  

Example 6-12: Analysis prototype - segmentation patterns. 

Lines 202-217 show the measure-segmentation-pattern-1 function, 

named post fixed with -pattern-1 for FDL-1. The function takes two optional 

arguments the beat where the segmentation is to take place, and isolate, or what 

type of segmentation needs to be used. The default values for both arguments are 3500 

for the former, and 'arpeggio for the latter. The function is recursive, and the if 

statement in line 204 determines when the end of a list is reached, and stops the 

recursion, in order to avoid for the recursion to last indefinitely, and causing the dreaded 

stack overflow. Lines 205-217 check for two conditions to be true, and provide an error 

message when neither statement evaluates to being true. The first condition within the 

cond function checks whether the 'arpeggio isolation needs to be created. If so, a 

second test is required, represented by an if statement (line 206), which determines 

whether the first item in the first list in the MIDI events list (here it has been 

shortened to just caar, rather than using two first functions) is equal to or larger than 

the beat; and whether the fourth item in the first list of the MIDI events list (here 

shortened to just cadddr with a car combination), is located in the left hand, or 

channel 2. If so the recursion starts anew from the top of the measure-

segmentation-pattern-1 function, but if not, then a new list is created with the 
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first MIDI event, and the remaining MIDI events are passed back with their 

appropriate arguments to the top of the measure-segmentation-pattern-1 

function. 

The second condition (line 211) checks if the 'dyad needs to be isolated. If the 

condition evaluates to t, the next condition is checked via an if statement that is 

identical to the one from line 206. However, the t and nil operations are reversed, 

meaning that if the condition evaluates to t, a list is assembled from the first MIDI 

event in the music, and the remainder of the music is sent back to the top of the 

measure-segmentation-pattern-1 function, but if the condition evaluates to nil 

then the music is sent back to the top of the measure-segmentation-pattern-1 

function anew, in order for the next element to be evaluated. Line 217 provides a 

fallback condition in case neither of the 'arpeggio, nor 'dyad values have been 

supplied as arguments. The reason why the cond function was chosen here is that if 

only evaluates to t or nil, while with cond a decision tree can be built, in case the 

need for another segmentation scheme should arise. 

The measure-segmentation-pattern-1 function is a subroutine for the 

select-measures-segmentation-pattern-1 function in lines 229-233. The 

select-measures-segmentation-pattern-1 function uses three arguments: (1) 

the music, (2) the m-range – measure range, and (3) the isolation pattern – 

'arpeggio, or 'dyad. The loop macro is initiated in order to create a count value i to 

repeat the recursive measure-segmentation-pattern-1 function as many times 

within the range created by the first item of the m-range argument list, and the 
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second item of the m-range argument list. Afterwards, collect builds a list creating 

the measure numbers as keys, and creating the outcome of the call to the measure-

segmentation-pattern-1, with the corresponding MIDI event list from its 

corresponding measure via assoc (music), a multiple of 4000 (the length of a measure 

in quarter notes) that is subtracted by 500 (beat), and an isolation patterns as its 

arguments. Calling the select-measures-segmentation-pattern-1 function with 

the *selected-music-set*, '(1 1), and 'arpeggio as arguments results in a 

segmented measure, that omits the dyads, as shown in lines 238-241. However, if the 

select-measures-segmentation-pattern-1 function is called with the 

*selected-music-set*, '(1 1), and the 'dyad arguments, then the resulting 

events list will only list the dyads as shown in line 245.48 The *segmented-music-

set* global variable can be appropriately bound with the following function call: 

(select-measures-segmentation-pattern-1 *selected-music-set* '(1 

66) 'arpeggio).   

With a segmentation pattern in place attention will finally turn to score reduction. 

 

6.2.12. Score Reduction Algorithms 

With these mechanisms in place attention is turned back to the actual reduction. 

The score can be reduced in two ways, (1) vertically, or (2) horizontally. Both of the 

procedures will produce meaningful results. A vertical reduction will take all members of 

a segmentation group, equalize their durational values, and stack the members of the 
                                            

48 Both times the functions could also have been simply called with the *music-set* argument, 
instead of the *selected-music-set* argument.  
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16-note arpeggios that occur in each one of the piano parts into a blocked chord, i.e. 

removing the iteration algorithm. From there, duplicate members of the chord can be 

removed. In a horizontal reduction, a 16-note group only represents the first note of a 

series that creates a compound melodic line. In FDL-1 that means that each piano that 

contains 16 members in a chord will actually produce 16 different lines, from mm. 1-65 

(m. 66 presents a point of stasis, since the chord played is not being arpeggiated, and 

creates a clear sense of repose, or cadence). Both reductions have their own specific 

function: (1) the vertical reduction aids in the automated analyses of chords, and (2) the 

horizontal reduction creates a map of all possible voice-leading procedures of the 

composition, since each one of the lines carries forth a one-to-one relationship with the 

preceding, and ensuing member of a line. 

 

6.2.13. Vertical Reduction 

Here are some considerations about the vertical chord reduction. As mentioned 

previously, in FDL-1 the arpeggios consist of 16-note sets. The arpeggio in mm. 1-2 

consists of the set {38, 41, 45, 50, 53, 57, 62, 65, 69, 74, 77, 81, 86, 89, 93, 98} (or {D3, 

F3, A3, D4, F4, A4, D5, F5, A5, D6, F6, A6, D7, F7, A7, D8}). When this set is 

converted to contain only PCs then the latter can be represented in the following 

fashion: {2, 5, 9, 2, 5, 9, 2, 5, 9, 2, 5, 9, 2, 5, 9, 2}. The outer shell consists of the same 

PC, namely 2 (with a 60 semitone displacement). The first three and the last three PCs 

from the 16 note set can be removed and reduced to {2, 5, 9, 2, 5, 9, 2, 5, 9, 2}, yet the 

outer shell and the inner order of pitch distribution, or chord core, remains the same. By 
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removing the first three, and the last three pitch classes again, the set is further 

condensed to {2, 5, 9, 2}, which contains the essence of the set. In order to indicate the 

compression scheme this set will be notated as ({38} {5, 9, 2} {Tx-5}), whereby the first 

monad indicates that it is the lowest note (converted back to MIDI pitch value, but D3 

would work as well), and the pedal. If the PC of the {x} ∈ {y, z, x} pitch class trichord it 

will be displaced by an octave (which will not be the case if {x} ∉ {y, z, v}). The {Tx-5} 

behind the PCC {5, 9, 2} set indicates that the latter will be repeated five times, each 

time displaced by a new octave, or transposed which each iteration to the next octave 

register. The compressed representation fulfills the requirement that it can be 

decompressed to its original format. Furthermore, the core can be used to label the 

chord appropriately, by placing its content into normal form PCS [2, 5, 9], and/or PCST0 

[0 3 7], and then converting the latter into prime form SC 3-11 (0 3 7) or just SC (0 3 7) – 

without the Forte number.49 

250. ;; ----- Score Reduction Functions ----- ;; 
251.  
252. (defun display-pitches-only (music-set &optional (note-type 'midi)) 
253.   "Displays only pitches of selected music sets." 
254.   (if (null music-set) nil 
255.     (cons 
256.      (list 
257.       (caar music-set) 
258.       (cond ((equal note-type 'midi) 
259.              (stable-sort 
260.               (copy-seq 
261.                (mapcar #'second  
262.                        (cdr (assoc (caar music-set) music-set)))) #'<)) 
263.             ((equal note-type 'pc) 
264.              (mapcar #'(lambda (x) (mod x 12))  
265.                      (stable-sort  
266.                       (copy-seq  
267.                        (mapcar #'second  
                                            

49 In some books there are no spaces in between the members of a SC, but here a space will be 
place, since it looks identical to a list in Common Lisp. The example may seem redundant; however if the 
PCC would have been {7, 10, 3}, then the PCS would be [3, 7, 10], the PCST0 [0 4 7], all belonging to SC 
(0 3 7), whereby the PCST0 clearly indicates that the chord is a major chord. 
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268.                                (cdr (assoc (caar music-set) music-set)))) 
#'<)))            

269.             (t' (please choose pc or midi)))) 
270.      (display-pitches-only (rest music-set) note-type)))) 
271.  
272. ; (display-pitches-only *segmented-music-set*) 
273. ; => ((1 (38 41 45 50 53 57 62 65 69 74 77 81 86 89 93 98)) ... ) 
274.  
275. ; (display-pitches-only *segmented-music-set* 'pc) 
276. ; => ((1 (2 5 9 2 5 9 2 5 9 2 5 9 2 5 9 2)) ... ) 
277.  
278. ; -- selected pitches occuring in measure without rhythmic and  

durational values -- ; 
279. (setf *pitches-music-set* (display-pitches-only *segmented-music-set* 

'pc)) 
280.  
281. (defun select-pcs-measure (measure pitches-music-set) 
282.   "Quickly query PCs in individual measures." 
283.   (cons 
284.    measure 
285.    (cdr (assoc measure pitches-music-set)))) 
286.  
287. ; (select-pcs-measure 66 *pitches-music-set*) 
288. ; => (66 (2 5 9 2 5 9 2)) 
289.  

Example 6-13: Choosing pitches without rhythmic or durational values. 

 The display-pitches-only function displays pitches without their 

corresponding rhythmic or durational values within given measures. The function 

accepts two arguments (line 252): (1) music-set – a collection of music, organized by 

measures, and (2) note-type – a designation whether the pitches should be displayed 

as PCs or MIDI pitches (others can be added if needed). The recursive function begins 

with an if statement (line 254) in order to determine the end of the music-set and 

terminate the recursion with nil when the last note contained in the set has been 

processed. If, however, the passed-in music-set consists of more values, then the 

recursion continues. The cons function (line 255) builds the actual list by adding a list 

(line 256) to the remainder of values within the music-set that is passed back as an 

argument to the top of the function (line 270). The inner list (lines 257-269) is assembled 
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by taking the first item of the first list, which is the measure number, abbreviated 

here with the caar function instead of wrapping the statement into two nested first 

functions, as the key and assigning the corresponding PCC as a value (lines 258-269).  

 Two conditions are checked with the cond function, before the pitches are added 

as the values to their corresponding measure numbers: (1) was the 'midi argument 

used as the note-type variable, or (2) was the 'pc argument used in the note-type 

argument. If the MIDI value was used as an argument for the note-type (line 259-262), 

then a mapcar function chooses a PC – (cdr (assoc (caar music-set))) – 

from the music-set and builds a list of pitches. Additionally, the list of pitches is sorted 

via a combination of the copy-seq function, and the stable-sort function with the 

use of the #'< function as a predicate in order to create the ascending order. However, 

if 'pc was used as an argument for the note-type (lines 263-268), then a mapcar 

function is used to assemble a list by passing the PC, via another mapcar function that 

chooses a PC one at a time from the music-set (see above) – which also is sorted 

first, to a lambda function that mod 12s the PCs from the list to a value from 0-11. 

When neither conditions (MIDI nor PC) are met (line 269), then the cond function 

provides the user with an error message list '(please choose pc or midi).  

Testing the display-pitches-only function can be accomplished by providing 

*segmented-music-sets* as an argument (line 272). If no additional argument is 

supplied, then all occurring MIDI pitches within a measure are listed (line 273). 

Providing 'pc as an additional argument to the display-pitches-only function (line 

275) lists all occurring PCs within an individual measure (line 276). The results of the 
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display-pitches-only function, when supplied with a *segmented-music-set* 

and 'pc arguments, will be bound to the *pitches-music-set* global variable (line 

279).   

 The select-pcs-measure function (line 281-285) is utilitarian in nature and allows 

the user to quickly inspect the PC content of an individual measure. The function 

requires a measure number, and the pitches-music-set as its arguments. In lines 

283-285 the measure number is consed to the content of a query to the pitch content of 

the corresponding measure. When the select-pcs-measure function is supplied with 

66 as the measure number, and the global *pitches-music-set* variable as 

arguments the outcome reads: (66 (2 5 9 2 5 9 2)). 

The reduce-sets function (lines 303-320, Example 6-14) creates the desired 

compression notation for the chord reduction, as previously described, consisting of an 

outer shell, a core, and a compression index. Further, the reduce-sets function uses 

the pattern matching subset-in-set-count subroutine (lines 292-298), which 

counts how many times a subset occurs in a set.  

290. ;; ----- compression ----- ;; 
291.  
292. (defun subset-in-set-count (music-set subset) 
293.   "Count how many times a subset occurs in a larger set." 
294.   (loop with z = 0 with s = 0  
295.     while s do 
296.     (when (setf s (search subset music-set :start2 s)) 
297.       (incf z) (incf s (length subset))) 
298.     finally (return z))) 
299.  
300. ; (subset-in-set-count '(2 5 9 2 5 9 2 5 9 2 5 9 2 5 9 2) '(5 9 2)) 
301. ; => 5 
302.  
303. (defun reduce-sets (music-set &optional supplied-root) 
304.   "Displays the reduced set consisting of outer shell, a core, and 

compression index." 
305.   (if (null music-set) nil 
306.     (cons 
307.      (list (caar music-set) 
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308.            (let* ((guts  
309.                    (cdr  
310.                     (assoc (caar music-set) music-set))) 
311.                   (root  
312.                    (if (null supplied-root) 
313.                      (caar guts)  
314.                      supplied-root)) 
315.                   (core  
316.                    (remove-duplicates (cdar guts))) 
317.                   (compression-index  
318.                    (subset-in-set-count (cdar guts) core))) 
319.              (list root core compression-index))) 
320.      (reduce-sets (rest music-set) supplied-root)))) 
321.  
322. ; (reduce-sets *pitches-music-set* 38) ; actual chord compression 
323. ; => ((1 (38 (5 9 2) 5)) (2 (38 (5 9 2) 5)) (3 (38 (4 7 1) 5)) ... ) 
324.  
325. ; -- assign compressed sets to global variable *compressed-sets* -- ; 
326. (setf *compressed-sets* (reduce-sets *pitches-music-set* 38)) 
327.  

Example 6-14: Building the compression notation. 

The subset-in-set-count function requires two arguments, (1) a music-

set or PCC, and (2) a subset of a music-set, which is some type of PCC pattern 

(lines 292-298). After the documentation string, a loop macro is initiated that uses a z 

and s iteration local variable, both set to 0 (line 294). While s exists it creates an inner 

loop that is followed by a do that checks a when condition. The when condition (line 

296) assigns a new value to the variable s through a search of a subset within a 

music-set that begins at the s count position of the music-set target string 

(:start2), which dynamically becomes the condition. When the condition returns true 

then the z variable is increased through the incf function by 1, but when the condition 

returns false the s variable automatically increases by the length of the subset (line 297). 

At then end, or finally, z is returned as a number value that contains the count of a 

subsequence of a sequence. Therefore, when calling the (subset-in-set-count 

'(2 5 9 2 5 9 2 5 9 2 5 9 2 5 9 2) '(5 9 2)) function the result will be 5, 
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since the subsequence '(5 9 2) occurs 5 times in the '(2 5 9 2 5 9 2 5 9 2 5 

9 2 5 9 2) sequence (lines 300-301). 

The reduce-sets function (lines 159-166) is a recursive function that accepts 

two arguments: (1) a music-set – created with (display-pitches-only 

*segmented-music-set* 'pc)), and (2) optionally a supplied-root. Line 305 

initiates, and terminates the recursion. The recursion produces a list through use of the 

cons function (line 306) in which a manipulated list is added to the remainder of the 

music-set provided along with the supplied-root variable to the top of the function 

as arguments (line 320). The manipulated list (lines 307-319) consists of the measure 

number (caar music-set) – the key – and a list that consists of the root, the 

chord core, and a compression-index – the value, which are created as local 

variables in the let* function. The guts local variable (line 308) builds a list consisting 

only of the PCC (the value), and is used in the assignment of the following local 

variables as a shortcut.  

The root local variable (line 311) is created by either a supplied-root, if a 

supplied-root has been passed in as an argument, or generates a root through a 

caar function applied to the guts variable, if no supplied-root argument has been 

passed into the function as an argument. The core local variable (line 315) is 

assembled by excluding the root from the PCC through applying the cdar function to 

the guts, and then removing all recurring PCs. The compression-index local 

variable (line 317) is built by calling the subset-in-set-count subroutine with the 

cdared guts and the core as its arguments. The variables root, core, and 
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compression-index are then put into a list (line 319). The function can be called in 

the following manner (line 322): (reduce-sets *pitches-music-set* 38). The 

result is shown in line 323:50 ((1 (38 (5 9 2) 5)) (2 (38 (5 9 2) 5)) (3 

(38 (4 7 1) 5)) … ). Finally the result of the reduce-sets function call can be 

bound to the *compressed-sets* global variable (line 326). 

 

6.2.14. Labeling Chords Programmatically 

With the compressed chord information, generated via the segmentation scheme, 

the composition’s harmonic framework can be labeled with outcomes from basic set 

theory operations (i.e.: loading the Set-Theory-Function.lisp library from Chapter 

5.3). Two functions are needed for this process a subroutine that analyzes each 

individual measure, and labels the measure appropriately, and a function that iterates 

though all the selected measures. 

328. ; -- load set theory functions -- ; 
329. (library-loader "" "Example-5-2->5-25-Set-Theory-Functions.lisp") 
330.  
331. (defun label-chord (compressed-sets) 
332.   "Labeling chords." 
333.   (let ((set (cadadr compressed-sets))) 
334.     (with-output-to-string (stream) 
335.       (terpri stream) 
336.       (princ "Measure:         " stream)  
337.       (princ (car compressed-sets) stream) 
338.       (fresh-line stream) 
339.       (princ "Pedal:           " stream)  
340.       (princ (caadr compressed-sets) stream)  
341.       (princ " - PC " stream)  
342.       (princ (mod (caadr compressed-sets) 12) stream) 
343.       (fresh-line stream) 
344.       (princ "Set Input:       " stream)  
345.       (princ set stream) 
346.       (fresh-line stream) 
347.       (princ "Normal Form:     " stream)  
                                            

50 Another function could be build to translate the outcome to the previously described human 
readable format of ({38} {5, 9, 2} {Tx-5}), but the essence is the same. 
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348.       (princ (normal-form set) stream) 
349.       (fresh-line stream) 
350.       (princ "T-Normal Form:   " stream)  
351.       (princ (t-normal-form (normal-form set)) stream) 
352.       (fresh-line stream) 
353.       (princ "Prime Form:      " stream)  
354.       (princ (prime-form set) stream) 
355.       (fresh-line stream) 
356.       (princ "Interval Vector: " stream)  
357.       (princ (interval-vector set) stream) 
358.       (fresh-line stream)))) 
359.  
360. (defun label-all-chords (sets) 
361.   "Prints out all measures with labeled chords." 
362.   (loop for i from 0 below (length sets) 
363.     do (princ (label-chord (nth i sets))))) 
364.  
365. ; (label-all-chords *compressed-sets*) 
366. ; => 
367. #| 
368. Measure:         1 
369. Pedal:           38 - PC 2 
370. Set Input:       (5 9 2) 
371. Normal Form:     (2 5 9) 
372. T-Normal Form:   (0 3 7) 
373. Prime Form:      (0 3 7) 
374. Interval Vector: (0 0 1 1 1 0) 
375. ... 
376. Measure:         66 
377. Pedal:           38 - PC 2 
378. Set Input:       (5 9 2) 
379. Normal Form:     (2 5 9) 
380. T-Normal Form:   (0 3 7) 
381. Prime Form:      (0 3 7) 
382. Interval Vector: (0 0 1 1 1 0) 
383. |# 
384.  

Example 6-15: Labeling all chords in FDL-1 with set theory functions. 

The set theory library needs to be loaded via the library-loader function in line 

329, since it has previously not been loaded. The label-chord subroutine (lines 331-

358) uses compressed-sets as its argument and formats the set theory evaluations 

that are generated by using the chord core as the PCC argument. The let function (line 

333) is used to assign a local variable set with the core of a compressed set – 

(cadadr compressed-sets). The set local variable becomes the argument for all 

ensuing set theory operations. The with-output-to-string macro (function) “creates a 
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character output stream, performs a series of operations that may send results to this 

stream, and then closes the stream.”51 The name of the output stream is supplied as 

an argument to the macro (line 334). The macro is used to avoid a nil return value for 

each measure that is printed to the screen. 

The terpri function creates a newline within the stream being created (line 

335). Lines 336 and 337 create a key/value pair for the stream, where the former shows 

a princ function followed by a string ("Measure:") and ensued by the name of the 

stream it is to be written to as the key, and the latter shows the princ function 

supplied with a car function that takes the first item of the compressed-sets list and 

writes it to the stream as the value. Each to be written key/value pair is followed by the 

fresh-line function that writes a newline to the stream, “only if the output-stream is 

not already at the start of a line” (lines 338, 343, 346, 349, 352, 355, and 358).52 Lines 

339-342 show a key/value pair that prints the pedal; lines 344 and 345 show a 

key/value pair that prints the set that was input as is; lines 347 and 348 show a 

key/value pair that prints the normal form, derived from a call to the normal-form 

function, supplied with a set argument, in the set theory functions library that was 

previously loaded; lines 350 and 351 show a key/value pair that prints the t-normal form, 

drawn from a call to the t-normal-form function with a set given as an argument; 

lines 353 and 354 display a key/value pair that prints the prime form stemming from a 

call to the prime-form function with a set provided as an argument; and lines 356-

                                            
51 "Lilypond" http://www.lilypond.org/ (accessed October 31, 2014). 

52 Cope, Hidden Structure: Music Analysis Using Computers, 60. 



   259 

357 indicate a key/value pair that writes an interval vector to the stream by making a 

call to the interval-vector function with a set argument supplied. 

The label-chord subroutine labels one chord. The label-all-chords 

requires compressed-sets as its argument, and dutifully loops through all selected 

measures. The for loop macro determines the length of the sets collection (how 

many measures) and prints for each count i the outcome of call a to the label-chord 

subroutine. Providing the label-all-chords with the *compressed-sets* global 

variable as an argument results in a list shown in lines 368-382 (abbreviated – the 

completed list is shown in Example 6-16). 

Measure:         1 
Pedal:           38 - PC 2 
Set Input:       (5 9 2) 
Normal Form:     (2 5 9) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         2 
Pedal:           38 - PC 2 
Set Input:       (5 9 2) 
Normal Form:     (2 5 9) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         3 
Pedal:           38 - PC 2 
Set Input:       (4 7 1) 
Normal Form:     (1 4 7) 
T-Normal Form:   (0 3 6) 
Prime Form:      (0 3 6) 
Interval Vector: (0 0 2 0 0 1) 
 
Measure:         4 
Pedal:           38 - PC 2 
Set Input:       (4 7 1) 
Normal Form:     (1 4 7) 
T-Normal Form:   (0 3 6) 
Prime Form:      (0 3 6) 
Interval Vector: (0 0 2 0 0 1) 
 
Measure:         5 
Pedal:           38 - PC 2 
Set Input:       (5 9 2) 
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Normal Form:     (2 5 9) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         6 
Pedal:           38 - PC 2 
Set Input:       (5 9 2) 
Normal Form:     (2 5 9) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         7 
Pedal:           38 - PC 2 
Set Input:       (7 10 4) 
Normal Form:     (4 7 10) 
T-Normal Form:   (0 3 6) 
Prime Form:      (0 3 6) 
Interval Vector: (0 0 2 0 0 1) 
 
Measure:         8 
Pedal:           38 - PC 2 
Set Input:       (7 10 4) 
Normal Form:     (4 7 10) 
T-Normal Form:   (0 3 6) 
Prime Form:      (0 3 6) 
Interval Vector: (0 0 2 0 0 1) 
 
Measure:         9 
Pedal:           38 - PC 2 
Set Input:       (5 9 2) 
Normal Form:     (2 5 9) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         10 
Pedal:           38 - PC 2 
Set Input:       (5 9 2) 
Normal Form:     (2 5 9) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         11 
Pedal:           38 - PC 2 
Set Input:       (10 2 7) 
Normal Form:     (7 10 2) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         12 
Pedal:           38 - PC 2 
Set Input:       (10 2 7) 
Normal Form:     (7 10 2) 
T-Normal Form:   (0 3 7) 
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Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         13 
Pedal:           38 - PC 2 
Set Input:       (8 0 5) 
Normal Form:     (5 8 0) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         14 
Pedal:           38 - PC 2 
Set Input:       (8 0 5) 
Normal Form:     (5 8 0) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         15 
Pedal:           38 - PC 2 
Set Input:       (4 7 1) 
Normal Form:     (1 4 7) 
T-Normal Form:   (0 3 6) 
Prime Form:      (0 3 6) 
Interval Vector: (0 0 2 0 0 1) 
 
Measure:         16 
Pedal:           38 - PC 2 
Set Input:       (4 7 1) 
Normal Form:     (1 4 7) 
T-Normal Form:   (0 3 6) 
Prime Form:      (0 3 6) 
Interval Vector: (0 0 2 0 0 1) 
 
Measure:         17 
Pedal:           38 - PC 2 
Set Input:       (5 9 2) 
Normal Form:     (2 5 9) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         18 
Pedal:           38 - PC 2 
Set Input:       (5 9 2) 
Normal Form:     (2 5 9) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         19 
Pedal:           38 - PC 2 
Set Input:       (0 4 9) 
Normal Form:     (9 0 4) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
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Measure:         20 
Pedal:           38 - PC 2 
Set Input:       (0 4 9) 
Normal Form:     (9 0 4) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         21 
Pedal:           38 - PC 2 
Set Input:       (5 8 11 2) 
Normal Form:     (2 5 8 11) 
T-Normal Form:   (0 3 6 9) 
Prime Form:      (0 3 6 9) 
Interval Vector: (0 0 4 0 0 2) 
 
Measure:         22 
Pedal:           38 - PC 2 
Set Input:       (5 8 11 2) 
Normal Form:     (2 5 8 11) 
T-Normal Form:   (0 3 6 9) 
Prime Form:      (0 3 6 9) 
Interval Vector: (0 0 4 0 0 2) 
 
Measure:         23 
Pedal:           38 - PC 2 
Set Input:       (10 2 7) 
Normal Form:     (7 10 2) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         24 
Pedal:           38 - PC 2 
Set Input:       (10 2 7) 
Normal Form:     (7 10 2) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         25 
Pedal:           38 - PC 2 
Set Input:       (9 1 6) 
Normal Form:     (6 9 1) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         26 
Pedal:           38 - PC 2 
Set Input:       (9 1 6) 
Normal Form:     (6 9 1) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         27 
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Pedal:           38 - PC 2 
Set Input:       (8 0 5) 
Normal Form:     (5 8 0) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         28 
Pedal:           38 - PC 2 
Set Input:       (8 0 5) 
Normal Form:     (5 8 0) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         29 
Pedal:           38 - PC 2 
Set Input:       (7 11 4) 
Normal Form:     (4 7 11) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         30 
Pedal:           38 - PC 2 
Set Input:       (7 11 4) 
Normal Form:     (4 7 11) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         31 
Pedal:           38 - PC 2 
Set Input:       (7 10 3) 
Normal Form:     (3 7 10) 
T-Normal Form:   (0 4 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         32 
Pedal:           38 - PC 2 
Set Input:       (7 10 3) 
Normal Form:     (3 7 10) 
T-Normal Form:   (0 4 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         33 
Pedal:           38 - PC 2 
Set Input:       (5 9 2) 
Normal Form:     (2 5 9) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         34 
Pedal:           38 - PC 2 
Set Input:       (5 9 2) 
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Normal Form:     (2 5 9) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         35 
Pedal:           38 - PC 2 
Set Input:       (4 7 1) 
Normal Form:     (1 4 7) 
T-Normal Form:   (0 3 6) 
Prime Form:      (0 3 6) 
Interval Vector: (0 0 2 0 0 1) 
 
Measure:         36 
Pedal:           38 - PC 2 
Set Input:       (4 7 1) 
Normal Form:     (1 4 7) 
T-Normal Form:   (0 3 6) 
Prime Form:      (0 3 6) 
Interval Vector: (0 0 2 0 0 1) 
 
Measure:         37 
Pedal:           38 - PC 2 
Set Input:       (5 9 2) 
Normal Form:     (2 5 9) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         38 
Pedal:           38 - PC 2 
Set Input:       (5 9 2) 
Normal Form:     (2 5 9) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         39 
Pedal:           38 - PC 2 
Set Input:       (7 10 4) 
Normal Form:     (4 7 10) 
T-Normal Form:   (0 3 6) 
Prime Form:      (0 3 6) 
Interval Vector: (0 0 2 0 0 1) 
 
Measure:         40 
Pedal:           38 - PC 2 
Set Input:       (7 10 4) 
Normal Form:     (4 7 10) 
T-Normal Form:   (0 3 6) 
Prime Form:      (0 3 6) 
Interval Vector: (0 0 2 0 0 1) 
 
Measure:         41 
Pedal:           38 - PC 2 
Set Input:       (5 9 2) 
Normal Form:     (2 5 9) 
T-Normal Form:   (0 3 7) 
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Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         42 
Pedal:           38 - PC 2 
Set Input:       (5 9 2) 
Normal Form:     (2 5 9) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         43 
Pedal:           38 - PC 2 
Set Input:       (10 2 7) 
Normal Form:     (7 10 2) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         44 
Pedal:           38 - PC 2 
Set Input:       (10 2 7) 
Normal Form:     (7 10 2) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         45 
Pedal:           38 - PC 2 
Set Input:       (9 1 6) 
Normal Form:     (6 9 1) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         46 
Pedal:           38 - PC 2 
Set Input:       (9 1 6) 
Normal Form:     (6 9 1) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         47 
Pedal:           38 - PC 2 
Set Input:       (8 0 5) 
Normal Form:     (5 8 0) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         48 
Pedal:           38 - PC 2 
Set Input:       (8 0 5) 
Normal Form:     (5 8 0) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
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Measure:         49 
Pedal:           38 - PC 2 
Set Input:       (7 11 4) 
Normal Form:     (4 7 11) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         50 
Pedal:           38 - PC 2 
Set Input:       (7 11 4) 
Normal Form:     (4 7 11) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         51 
Pedal:           38 - PC 2 
Set Input:       (7 10 3) 
Normal Form:     (3 7 10) 
T-Normal Form:   (0 4 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         52 
Pedal:           38 - PC 2 
Set Input:       (7 10 3) 
Normal Form:     (3 7 10) 
T-Normal Form:   (0 4 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         53 
Pedal:           38 - PC 2 
Set Input:       (5 9 2) 
Normal Form:     (2 5 9) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         54 
Pedal:           38 - PC 2 
Set Input:       (5 9 2) 
Normal Form:     (2 5 9) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         55 
Pedal:           38 - PC 2 
Set Input:       (0 4 9) 
Normal Form:     (9 0 4) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         56 
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Pedal:           38 - PC 2 
Set Input:       (5 8 11 2) 
Normal Form:     (2 5 8 11) 
T-Normal Form:   (0 3 6 9) 
Prime Form:      (0 3 6 9) 
Interval Vector: (0 0 4 0 0 2) 
 
Measure:         57 
Pedal:           38 - PC 2 
Set Input:       (10 2 7) 
Normal Form:     (7 10 2) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         58 
Pedal:           38 - PC 2 
Set Input:       (9 1 6) 
Normal Form:     (6 9 1) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         59 
Pedal:           38 - PC 2 
Set Input:       (8 0 5) 
Normal Form:     (5 8 0) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         60 
Pedal:           38 - PC 2 
Set Input:       (7 11 4) 
Normal Form:     (4 7 11) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         61 
Pedal:           38 - PC 2 
Set Input:       (7 10 3) 
Normal Form:     (3 7 10) 
T-Normal Form:   (0 4 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         62 
Pedal:           38 - PC 2 
Set Input:       (7 10 3) 
Normal Form:     (3 7 10) 
T-Normal Form:   (0 4 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         63 
Pedal:           38 - PC 2 
Set Input:       (5 9 2) 
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Normal Form:     (2 5 9) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         64 
Pedal:           38 - PC 2 
Set Input:       (5 9 2) 
Normal Form:     (2 5 9) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         65 
Pedal:           38 - PC 2 
Set Input:       (5 9 2) 
Normal Form:     (2 5 9) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         66 
Pedal:           38 - PC 2 
Set Input:       (5 9 2) 
Normal Form:     (2 5 9) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 

Example 6-16: Programmatic set theory analysis of FDL-1. 

 

6.2.15. Plotting Vertical Reductions 

As can be seen, the understanding of musical set theory principles are 

paramount to understanding of how to represent musical data within a computer 

program. The next step is to look a bit closer into the voice-leading principles of FDL-1, 

but not from the vantage point of applying voice-leading rules set forth from CPP 

principles, but its own governing principles. A small voice-leading chart that maps the 

voice-leading principles of the entire composition can be accomplished by combining 

the measure number with the pedal, and with the input set from the chord succession 

listed in Example 6-16 as “Measure,” “Set Input,” and “Pedal.” By exporting these values 
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as a CSV file, a plot showing the lines (edges) that connect the chord members (nodes) 

can be shown in a readable, and compacted modus. 

385. ; ----- plot vertical reductions ----- ; 
386.  
387. (defun adjust-range (set &optional (transposition 0)) 
388.   "Unfolds PCC into octave diplacement if PC is repeated." 
389.   (if (null (cadr set)) () 
390.     (if (null set) () 
391.       (append 
392.        (if (< (car set) (cadr set)) 
393.          (cons 
394.           (+ (car set) transposition) 
395.           (adjust-range (cdr set) transposition))  
396.          (append  
397.           (list (+ (car set) transposition))  
398.           (mapcar #'(lambda (x) (+ x 12 transposition)) (cdr set)))))))) 
399.  
400. ; (adjust-range '(2 5 8 11 2)) 
401. ; => (2 5 8 11 14) 
402.  
403. (defun compressed-voice-leading (compressed-sets &optional (transposition 

0)) 
404.   "Build item for voice-leading chart." 
405.   (let ((set (cadadr compressed-sets))) 
406.     (list 
407.      (car compressed-sets) 
408.      (adjust-range 
409.       (cons 
410.        (mod (caadr compressed-sets) 12) 
411.        set) transposition)))) 
412.  
413. ; (compressed-voice-leading (nth 18 *compressed-sets*)) 
414. ; => (19 (2 12 16 21)) 
415.  
416. (defun voice-leading-chart (sets &optional (transposition 0)) 
417.   "Builds a voice-leading chart." 
418.   (loop for i from 0 below (length sets) 
419.     collect (compressed-voice-leading (nth i sets) transposition))) 
420.  
421. ; (voice-leading-chart *compressed-sets*) 
422. ; => ((1 (2 5 9 14)) (2 (2 5 9 14)) (3 (2 4 7 13)) ... (62 (2 7 10 15)) 

(63 (2 5 9 14)) ... ) 
423.  
424. ; ----- Exporting voice-leading data to CSV ----- ; 
425.  
426. (defun csv-helper (data) 
427.   "Organizes Data for CSV dump." 
428.   (if (null data) nil 
429.     (cons  
430.      (cons (caar data) (cadar data)) 
431.      (csv-helper (cdr data))))) 
432.  
433. ; (csv-helper (voice-leading-chart *compressed-sets* 60)) 
434. ; => ((1 62 65 69 74) (2 62 65 69 74) (3 62 64 67 73) ... (62 62 67 70 

75) (63 62 65 69 74) ... ) 
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435.  
436. (defun show-vlc (data) 
437.   "Dumps CSV output to screen." 
438.   (format t "~%~{~%~{~A~^,~}~}~%" data)) 
439.  
440. ; (show-vlc (csv-helper (voice-leading-chart *compressed-sets* 0))) 
441. ; => 
442. #| 
443. 1,2,5,9,14 
444. 2,2,5,9,14 
445. 3,2,4,7,13 
446. ... 
447. 62,2,7,10,15 
448. 63,2,5,9,14 
449. ... 
450. |# 
451.  

Example 6-17: Plotting compressed chord data. 

In order to export the data that needs to be plotted, five different functions are 

needed: (1) the adjust-range function, a subroutine (lines 387-398) that unfolds a 

PCC into an octave displacement, if a PC is repeated; (2) the compressed-voice-

leading function, a subroutine (lines 403-411) that builds a chord representation from 

the adjust-range subroutine of an individual measure for the voice-leading-

chart function; (3) the voice-leading-chart function (lines 416-419), which builds 

a chart via the compressed-voice-leading subroutine by collecting compressed 

vertical chord data from all measures; (4) the csv-helper subroutine (lines 426-431) 

that re-organizes data built by the voice-leading-chart function to optimize a CSV 

data dump; and (5) the  show-vlc function (lines 436-438), which displays the CSV 

data dump to the screen. 

The main purpose of the adjust-range function (lines 387-398) is to make 

sure that duplicated PCs are stacked into another register, e.g.: in PCC {2, 5, 9, 2} the 

last pitch belongs to PC 2, but occurs somewhere else in the register, and here is part of 
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the top voice outer shell. Therefore, 12 will be added to the last PC (2) in the PCC so 

that PCC {2, 5, 9, 2} becomes {2, 5, 9, 14}. There is no need to transpose all of the PCC 

data to MIDI PC 60, in order to view an appropriate chart, but the capability has been 

provided to the function. The adjust-range function takes two arguments, (1) a PCC 

or set, and (2) an optional Tx level, with a default of T0. The recursion is initiated in line 

389, by checking if all members of the PCC have been considered, and if they have, the 

recursion is terminated. The next condition checked, is whether the recursion is at the 

end of the PCC named set, terminates if so, it appends the list with the outcome of 

another condition (lines 391-392). The conditional if statement (line 392) compares the 

first number (car) of the PCC (set), with the second number of the PCC (set). 

When the first set (car set) member is smaller than the second set (cdar 

set) member, the first (car) member of the set will be added to a transposition 

number – if one exists (if no transposition number exists the T0 operation is performed), 

and then will be added to the remaining set members by calling the adjust-range 

function from the top. However, if the condition is not met (lines 396-398), then a list 

containing the first (car) member of the set will be appended to the outcome of a 

mapcar function, whose argument is provided by a lambda function that adds 12 to the 

member of the set (and a Tx if so indicated, otherwise T0). The adjust-range 

subroutine can be tested by providing the PCC {2, 5, 8, 11, 2}, and the outcome would 

be {2, 5, 8, 11, 14}, as shown in lines 400-401 respectively. 

The compressed-voice-leading function (lines 403-411) creates the data 

for one measure of compressed musical data. The function takes two arguments, (1) a 
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compressed set member, and (2) an optional transposition, if no Tx is provided, T0 

is assigned as a default. The let function (line 405) assigns specific data from the 

compressed-sets argument (namely the measure number, the root, and the chord 

core) to the local variable set. From there, a new list is built (lines 406-411) by using 

the measure number (car compressed-sets) and assigning it as a key value to a 

list that combines the root (mod (caadr compressed-sets) 12) – mod 12 since 

in the compression scheme the root is specified by its actual MIDI pitch designation in 

order to be able to properly decompress the compressed chord, and the core of a chord 

(set). Before the list is added as a value to the measure number key, the list is 

passed (line 408) to the adjust-range function (see above). The compressed-

voice-leading subroutine can be tested (line 413) by passing a single measure from 

the *compressed-sets* global variable – nth 18 selects m. 19 – as an argument. 

The result (line 414) would be (19 (2 12 16 21)). 

The voice-leading-chart function (lines 416-419) assembles the individual 

data parts built with the compressed-voice-leading function. Two arguments need 

to be provided to the function, (1) the compressed-sets, and (2) an optional 

transposition, which defaults to T0 if none is provided. A loop macro is initiated 

and counts with the iterator i through the length of the provided sets and collects 

all 66 outcomes from the call to the compressed-voice-leading function into one 

big list. Providing the *compressed-sets* global variable to the voice-leading-

chart function (line 421) results in a list (truncated) shown in line 422. 
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Figure 6-13: Compressed chord voice-leading graph. 

In order to represent the data generated as CSV data, the measure numbers 

should be placed as the first member of the list containing the PCs. The task is handled 

by the csv-helper subroutine function (lines 426-431), which takes the data 

generated by a call to the (voice-leading-chart *compressed-sets*) function 

as an argument, and builds a list by cons-ing the measure number into the PCs list 

through a recursion that goes through the entire list, and is halted when the recursion 

has come to the end of the list through an if condition. A test call to the csv-helper 

subroutine with the outcome of a call to the voice-leading-chart function (supplied 

with the *compressed-sets* global variable, and MIDI pitch 60) as an argument is 

shown in lines 433-434. The following show-vlc function (lines 436-438) dumps all the 

data received as a formatted CSV string, via the format function, to the screen (lines 

443-449) in the REPL via the (show-vlc (csv-helper (voice-leading-chart 

*compressed-sets*))) call (line 440). The generated CSV data can then be 

exported to a CSV file, or a graphing utility. Once the data has been exported to a 

graphing utility a compressed chord voice-leading graph is generated that provides a 
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general overview of voice-leading procedures in FDL-1 (Figure 6-13). 

Even though Figure 6-13 provides a general overview on a macro scale of the 

voice-leading procedures in FDL-1 from a PCC to PCC perspective, not all voice-leading 

data has been accounted for. For example, in m. 21 a red line appears seemingly out of 

nowhere, as if somehow some type of quantum physics principle was at play. However 

fascinating the idea may be, this is not the case, since the red line actually belongs to 

an entire strand of voice-leading procedures. For a ML algorithm to appropriately work, 

all strands of voice-leading procedures have to be considered. Henceforth a need for 

another reduction scheme emerges that accounts for all data strands, namely horizontal 

reduction. 

 

6.2.16. Horizontal Reduction and Voice-Leading Strands 

As previous explained, the horizontal reduction creates a map of all possible 

voice-leading procedures. The map consists of non-duplicated strands. The strands can 

be generated with the help of one of the previously set variables, the *pitches-

music-set* (see Example 6-6 for its definition). There are two different outputs of the 

*pitches-music-set* can have, (1) populated with PCs (Example 6-18) – 

displaying PCs as they appear in each measure ordered from bottom to top without any 

rhythmic, or durational values, and (2) populated with MIDI pitches (Example 6-19) – 

displaying MIDI pitches in each measure from bottom to top. 

((1 (2 5 9 2 5 9 2 5 9 2 5 9 2 5 9 2))  
(2 (2 5 9 2 5 9 2 5 9 2 5 9 2 5 9 2))  
(3 (2 4 7 1 4 7 1 4 7 1 4 7 1 4 7 1))…)      

Example 6-18: PC content of *pitches-music-set*. 
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((1 (38 41 45 50 53 57 62 65 69 74 77 81 86 89 93 98))  
(2 (38 41 45 50 53 57 62 65 69 74 77 81 86 89 93 98))  
(3 (38 40 43 49 52 55 61 64 67 73 76 79 85 88 91 97))…) 

Example 6-19: MIDI pitch content of *pitches-music-set*. 

Again, the *pitches-music-set* list is divided into a sub-list for each 

measure that contains a key, the measure number, and the value, a list of PCs, or MIDI 

pitches. The strands can be generated by taking the first item from a measures PCs 

value list, and adding it the next measures first item in the PCs value list, until the last 

measure is reached. As a result, the strand generated will contain at least 66 PCs. 

452. ; ----- horizontal reduction ----- ; 
453.  
454. (defun create-strand (arp &optional (counter 0)) 
455.   "Convert arpeggio member into melody." 
456.   (if (null arp) nil 
457.     (cons 
458.      (nth counter (car (mapcar #'cadr arp))) 
459.      (create-strand (cdr arp) counter)))) 
460.  
461. ; (create-strand *pitches-music-set* 0)            
462. ; bottom strand 
463. ; => (2 2 2 2 2 ... 2) 
464.  
465. ; (create-strand *pitches-music-set* 1)            
466. ; second note of arpeggio in strand 
467. ; => (5 5 4 4 ... 5 5) 
468.  
469. ; (length (create-strand *pitches-music-set* 1))   
470. ; number of notes in strand = measures 
471. ; => 66 
472.  
473. ; (length (cadar *pitches-music-set*))             
474. ; number of strands 
475. ; => 16 
476.  
477. (defun create-strands (arp) 
478.   "Build all possible lines." 
479.   (loop for i from 0 below (length (car (mapcar #'cadr arp))) 
480.     collect (create-strand arp i))) 
481.  
482. ; (create-strands *pitches-music-set*)  
483. ; list of 16 strands 
484. ; => ((2 2 2 2 ... ) (5 5 4 4 ... ) ... ) 
485.  
486. ; -- assign strands list to a variable -- ; 
487. (setf *strands* (mapcar #'butlast (create-strands *pitches-music-set*))) 
488. ; (length *strands*) 
489. ; => 16 
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490.  

Example 6-20: Creating voice-leading strands. 

In lines 454-459 a singular strand is created with the create-strand 

subroutine function, which takes an arpeggio, and an optional counter as its 

arguments. The function is a recursion and the recursion is terminated when the list of 

arpeggios has reached its end (line 456). Otherwise, a list is built by taking the nth 

value in the PCs value list, and adding it to next first (car) item in the next value list, 

which is achieved by passing the second (cadr) item to a mapcar function. The 

process is repeated by calling the create-strand function from the top with the 

remaining arpeggio values, and an nth count. Testing the create-strand function is 

accomplished by providing the global variable *pitches-music-set*, and the 

number 0 – the first strand, i.e. the series of pedal Ds – as arguments (line 61). The 

abbreviated result is shown in line 463. The results of another test case (line 465) are 

displayed in line 466.  

Since each strand consists of a considerable amount of numbers it becomes 

difficult to discern if all members of a strand have been accounted for. However, since 

there are 66 mm. in FDL-1, there should be 66 members contained in each strand. 

Wrapping the create-strand function (with *pitches-music-set* and 1 provided 

as arguments) inside a length function (line 469) as an argument puts any doubt to 

rest, as the result is 66 (line 471). Further, it also needs to be determined how many 

strands there should be. By providing the result of a cadar function with the 

*pitches-music-set* argument to the length function as an argument (line 473), 

it can be determined how many strands there should be, namely 16 (line 475). 
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The create-strands function utilizes the create-strand subroutine and 

takes an arpeggio as its argument (lines 477-480). The create-strand function is 

placed into a loop macro that determines the length of the chord/arpeggios list 

(*pitches-music-set*), and then counts through each value possible (in this case 

0-65, indicated by the below key term) iteration (i), and collects the result of the 

iterations (i) into a list. Effectively, the process creates a list of 16 strands that contain 

66 PCs each. The create-strands function is called with the *pitches-music-

set* global variable as argument (line 482), and the (truncated) results are shown in 

line 484 and Example 6-21. With the create-strands function properly working, the 

results of the previously described function call – wrapped into a mapcar function that 

displays each strand, except for the last member (#'butlast), since a nil value, 

contained in some of the strands, may cause problem later on – can be bound to the 

*strands* global variable (line 487).  

((2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2) (5 5 4 4 5 5 7 7 5 5 
10 10 8 8 4 4 5 5 0 0 11 11 10 10 9 9 8 8 7 7 7 7 5 5 4 4 5 5 7 7 5 5 10 10 9 
9 8 8 7 7 7 7 5 5 0 11 10 9 8 7 7 7 5 5 5 5) (9 9 7 7 9 9 10 10 9 9 2 2 0 0 7 
7 9 9 4 4 2 2 2 2 1 1 0 0 11 11 10 10 9 9 7 7 9 9 10 10 9 9 2 2 1 1 0 0 11 11 
10 10 9 9 4 2 2 1 0 11 10 10 9 9 9 9) (2 2 1 1 2 2 4 4 2 2 7 7 5 5 1 1 2 2 9 
9 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 2 2 4 4 2 2 7 7 6 6 5 5 4 4 3 3 2 2 9 8 7 6 
5 4 3 3 2 2 2 2)…(2 2 1 1 2 2 4 4 2 2 7 7 5 5 1 1 2 2 9 9 2 2 7 7 6 6 5 5 4 4 
3 3 2 2 1 1 2 2 4 4 2 2 7 7 6 6 5 5 4 4 3 3 2 2 9 2 7 6 5 4 3 3 2 2 2 NIL)) 

Example 6-21: Strands via the create-strands function.53 

491. (defun reduce-strands (strands) 
492.   "Removes duplicate strands from the strands list." 
493.   (remove-duplicates (copy-seq strands) :test #'equal)) 
494.  
495. ; -- select only unique strands -- ; 
496. (setf *reduced-strands* (reduce-strands *strands*)) 
497. ; (length *reduced-strands*) 
                                            

53 The last strand in Example 6-21 contains a NIL value, since the strand already ends before the 
last measure. 
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498. ; => 8  
499.   

Example 6-22: Generating unique strands. 

Not all of the 16 produced strands are unique and therefore the strands 

themselves can be further reduced to unique strands. The reduce-strands function 

handles the task (line 491). The strands argument is required. The strands are 

passed to the copy-seq function first (line 492) in order to avoid any destructive 

behavior of the strands list. The result of the procedure becomes the argument of the 

remove-duplicates function, which with the :test #’equal conditionals checks 

whether any strand within the list is equal to another strand in the strands list. Line 

496 shows how the results of the reduce-strands function supplied with the 

*strands* global variable as argument are bound to the *reduced-strands* global 

variable. When the *reduced-strands* are supplied as an argument to the length 

function the result is 8, meaning that 8 of the 16 original strands are unique (line 497-

498). 

With the newly created *reduced-strands*, which carry enough useful 

information by themselves, a new vertical chord scheme can be created. Each new 

vertical chord scheme will consist of eight members in a PCC. Two functions are 

required for this process, (1) the build-reduced-chord subroutine that builds a 

singular chord, and (2) the build-reduced-chords function that uses the build-

reduced-chord function to assemble the chord succession for the entire composition. 

500. (defun build-reduced-chord (reduced-line &optional (counter 0)) 
501.   "Re-assemble the smallest possible reduced chords." 
502.   (if (null reduced-line) nil 
503.     (cons 
504.      (nth counter (car reduced-line)) 
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505.      (build-reduced-chord (cdr reduced-line) counter)))) 
506.  
507. ; (build-reduced-chord *reduced-strands* 0) 
508. ; => (2 2 5 9 2 5 9 2) 
509.  
510. (defun build-reduced-chords (lines m-count) 
511.   "Create a series of reduced chords, according to measure numbers." 
512.   (loop for i from 0 below (- m-count 1) 
513.     collect (cons (+ i 1) (list (build-reduced-chord lines i))))) 
514.  
515. ; (build-reduced-chords *reduced-strands* *measure-count*) 
516. ; => ((1 (2 2 5 9 2 5 9 2)) ... (65 (2 2 5 9 2 5 9 2))) 
517. (setf *pccs-from-strands* (build-reduced-chords *reduced-strands* 

*measure-count*)) 
518.  
519. ; building a usable CSV list 
520. ; (show-vlc (csv-helper *pccs-from-strands*)) 
521.  

Example 6-23: Re-assembling chord succession from vertical reduction. 

In lines 500-505 the build-reduced-chord function creates a singular vertical 

chord from the passed-in reduced-line argument. The optional counter argument, 

set to 0 by default, keeps track of which measure number is being assembled within the 

forthcoming build-reduced-chords function. A recursion is initiated with line 502. 

The recursion assembles a list by taking the nth value of the first item (car) of the 

reduced-line list, and adds it to the remaining items as the argument (cdr 

reduced-line), along with the counter, for a call to the top of the build-

reduced-chord function. In lines 507-508 the function call (build-reduced-chord 

*reduced-strands* 0) assembles the PCC {2, 2, 5, 9, 2, 5, 9, 2}.  

Subsequently, the build-reduced-chords function (lines 510-513) utilizes the 

build-reduced-chord function with the *reduced-strands* (renamed to lines 

locally), and the *measure-count* (renamed to m-count locally) as arguments. A 

for loop macro is initialized that iterates (i) from 0 below the m-count minus 1 

(recall that earlier m. 66 was cut out since it is not part of the voice-leading strands). For 
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each iteration i, a key/value list is assembled by collecting the current count (i.e.: the 

measure number) (+ i 1) as key, and cons-ing a list as the value consisting of the 

outcome of the build-reduced-chord function with the lines and the current count 

(i) supplied as an argument. The function call in line 515 (build-reduced-chords 

*reduced-strands* *measure-count*) produces the result shown in Example 

6-24. In line 517 (Example 6-23) the results of the same function call are bound to the 

*pccs-from-strands* global variable for later use. 

((1 (2 2 5 9 2 5 9 2))  
 (2 (2 2 5 9 2 5 9 2))  
 (3 (2 1 4 7 1 4 7 1))  
 (4 (2 1 4 7 1 4 7 1))  
 (5 (2 2 5 9 2 5 9 2))  
 (6 (2 2 5 9 2 5 9 2))  
 (7 (2 4 7 10 4 7 10 4))  
 (8 (2 4 7 10 4 7 10 4))  
 (9 (2 2 5 9 2 5 9 2))  
 (10 (2 2 5 9 2 5 9 2))  
 (11 (2 7 10 2 7 10 2 7))  
 (12 (2 7 10 2 7 10 2 7))  
 (13 (2 5 8 0 5 8 0 5))  
 (14 (2 5 8 0 5 8 0 5))  
 (15 (2 1 4 7 1 4 7 1))  
 (16 (2 1 4 7 1 4 7 1))  
 (17 (2 2 5 9 2 5 9 2))  
 (18 (2 2 5 9 2 5 9 2))  
 (19 (2 9 0 4 9 0 4 9))  
 (20 (2 9 0 4 9 0 4 9))  
 (21 (2 8 11 2 5 8 11 2))  
 (22 (2 8 11 2 5 8 11 2))  
 (23 (2 7 10 2 7 10 2 7))  
 (24 (2 7 10 2 7 10 2 7))  
  … 
 (65 (2 2 5 9 2 5 9 2)))) 

Example 6-24: One-to-one vertical chord reduction. 

The list consists of individual PCCs, whose members each have a one-to-one 

relationship with a preceding and ensuing PCC member. It follows that PCC {2, 2, 5, 9, 

2, 5, 9, 2} in m. 2 moves to PCC {2, 1, 4, 7, 1, 4, 7, 1} in m. 3 via a (0 -1 -1 -2 -1 -1 -2 -1) 

transformation. In the case of m. 2 to m. 3 it seems that the PCC could be further 
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reduced; however between m. 22 an m. 23 the phantom voice has now been eliminated, 

clearly illuminating the voice-leading path. Consequently, the function build-

reduced-chords function can be wrapped into the csv-helper function, which then 

can be wrapped into the show-vlc function to produce an exportable CSV data format 

for a graphics utility (line 520). The function call (show-vlc (csv-helper *pccs-

from-strands*)) produces the following CSV data list: 

1,2,2,5,9,2,5,9,2 
2,2,2,5,9,2,5,9,2 
3,2,1,4,7,1,4,7,1 
4,2,1,4,7,1,4,7,1 
… 
64,2,2,5,9,2,5,9,2 
65,2,2,5,9,2,5,9,2 

Example 6-25: Abbreviated CSV list of vertical one-to-one chord reduction. 

For m. 66, the PCC {2, 2, 5, 2, 9, 5, 9, 2}, which looks exactly like the PCC from 

m. 65, can be faithfully appended to the resulting list.  

In Figure 6-14, a more detailed reduction emerges that also visualizes deviations 

from the more general chord based graph in Figure 6-13, meaning that not just PCC to 

PCC movement is shown, but also how individual PCs within the PCCs can move. PC 2 

can also move into other directions besides to itself, as the light blue (the pedal), and 

green strands show (both start on PC 2 in m. 1).54 However, the green strand that starts 

on PC 2, also breaks off into a red strand, and a lighter green strand in m. 21, and in m. 

56 (both red, and lighter green strands return to the original green strand in m. 23, and 

m. 57 respectively). The yellow voice-leading strand that starts with PC 5 in m. 1, and 

                                            
54 Note that the green strand only slopes below in Figure 6-14, because most register information 

has been removed during the reduction process. In the music the line will be above the pedal on PC 2. 
Additionally, since this strand does start at PC 2, it is actually the upper part of the shell of the PCC. 
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exhibits similar behavior in m. 21 and m. 56, as compared to the green strand, where it 

breaks off into a purple strand, which then returns back into the yellow strand in m. 23, 

and m. 57 respectively. Furthermore, the orange strand that begins on PC 9 in m. 1, 

veers into two possibilities (the second indicated by light blue) in m. 21 and m. 56, and 

returns in m. 23, and m. 57 respectively as well.  

 

Figure 6-14: One-to-one chord reduction graph. 

Another observation is how the strands are related to each other.55 Aside from 

the strand of pedals, seven relatable strands are produced. A pragmatic way of 

comparing all the strands to each other is to apply a T0 operation to all existing non-

duplicate strands. The strands->zero recursive function (line 522-527) accomplishes 

the mission. The function receives the strands as an argument. 

522. (defun strands->zero (strands) 
523.   "Zero all strands." 
524.   (if (null strands) nil 
525.     (cons 
526.      (mapcar #'(lambda (x) (mod (- x (caar strands)) 12)) (car strands)) 
527.      (strands->zero (cdr strands))))) 
528.  
529. ; (strands->zero *reduced-strands*) 
530. ; => ((0 0 0 0 ... ) (0 0 11 11 ... ) ... ) 
531.  

                                            
55 Arpeggiated strands will always show some type of relationship to one another. 
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532. ; -- T0 Strands -- ; 
533. (setf *zeroed-strands* (strands->zero *reduced-strands*)) 
534.  
535. ; (build-reduced-chords *zeroed-strands* *measure-count*) 
536. ; => ((1 (0 0 0 0 0 0 0 0)) (2 (0 ... 0)) (3 (0 11 11 10 11 11 10 11)) 

... ) 
537.  
538. ; building a usable CSV list 
539. ; (show-vlc (csv-helper (build-reduced-chords *zeroed-strands* *measure-

count*))) 
540.  

Example 6-26: Zeroed strands. 

A conditional statement that checks whether any strands are left terminates the 

recursion. Then, a new list is assembled via cons by passing the first strand ((car 

strands)) to a mapcar function that uses a lambda function to determine what the 

first PC of the strand is ((caar strands)), and subtracts all ensuing strand members 

by the first PC of the aforementioned strand, which is wrapped into a mod 12 function 

to ensure that only positive integers between 0-11 are listed (lines 524-526). The 

remaining strands ((cdr strands)) are then passed back to the top of the function, 

until no strands remain (line 527). The results of the operations are bound to the 

*zeroed-strands* global variable through the setf function (line 533). The *zeroed-

strands* variable along with *measure-count* variable can be used as parameters for 

the build-reduced-chords function, which generates a list of chords ordered by measure 

numbers (line 534). The function call (show-vlc (csv-helper (build-reduced-

chords *zeroed-strands* *measure-count*))) in line 539 generates the 

necessary CSV data for use by a graphics utility.  

1,0,0,0,0,0,0,0,0 
2,0,0,0,0,0,0,0,0 
3,0,11,11,10,11,11,10,11 
4,0,11,11,10,11,11,10,11 
… 
66,0,0,0,0,0,0,0,0 
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Example 6-27: CSV formatted zeroed strands. 

Figure 6-15 shows the resulting graph. The strands are very closely related to 

each other and only deviate, or are transformed (asides from Tx) a few times: (1) mm. 3-

4, (2) mm. 7-8, (3) mm. 15-26, (4) mm. 21-22, (5) mm. 30-33, (6) mm. 35-36, (7) mm. 

39-40, (8) mm. 50-52, (9) mm. 56-57, and (10) mm. 60-62. 

 

 

Figure 6-15: Graphed zeroed strands. 

Now that the importance of voice-leading in FDL-1 has been shown, both vertical 

and horizontal reductions have been established in a sensible manner, and graphs of 

the precise voice-leading procedures have been established, the next step is to map the 

underlying voice-leading rules that govern the composition. 

 

6.2.17. Using ML to Establish Rules 

Rather than mapping the voice-leading principles manually from the data gained 

through the vertical and horizontal reduction schemes, it is also possible to have a 

program learn the voice-leading principles by placing them into a “state transition matrix” 

as used in a Markov model. The STM is “a matrix of probabilities for moving from one 

PC
s

0
2
4
6
8

10
12

Measures

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65



   285 

state to” another “in a Markov chain.”56 It follows that for analysis a transition matrix can 

be used to hold all the voice-leading principles of a given composition, and as a proof of 

concept new compositions can be generated from these rules, by creating different 

order Markov chains.57 If the probabilities are removed the matrix simply becomes a 

semantic network of rules. If the probabilities are added as edges, between PCCs as 

nodes, or between individual PCs as nodes, then semantic network of rules begins to 

look very similar to an association network. 

12. ;; ----- Declaring Global Variables ----- ;; 
13.  
14. (defparameter *stm* nil "State Transition Matrix") 
15.  
16. (defparameter *stm-pccs-strands* nil "STM of PCCs generated from 

Strands") 
17. (defparameter *stm-pedal-pccs* nil "STM of PCCs and pedals") 
18. (defparameter *stm-core-pccs* nil "STM of PCCs without pedals") 
19. (defparameter *stm-normal-pccs* nil "STM of PCCs in Normal Form") 
20. (defparameter *stm-t-normal-pccs* nil "STM of PCCs in Transposed Normal 

Form") 
21. (defparameter *stm-prime-pccs* nil "STM of PCCs in Prime Form") 
22. (defparameter *stm-pcs* nil "STM of inidividual PCs") 
23.  
24. (defparameter *semantic-network-pccs-strands* nil "Semantic Network of 

PCCs from strands") 
25. (defparameter *semantic-network-pedal-pccs* nil "Semantic Network of PCCs 

and pedals") 
26. (defparameter *semantic-network-core-pccs* nil "Semantic Networks of PCCs 

without pedals") 
27. (defparameter *semantic-network-normal-pccs* nil "Semantic Network of 

PCCs in Normal Form") 
28. (defparameter *semantic-network-t-normal-pccs* nil "Semantic Network of 

PCCs in Transposed Normal Form") 
29. (defparameter *semantic-network-prime-pccs* nil "Semantic Network of PCCs 

in Prime Form") 
30. (defparameter *semantic-network-strands* nil "Semantic Network of 
                                            

56 "Macro with-Output-to-String", MIT 
http://www.ai.mit.edu/projects/iiip/doc/CommonLISP/HyperSpec/Body/mac_with-output-to-string.html 
(accessed October 10, 2014). 

57 In this work, only the former will be used. Further, David Cope explains the use of Markov 
chains in Hidden Structure, and the following Common Lisp examples are partially based on Cope’s Lisp 
examples in Hidden Structure, but have been re-written to follow the functional programming paradigm. 
"Function Terpri, Fresh-Line", MIT 
http://www.ai.mit.edu/projects/iiip/doc/CommonLISP/HyperSpec/Body/fun_terpricm_fresh-line.html 
(accessed October 10, 2014). 
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inidividual PCs") 
31.  

Example 6-28: Global variables in Learn-Rules.lisp. 

An additional script, or program has to be created named Learn-Rules.lisp. 

The script will be used in conjunction with the Analysis-Prototype.lisp, and the 

Set-Theory-Functions.lisp scripts.58 The Learn-Rules.lisp script opens by 

declaring the global variables that will be used throughout the script (lines 12-30).59 The 

variables are declared with the defparameter function, a name surrounded by 

earmuffs (*), a nil, or empty value, and a documentation string (“Example String”) that 

describes what they are used for. 

32. ;; ----- Functions and Variable Assignments ----- ;; 
33.  
34. ; ----- State Transition Matrix ----- ; 
35.  
36. (defun rule->stm-helper (first-pc second-pc stm) 
37.   "Clean rule->stm helper." 
38.   (cons (list first-pc (list second-pc)) stm)) 
39.  
40. (defun rule->stm (first-pc second-pc) 
41.   "Adds a rule to *stm*. Dirty." 
42.   (let ((stm *stm*)) 
43.     (setf *stm* (rule->stm-helper first-pc second-pc stm)))) 
44.  
45. ; (rule->stm '5 '4) 
46. ; => ((5 (4))) 
47.  
48. (defun check->stm-helper (first-pc second-pc stm) 
49.   "Clean check->stm helper." 
50.   (substitute  
51.    (list  
52.     first-pc 
53.     (cons  
54.      second-pc  
55.      (cadr (assoc first-pc stm :test #'equal)))) 

                                            
58 The Analysis-Prototype.lisp script loads the Set-Theory-Functions.lisp script 

automatically. The Learn-Rules.lisp script should be executed after the previous two scripts have 
been executed. 

59 The first 11 lines contain a “boiler plate,” or a large comment block that features the name of 
the script, the author, contact email address, a statement of purpose of the script and what the script 
does, and any to do items that may have to be completed. 
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56.    (assoc first-pc stm :test #'equal) 
57.    stm :test #'equal)) 
58.  
59. (defun check->stm (first-pc second-pc) 
60.   "Checks if a pc is already in *stm*." 
61.   (let ((stm *stm*)) 
62.     (setf *stm* (check->stm-helper first-pc second-pc stm)))) 
63.  
64. ; (check->stm '5 '4) 
65. ; => ((5 (4 4))) 
66.  
67. (defun pcs->stm-helper (pcs stm) 
68.   "Clean pcs->stm helper." 
69.     (cond ((null pcs) stm) 
70.         ((assoc (car pcs) stm :test #'equal) 
71.          (progn  
72.            (check->stm (car pcs) (cadr pcs)) 
73.            (pcs->stm (cdr pcs)))) 
74.         (t  
75.          (progn  
76.            (rule->stm (car pcs) (cadr pcs)) 
77.            (pcs->stm (cdr pcs)))))) 
78.  
79. (defun pcs->stm (pcs) 
80.   "Places pitches into *stm*. Dirty" 
81.   (pcs->stm-helper pcs *stm*)) 
82.  
83. ; (pcs->stm *core-pccs*) 
84. ; => (((7 10 3) ((5 9 2) (7 10 3) (5 9 2) (7 10 3) (5 9 2) (7 10 

3))) ... ) 
85.  
86. ; ----- Analyze Chord Successions ----- ; 
87.  
88. (defun analyze-voice-leading (pccs) 
89.   "Clear *stm*, and then create *stm* with chord succession rules and 

probabilities." 
90.   (setf *stm* ()) 
91.   (pcs->stm pccs)) 
92.  
93. ; (analyze-voice-leading *pedal-pccs*) 
94. ; => ... ((2 7 11 4) ((2 7 10 3) (2 7 10 3) (2 7 11 4) (2 7 10 3) (2 7 11 

4))) ... 
95. ; Probabilities 
96. ; (2 7 11 4) => (2 7 10 3) -> 0.6 
97. ;            => (2 7 11 4) -> 0.4 
98.  

Example 6-29: Analyzing chord successions and voice-leading. 

The main function is the analyze-voice-leading function (lines 88-91). The 

function uses six subroutines: (1) rule->stm-helper (lines 36-38), a subroutine for 

the rule->stm subroutine; (2) rule->stm (lines 40-43), a subroutine, for the pcs-
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>stm-helper subroutine; (3) check->stm-helper (lines 48-57), a subroutine for the 

check->stm subroutine; (4) check->stm (lines 59-62), a subroutine for the pcs-

>stm-helper subroutine; (5) pcs->stm-helper (lines 67-77), a subroutine for the 

pcs->stm function; and (6) the pcs->stm (lines 79-81) subroutine that is utilized 

by the previous pcs->stm-helper in a recursive manner. 

The rule->stm-helper subroutine is used by the rule->stm subroutine 

(lines 40-43) to assign a rule to the stm. The rule->stm-helper (lines 36-38) 

subroutine requires three arguments, (1) a first-pc, (2) a second-pc, (3) and the 

STM. The function assembles an association list by cons-ing the first-pc with a 

list consisting of the second-pc and the remainder of the stm. Calling the rule-

>stm function (line 45-46) with PC 5 and PC 4 as arguments, meaning PC 4 follows PC 

5, creates the following stm: ((5 (4))). 

The check->stm-helper subroutine is used within the check->stm 

subroutine (lines 59-62) to assign a value to the *stm* global variable. The check-

>stm-helper subroutine (lines 48-57) needs three arguments, (1) one PC, (2) a 

second PC, and (3) a STM. The values are passed to the built-in substitute function 

that can substitute one list (lines 51-55) with another (line 56), its first two arguments, 

based on whether or not the conditional :test #’equal is met. The first list (lines 

51-55) is built by adding the first-pc as a key to a list that consists of a cons-ed list 

made up of the second-pc and the second (cadr) part of a query (assoc) that checks 

whether or not the first-pc is equal or not. The second list only consists of whether 

or not the first-pc equals that of the key of a list to be substituted (line 56). When 
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calling the check->stm function with PC 5 and PC 4 as arguments, the stm – which 

was ((5 (4))) – checks whether or not PC 4 following PC 5 already existed as a rule 

(line 62). PC 4 will be added to the list of pitches that follow PC 5, whether it exists or 

not. The side effect of PC 4 being added to the already existing PC 4 would be that the 

movement from PC 5 to PC 4 would gain in weight. Therefore, the STM would now read 

((5 (4 4))). If the arguments provided to check->stm would be PC 5 and PC 3, then 

the resulting STM would read ((5 (4 4 3))), meaning that the movement from PC 5 

to PC 4 would be twice as likely as the movement from PC 5 to PC 3. 

The pcs->stm-helper subroutine pulls the previously explained subroutines 

together into one unified function (lines 67-77). The cond function initiates a recursion 

(line 69). If there are no pcs within the stm, the t (true) statement of the cond function 

is initiated and a progn function (a trigger that ensures the a block of functions are 

processed in the order that they appear in) executes (1) the rule->stm function with 

the occurring first-pc and second-pc as arguments, and (2) makes a call to the 

pcs->stm function with the remaining list (cdr pcs), which in turn sends these 

values back to the top of the pcs->stm-helper function. However, if there are already 

pcs in the stm, then a query is made to check whether any of the keys already exist in 

the association list, and the progn function executes (1) the check->stm subroutine 

with the first-pc and the second-pc as arguments, and (2) the pcs->stm 

subroutine with the remaining list of pcs, initiates the pcs->stm-helper function 

anew (lines 70-73). 

The analyze-voice-leading function takes a series of PCs or PCCs as 
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arguments (lines 88-91) – here they are just called pccs. The first step is to clear the 

*stm* global variable to ensure that no pre-existing rules exist, since otherwise new 

rules would simply be appended to another rules set (line 90). Once the step is 

complete, the pcs->stm function is called with the passed in pccs parameter. Example 

6-30 shows an example pccs parameter. The parameter in Example 6-30 supplied to 

the analyze-voice-leading function would then yield the STM in Example 6-31.60 

The pccs parameter is a placeholder for different types of data sets that can be 

established and processed with the analyze-voice-leading function. 

((0 3 7) (0 3 7) (0 3 6) (0 3 6) (0 3 7) (0 3 7) (0 3 6) (0 3 6) (0 3 7) (0 3 
7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 6) (0 3 6) (0 3 7) (0 3 7) (0 3 7) (0 
3 7) (0 3 6 9) (0 3 6 9) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 
7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 6) (0 3 6) (0 3 7) (0 3 7) (0 
3 6) (0 3 6) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) 
(0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 6 9) (0 3 7) (0 
3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7))  

Example 6-30: PCCS parameter. 

 ( 
 ((0 3 6 9) ((0 3 7) (0 3 7) (0 3 6 9))) 
 ((0 3 6) ((0 3 7) (0 3 6) (0 3 7) (0 3 6) (0 3 7) (0 3 6) (0 3 7) (0 3 6) (0 
3 7) (0 3 6)))  
 ((0 3 7) (NIL (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 
7) (0 3 7) (0 3 6 9)  (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) 
(0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 6) (0 3 7) (0 3 
6) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 
3 7) (0 3 7) (0 3 6 9) (0 3 7) (0 3 7) (0 3 7) (0 3 6) (0 3 7) (0 3 7) (0 3 
7) (0 3 7) (0 3 7) (0 3 6) (0 3 7) (0 3 6) (0 3 7))) 
) 

Example 6-31: Chord-succession rules. 

 

6.2.18. Generating Data Sets 

Data sets can be generated with the help of existing data, i.e. previously bound 

                                            
60 Each line that begins with a “((“ shows a new chord that is followed by a set of other chords that 

follow the chord learned in the rule set. 
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global variables in the Analysis-Prototype.lisp script. Therefore, the Analysis-

Prototype.lisp script will be amended. 

541. ; ---- Preparing different sets for machine learning ---- ; 
542.  
543. (defun vertical-chords (sets) 
544.   "Builds a list with all vertical PCCs." 
545.   (if (null sets) nil 
546.     (cons 
547.      (cons 
548.       (mod (caadar sets) 12) 
549.       (car (cdadar sets))) 
550.      (vertical-chords (cdr sets))))) 
551.       
552. ; (vertical-chords *compressed-sets*) 
553. ; => ((2 5 9 2) (2 5 9 2) (2 4 7 1) ... (2 7 10 3) (2 5 9 2) ... ) 
554.  
555. ; -- assign vertical PCCs including pedals -- ; 
556. (setf *pedal-pccs* (vertical-chords *compressed-sets*)) 
557.  
558. (defun vertical-chords-no-pedal (sets) 
559.   "Builds a list with all vertical PCCs without pedal." 
560.   (if (null sets) nil 
561.     (cons 
562.      (car (cdadar sets)) 
563.      (vertical-chords-no-pedal (cdr sets))))) 
564.  
565. ; (vertical-chords-no-pedal *compressed-sets*) 
566. ; => ((5 9 2) (5 9 2) (4 7 1) ... (7 10 3) (5 9 2) ... ) 
567.  
568. ; -- assign vertical PCCs without pedals -- ; 
569. (setf *core-pccs* (vertical-chords-no-pedal *compressed-sets*)) 
570.  
571. (defun vertical-chords-normal-form (sets) 
572.   "Builds a list with all vertical PCCs without pedal." 
573.   (if (null sets) nil 
574.     (cons 
575.      (normal-form (car (cdadar sets))) 
576.      (vertical-chords-normal-form (cdr sets))))) 
577.  
578. ; (vertical-chords-normal-form *compressed-sets*) 
579. ; => ((2 5 9) (2 5 9) (1 4 7) ... (3 7 10) (2 5 9) ... ) 
580.  
581. ; -- assign normal-form PCCs -- ; 
582. (setf *normal-form-pccs* (vertical-chords-normal-form *compressed-sets*)) 
583.  
584. (defun vertical-chords-t-normal-form (sets) 
585.   "Builds a list with all vertical PCCs without pedal." 
586.   (if (null sets) nil 
587.     (cons 
588.      (t-normal-form (normal-form (car (cdadar sets)))) 
589.      (vertical-chords-t-normal-form (cdr sets))))) 
590.  
591. ; (vertical-chords-t-normal-form *compressed-sets*) 
592. ; => ((0 3 7) (0 3 7) (0 3 6) ... (0 4 7) (0 3 7) ... ) 
593.  
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594. ; -- assign t-normal-form PCCs -- ; 
595. (setf *t-normal-form-pccs* (vertical-chords-t-normal-form *compressed-

sets*)) 
596.  
597. (defun vertical-chords-prime-form (sets) 
598.   "Builds a list with all vertical PCCs without pedal." 
599.   (if (null sets) nil 
600.     (cons 
601.      (prime-form (car (cdadar sets))) 
602.      (vertical-chords-prime-form (cdr sets))))) 
603.  
604. ; (vertical-chords-prime-form *compressed-sets*) 
605. ; => ((0 3 7) (0 3 7) (0 3 6) ... (0 3 7) (0 3 7) ... ) 
606.  
607. ; -- assign prime-form PCCs -- ; 
608. (setf *prime-form-pccs* (vertical-chords-prime-form *compressed-sets*)) 
609.  

Example 6-32: Creating data sets in order to generate voice-leading rules. 

To find chord succession rules, the data contained within the *compressed-

sets* global variable (recall section 6.2.12 above) can be re-used. The first data set 

simply contains PCCs and is created with the vertical-chords function (lines 543-

550) that requires the (compressed) sets as its argument. A conditional if statement 

checks when to stop the recursion (line 545). A list of lists is created in lines 546-549, 

the main list being the data set, and the PCCs being the lists within that main list. One 

compressed set is displayed as (1 (38 (5 9 2) 5)). In order to prepend the pedal 

of a PCC to the PCC the MIDI pitch 38, which is selected from the compressed set via 

the caadar function, needs to be modified with a mod 12 operation and prepended to 

the PCC {5, 9, 2} – reached through the cdadar function nested within a car function 

(lines 548-549). The remaining compressed sets are then passed back to the top of 

the vertical-chords function. A test call to the vertical-chords function with the 

*compressed-sets* global variable supplied as an argument is shown in lines 552-

553, and in line 556 the same function call with the same argument is bound to the 
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*pedal-pccs* global variable. The vertical-chords-no-pedal function requires 

the compressed sets as argument as well (lines 558-563). A recursion is initiated with 

a conditional if statement in line 560. Subsequently, a list is assembled by selecting the 

core of a compressed set, e.g.: {5, 9, 2} (line 562), via a nested cdadar function within 

a car function, and the remaining, cdr, compressed sets are passed back to the 

beginning of the recursion, or the top of the vertical-chords-no-pedal function as 

an argument (line 563). The outcome of a call to the vertical-chords-no-pedal 

function with the *compressed-sets* global variable supplied as an argument is 

bound to the *core-pccs* global variable in line 569. All following functions will utilize 

the core of the compressed sets, and the core will be assembled via the same cdadar 

function that is nested within the car function. 

The vertical-chords-normal-form function (lines 571-576) takes 

*compressed-sets* as its argument in the form of the sets local variable. A 

recursion is initialized, by checking whether all sets have been processed, if they have 

the recursion ends, but if not, a new recursion begins (line 573). Taking the first 

compressed set, or core – as previously described, and passing it to the normal-form 

function (from the Set-Theory-Functions.lisp script) as an argument, assembles 

a new list. A call to the vertical-chords-normal-form function passes the 

remaining PCCs back to the top of the recursion (line 576). A (vertical-chords-

normal-form *compressed-sets*) function call is bound to the *normal-form-

pccs* global variable in line 582 (Example 6-33).  

((2 5 9) (2 5 9) (1 4 7) (1 4 7) (2 5 9) (2 5 9) (4 7 10) (4 7 10) (2 5 9) (2 
5 9) (7 10 2) (7 10 2) (5 8 0) (5 8 0) (1 4 7) (1 4 7) (2 5 9) (2 5 9) (9 0 
4) (9 0 4) (2 5 8 11) (2 5 8 11) (7 10 2) (7 10 2) (6 9 1) (6 9 1) (5 8 0) (5 
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8 0) (4 7 11) (4 7 11) (3 7 10) (3 7 10) (2 5 9) (2 5 9) (1 4 7) (1 4 7) (2 5 
9) (2 5 9) (4 7 10) (4 7 10) (2 5 9) (2 5 9) (7 10 2) (7 10 2) (6 9 1) (6 9 
1) (5 8 0) (5 8 0) (4 7 11) (4 7 11) (3 7 10) (3 7 10) (2 5 9) (2 5 9) (9 0 
4) (2 5 8 11) (7 10 2) (6 9 1) (5 8 0) (4 7 11) (3 7 10) (3 7 10) (2 5 9) (2 
5 9) (2 5 9) (2 5 9)) 

Example 6-33: Normal form PCCs data set of FDL-1. 

The subsequent vertical-chords-t-normal-form (lines 583-588) function 

operates exactly like the previous vertical-chord-normal-form function, except 

that all PCCs are assembled into a list of t-normal form chords ((vertical-chords-

t-normal-form *compressed-sets*)), and assigned to the *t-normal-form-

pccs* global variable (line 595). Last, the vertical-chords-prime-form (lines 

596-601) function operates exactly as the previous two functions except that the core 

PCCs are passed to the prime-form function as an argument (line 601). The result of 

a call to that function binds to the *prime-form-pccs* global variable (line 608). With 

these operation five data sets have been created – (1) *pedal-pccs*, (2) *core-

pccs*, (3) *normal-form-pccs*, (4) *t-normal-form-pccs*, and (5) *prime-

form-pccs* – that now can be integrated into the Learn-Rules.lisp script. 

 

6.2.19. ML Data Sets 

The five data sets from the previous section (6.2.17), along with the data set from 

Example 6-24, are used as parameters, or as pccs (Example 6-30), to the analyze-

voice-leading function from section 6.2.16 in Example 6-29. Next, the outcomes of 

the function call with six different data sets are bound to six global variables in the 

Learn-Rules.lisp script, as shown in Example 6-34. In line 98 the *stm-pccs-

strands* variable is bound to the outcome of a call to the analyze-voice-leading 
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function. The function is supplied with the outcome of a mapcar and #'cadr functions 

with the *pccs-from-strands* variable (the data set contained PCCs as values, 

along with measure numbers as keys, here the measure numbers are filtered out with 

the mapcar operation). Line 94 shows a truncated result, where as PCC {2, 3, 7, 10, 3, 

7, 10, 3} is always followed by either PCC {2, 2, 5, 9, 2, 5, 9, 2} or PCC {2, 3, 7, 10, 3, 7, 

10, 3}, three times each, out of six successions. Therefore, the probability that PCC {2, 

3, 7, 10, 3, 7, 10, 3} is followed by PCC {2, 2, 5, 9, 2, 5, 9, 2} is 50%, and the probability 

that it is followed by PCC {2, 3, 7, 10, 3, 7, 10, 3} is 50% as well (lines 95-97).  

Assigning the *pedal-pccs* variable to the analyze-voice-leading 

function (line 100) results in a STM shown in line 101. The abbreviated STM only shows 

the first PCC of the series of PCCs contained within the *pedal-pccs* variable. PCC {2, 

7, 10, 3} can either move to PCC {2, 5, 9, 2}, or PCC {2, 7, 10, 3}, i.e. itself. Overall, 

PCC {2, 7, 10, 3} moves to PCC {2, 5, 9, 2} three times, and to itself three times. With 

knowing how many times one PCC succeeds to another it becomes possible to assign 

probabilities (lines 93-95), meaning that a movement to PCC {2, 7, 10, 3} occurs 3 out of 

6 times, thus with a p of 0.5, whereas the motion to itself, or stasis, occurs 3 out of 6 

times, thus with a p of 0.5. 

93. ; (analyze-voice-leading (mapcar #'cadr *pccs-from-strands*)) 
94. ; => (((2 3 7 10 3 7 10 3) ((2 2 5 9 2 5 9 2) (2 3 7 10 3 7 10 3) (2 2 5 

9 2 5 9 2) (2 3 7 10 3 7 10 3) (2 2 5 9 2 5 9 2) (2 3 7 10 3 7 10 
3))) ... ) 

95. ; Probabilities 
96. ; (2 3 7 10 3 7 10 3) => (2 2 5 9 2 5 9 2)   -> 0.5 
97. ;                     => (2 3 7 10 3 7 10 3) -> 0.5 
98. (setf *stm-pccs-strands* (analyze-voice-leading (mapcar #'cadr *pccs-

from-strands*))) 
99.  
100. ; (analyze-voice-leading *pedal-pccs*) 
101. ; => (((2 7 10 3) ((2 5 9 2) (2 7 10 3) (2 5 9 2) (2 7 10 3) (2 5 9 2) (2 

7 10 3))) ... ) 
102. ; Probabilities 
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103. ; (2 7 10 3) => (2 5 9 2) -> 0.5 
104. ;            => (2 7 10 2) -> 0.5 
105. (setf *stm-pedal-pccs* (analyze-voice-leading *pedal-pccs*)) 
106.  
107. ; (analyze-voice-leading *core-pccs*) 
108. ; => (((7 10 3) ((5 9 2) (7 10 3) (5 9 2) (7 10 3) (5 9 2) (7 10 

3))) ... ) 
109. ; Probabilities 
110. ; (7 10 3) => (5 9 2)  -> 0.5 
111. ;          => (7 10 3) -> 0.5 
112. (setf *stm-core-pccs* (analyze-voice-leading *core-pccs*)) 
113.  
114. ; (analyze-voice-leading *normal-form-pccs*) 
115. ; => ... ((9 0 4) ((2 5 8 11) (2 5 8 11) (9 0 4))) ... 
116. ; Probabilities 
117. ; (9 0 4) => (2 5 8 11) -> 0.66 
118. ;         => (9 0 4)    -> 0.33 
119. (setf *stm-normal-pccs* (analyze-voice-leading *normal-form-pccs*)) 
120.  
121. ; (analyze-voice-leading *t-normal-form-pccs*) 
122. ; => ... ((2 5 9) (NIL (2 5 9) (2 5 9) (2 5 9) (9 0 4) (2 5 9) (7 10 2) 

(2 5 9) (4 7 10) (2 5 9) (1 4 7) (2 5 9) (9 0 4) (2 5 9) (7 10 2) (2 5 9) 
(4 7 10) (2 5 9) (1 4 7) (2 5 9)))) 

123. ; Probabilities 
124. ; (2 5 9) => NIL      -> 0.05 
125. ;         => (2 5 9)  -> 0.55 
126. ;         => (9 0 4)  -> 0.10 
127. ;         => (7 10 2) -> 0.10 
128. ;         => (4 7 10) -> 0.10 
129. ;         => (1 4 7)  -> 0.10 
130. (setf *stm-t-normal-pccs* (analyze-voice-leading *t-normal-form-pccs*)) 
131.  
132. ; (analyze-voice-leading *prime-form-pccs*) 
133. ; => (((0 3 6 9) ((0 3 7) (0 3 7) (0 3 6 9))) ... ) 
134. ; Probabilities 
135. ; (0 3 6 9) => (0 3 7)   -> 0.66 
136. ;           => (0 3 6 9) -> 0.33 
137. (setf *stm-prime-pccs* (analyze-voice-leading *prime-form-pccs*)) 
138.  

Example 6-34: Building STMs from chord successions. 

In line 105 the outcome of a call to (analyze-voice-leading *pedal-

pccs*) is bound to the *stm-pedal-pccs* global variable. Lines 107-111 show the 

same test procedure described, and the outcome of a call to (analyze-voice-

leading *core-pccs*) is bound to the *stm-core-pccs* global variable in line 

112. Lines 114-119, lines 121-130, and lines 132-137 show the same procedure, but 

with the *stm-normal-pccs*, the *stm-t-normal-pccs*, and the *stm-prime-
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pccs* global variables being bound respectively. All generated data contains 

probabilities alongside learned chord succession rules. However, not always is it 

necessary to show the chord succession rules with probabilities, especially if the chord 

succession rules are to be graphed as semantic networks. 

139. ; ----- Converting STMs to Semantic Networks ----- ;  
140.  
141. (defun chord-voice-leading (rules) 
142.   "Chord succession rules without probabilities." 
143.   (if (null rules) nil 
144.     (cons 
145.      (list 
146.       (caar rules) 
147.       (remove-duplicates (cadar rules) :test #'equalp)) 
148.      (chord-voice-leading (cdr rules))))) 
149.  
150. ; - Assign Chord Succession Rules to Semantic Networks - ; 
151.  
152. ; (chord-voice-leading *stm-pccs-strands*) 
153. ; => (((2 3 7 10 3 7 10 3) ((2 2 5 9 2 5 9 2) (2 3 7 10 3 7 10 3))) ... ) 
154. (setf *semantic-network-pccs-strands* (chord-voice-leading *stm-pccs-

strands*)) 
155.  
156. ; (chord-voice-leading *stm-pedal-pccs*) 
157. ; => (((2 7 10 3) ((2 5 9 2) (2 7 10 3))) ... ) 
158. (setf *semantic-network-pedal-pccs* (chord-voice-leading *stm-pedal-

pccs*)) 
159.  
160. ; (chord-voice-leading *stm-core-pccs*) 
161. ; => (((7 10 3) ((5 9 2) (7 10 3))) ... ) 
162. (setf *semantic-network-core-pccs* (chord-voice-leading *stm-core-pccs*)) 
163.  
164. ; (chord-voice-leading *stm-normal-pccs*) 
165. ; => (((3 7 10) ((2 5 9) (3 7 10))) ... ) 
166. (setf *semantic-network-normal-pccs* (chord-voice-leading *stm-normal-

pccs*)) 
167.  
168. ; (chord-voice-leading *stm-t-normal-pccs*) 
169. ; => (((0 4 7) ((0 3 7) (0 4 7))) ... ) 
170. (setf *semantic-network-t-normal-pccs* (chord-voice-leading *stm-t-

normal-pccs*)) 
171.  
172. ; (chord-voice-leading *stm-prime-pccs*) 
173. ; =>(((0 3 6 9) ((0 3 7) (0 3 6 9))) ... ) 
174. (setf *semantic-network-prime-pccs* (chord-voice-leading *stm-prime-

pccs*)) 
175.  

Example 6-35: Converting STMs to semantic networks. 

The chord-voice-leading function (lines 141-148) is used to bind the five 
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generated global STM variables to the five semantic network global variables. The 

function uses rules (one of the STMs) as an argument (line 141). A conditional if 

statement initiates a recursion that checks whether or not the end of a rules set has 

been reached in line 143. The recursion terminates if the end of a rules set has been 

reached with nil, and returns a new rules set without probabilities. A list is cons-ed 

(line 144-147) by taking the PCC of the beginning of each rules set attached to a 

individual PCC, the key, and assigning it the PCCs it can potentially move to, which is 

wrapped into a remove-duplicates function that :test-s whether or not any PCCs 

moved to have already been included in the set with an #'equalp function. The 

remaining rules set is passed back as a parameter to the top of the chord-voice-

leading function (line 148). Testing the (chord-voice-leading *stm-prime-

pccs*) function call (line 172), for example, results in the semantic network shown in 

Example 6-36 that demonstrates the rules of how the set classes succeed each other. 

(((0 3 6 9) ((0 3 7) (0 3 6 9)))  
 ((0 3 6) ((0 3 7) (0 3 6)))  
 ((0 3 7) (NIL (0 3 6 9) (0 3 6) (0 3 7)))) 

Example 6-36: Set class succession rules in FDL-1. 

Thus, the rules are: (1) SC (0 3 6 9) => SC (0 3 7) or (0 3 6 9); (2) SC (0 3 6) => 

SC (0 3 7) or (0 3 6); and (3) SC (0 3 7) => NIL – i.e. the SC the piece ends on – or SC 

(0 3 6 9), or (0 3 6), or (0 3 7). The results of the operation are assigned to the 

*semantic-network-prime-pccs* global variable (line 174). Lines 152-170 show 

test function call scenarios for the remaining five STMs, and show how outcomes of 

calls to the chord-voice-leading function are bound to the *semantic-network-

pccs-strands*, the *semantic-network-pedal-pccs*, the *semantic-
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network-core-pccs*, the *semantic-network-normal-pccs*, and the 

*semantic-network-t-normal-pccs* global variables correspondingly. Even 

though the function is called the chord-voice-leading function, it really just builds sematic 

networks of chord succession rules. 

Now that different sets of chord succession rules have been collected in forms of 

STMs and semantic networks, which represent harmonic background and middleground 

information of FDL-1, actual voice-leading principles, by which each individual note in 

the composition is guided, can be established by using the strands (Example 6-37) 

collected in the Analysis-Prototype.lisp script during the horizontal reduction 

process, representing foreground information of FDL-1. 

((2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2)  
(2 2 1 1 2 2 4 4 2 2 7 7 5 5 1 1 2 2 9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 2 2 
4 4 2 2 7 7 6 6 5 5 4 4 3 3 2 2 9 8 7 6 5 4 3 3 2 2 2)  
(5 5 4 4 5 5 7 7 5 5 10 10 8 8 4 4 5 5 0 0 11 11 10 10 9 9 8 8 7 7 7 7 5 5 4 
4 5 5 7 7 5 5 10 10 9 9 8 8 7 7 7 7 5 5 0 11 10 9 8 7 7 7 5 5 5)  
(9 9 7 7 9 9 10 10 9 9 2 2 0 0 7 7 9 9 4 4 2 2 2 2 1 1 0 0 11 11 10 10 9 9 7 
7 9 9 10 10 9 9 2 2 1 1 0 0 11 11 10 10 9 9 4 2 2 1 0 11 10 10 9 9 9)  
(2 2 1 1 2 2 4 4 2 2 7 7 5 5 1 1 2 2 9 9 5 5 7 7 6 6 5 5 4 4 3 3 2 2 1 1 2 2 
4 4 2 2 7 7 6 6 5 5 4 4 3 3 2 2 9 5 7 6 5 4 3 3 2 2 2)  
(5 5 4 4 5 5 7 7 5 5 10 10 8 8 4 4 5 5 0 0 8 8 10 10 9 9 8 8 7 7 7 7 5 5 4 4 
5 5 7 7 5 5 10 10 9 9 8 8 7 7 7 7 5 5 0 8 10 9 8 7 7 7 5 5 5)  
(9 9 7 7 9 9 10 10 9 9 2 2 0 0 7 7 9 9 4 4 11 11 2 2 1 1 0 0 11 11 10 10 9 9 
7 7 9 9 10 10 9 9 2 2 1 1 0 0 11 11 10 10 9 9 4 11 2 1 0 11 10 10 9 9 9)  
(2 2 1 1 2 2 4 4 2 2 7 7 5 5 1 1 2 2 9 9 2 2 7 7 6 6 5 5 4 4 3 3 2 2 1 1 2 2 
4 4 2 2 7 7 6 6 5 5 4 4 3 3 2 2 9 2 7 6 5 4 3 3 2 2 2)) 

Example 6-37: *reduced-strands* from Example 6-22. 

The strands in Example 6-37 are horizontal PCCs. The first strand consists of PC 

2, and represents the pedal or PCC {2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 

2, 2, 2, 2, 2, 2, 2, 2, 2, 2}. The second strand from the bottom up represents the first 

note of the arpeggio that is not part of the pedal or PCC {2, 2, 1, 1, 2, 2, 4, 4, 2, 2, 7, 7, 
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5, 5, 1, 1, 2, 2, 9, 9, 8, 8, 7, 7, 6, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 2, 2, 4, 4, 2, 2, 7, 7, 6, 6, 5, 

5, 4, 4, 3, 3, 2, 2, 9, 8, 7, 6, 5, 4, 3, 3, 2, 2, 2}. All remaining strands are built from the 

bottom up in the same fashion. 

176. ; ----- Analyze PC Voice-leading Rules ----- ; 
177.  
178. ; *reduced-strands* 
179. ; (nth 0 *reduced-strands*) 
180. ; (analyze-voice-leading (nth 0 *reduced-strands*)) 
181.  
182. (defun pc-voice-leading-rules (strands) 
183.   "Assemble list of voice-leading rules from strands." 
184.   (loop for i from 0 below (length strands) 
185.     collect (analyze-voice-leading (nth i strands)))) 
186.  
187. ; (pc-voice-leading-rules *reduced-strands*) 
188. ; =>  
189. #| 
190. (((2 (NIL 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2)))  
191.  ((3 (2 3 2 3 2 3)) (6 (5 5 6 5 6)) (8 (7 7 8)) (9 (8 8 9)) (5 (4 4 5 4 5 

1 5)) (7 (6 6 7 6 7 5 7)) (4 (3 3 4 2 4 3 4 2 4)) (1 (2 1 2 1 2 1)) (2 
(NIL 2 2 9 2 7 2 4 2 1 2 9 2 7 2 4 2 1 2)))  

192.  ((9 (8 8 9 8 9)) (11 (10 10 11)) (0 (11 11 0)) (8 (7 7 8 7 8 4 8)) (10 
(9 9 10 9 10 8 10)) (7 (5 7 7 5 7 7 7 5 7 5 7 7 7 5 7)) (4 (5 4 5 4 5 4)) 
(5 (NIL 5 5 0 5 10 5 7 5 4 5 0 5 10 5 7 5 4 5)))  

193.  ((11 (10 10 11 10 11)) (1 (0 0 1 0 1)) (4 (2 2 4)) (0 (11 11 0 11 0 7 
0)) (2 (1 2 1 2 1 2 2 2 0 2)) (10 (9 10 9 10 9 10 9 10 9 10)) (7 (9 7 9 7 
9 7)) (9 (NIL 9 9 4 9 2 9 10 9 7 9 4 9 2 9 10 9 7 9)))  

194.  ((3 (2 3 2 3 2 3)) (6 (5 5 6 5 6)) (9 (5 5 9)) (5 (4 7 4 5 4 5 7 5 1 5)) 
(7 (6 6 7 6 7 5 7)) (4 (3 3 4 2 4 3 4 2 4)) (1 (2 1 2 1 2 1)) (2 (NIL 2 2 
9 2 7 2 4 2 1 2 9 2 7 2 4 2 1 2)))  

195.  ((9 (8 8 9 8 9)) (0 (8 8 0)) (8 (7 10 7 8 7 8 10 8 4 8)) (10 (9 9 10 9 
10 8 10)) (7 (5 7 7 5 7 7 7 5 7 5 7 7 7 5 7)) (4 (5 4 5 4 5 4)) (5 (NIL 5 
5 0 5 10 5 7 5 4 5 0 5 10 5 7 5 4 5)))  

196.  ((1 (0 0 1 0 1)) (11 (10 2 10 11 10 11 2 11)) (4 (11 11 4)) (0 (11 11 0 
11 0 7 0)) (2 (1 1 2 1 2 0 2)) (10 (9 10 9 10 9 10 9 10 9 10)) (7 (9 7 9 7 
9 7)) (9 (NIL 9 9 4 9 2 9 10 9 7 9 4 9 2 9 10 9 7 9)))  

197.  ((3 (2 3 2 3 2 3)) (6 (5 5 6 5 6)) (9 (2 2 9)) (5 (4 4 5 4 5 1 5)) (7 (6 
6 7 6 7 5 7)) (4 (3 3 4 2 4 3 4 2 4)) (1 (2 1 2 1 2 1)) (2 (NIL 2 2 7 9 2 
7 2 4 2 1 2 7 2 9 2 7 2 4 2 1 2)))) 

198. |# 
199.  
200. (defun sort-special (data &optional (sortp #'<)) 
201.   "Ascendingly sorts numberically first and then alphabetically, or 

other." 
202.   (let ((numbers (stable-sort (remove-if-not #'numberp (copy-seq data)) 

sortp)) 
203.         (other (stable-sort (remove-if #'numberp (copy-seq data)) 
204.                             (if (equal sortp #'<) #'string< #'string>)))) 
205.     (append 
206.       numbers 
207.       other))) 
208.  
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209. ; (sort-special '(0 A 9 7 4 1 C 2)) 
210. ; => (0 1 2 4 7 9 A C) 
211.  
212. (defun fuse (data) 
213.   "Fuses multiple rule strands into one rule strand." 
214.   (if (null data) nil 
215.     (append 
216.      (car data) 
217.      (fuse (cdr data))))) 
218.  
219. ; (fuse (pc-voice-leading-rules *reduced-strands*)) 
220. ; => ((2 (2)) (3 (2 3)) (6 (5 6)) ... ) 
221.  
222. (defun pc-voice-leading (strands) 
223.   "Creates pitch voice-leading rules, with probabilities." 
224.   (loop for j from 0 to 11 
225.     collect (list j 
226.               (sort-special 
227.                 (fuse 
228.                   (loop for i from 0 to 11 
229.                     collect (cadr (assoc j (nth i (pc-voice-leading-rules 

strands)))))))))) 
230.  
231. ; (pc-voice-leading *reduced-strands*) 
232. ; =>  
233. #| 
234. ((0 (0 0 0 0 0 0 0 0 7 7 8 8 11 11 11 11 11 11 11 11))  
235.  (1 (0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2))  
236.  (2 (0 0 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 7 7 7 7 7 7 7 7 9 9 9 9 9 9 NIL NIL NIL 
NIL))  

237.  (3 (2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3))  
238.  (4 (2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

4 4 4 5 5 5 5 5 5 11 11))  
239.  (5 (0 0 0 0 1 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 7 7 7 7 7 7 10 10 10 10 NIL NIL))  
240.  (6 (5 5 5 5 5 5 5 5 5 6 6 6 6 6 6))  
241.  (7 (5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 9 9 9 9 9 9))  
242.  (8 (4 4 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 10 10))  
243.  (9 (2 2 2 2 2 2 4 4 4 4 5 5 7 7 7 7 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 10 10 10 10 NIL NIL))  
244.  (10 (8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 10 

10 10 10 10 10 10))  
245.  (11 (2 2 10 10 10 10 10 10 10 10 11 11 11 11 11 11))) 
246. |# 
247. ; Probabilities 
248. ; 0 => 0  -> 0.4 
249. ;   => 7  -> 0.2 
250. ;   => 8  -> 0.1 
251. ;   => 11 -> 0.3  
252. (setf *stm-pcs* (pc-voice-leading *reduced-strands*)) 
253.  
254. (defun pc-voice-leading-no-stats (rules) 
255.   "Voice-leading rules withour statistics." 
256.   (if (null rules) nil 
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257.     (cons 
258.       (list 
259.         (caar rules) 
260.         (sort-special (remove-duplicates (copy-seq (cadar rules)) :test 

#'equalp))) 
261.       (pc-voice-leading-no-stats (cdr rules))))) 
262.  
263. ; (pc-voice-leading-no-stats *stm-pcs*) 
264. ; => 
265. #| 
266. ((0 (0 7 8 11))  
267.  (1 (0 1 2))  
268.  (2 (0 1 2 4 7 9 NIL))  
269.  (3 (2 3))  
270.  (4 (2 3 4 5 11))  
271.  (5 (0 1 4 5 7 10 NIL))  
272.  (6 (5 6))  
273.  (7 (5 6 7 9))  
274.  (8 (4 7 8 10))  
275.  (9 (2 4 5 7 8 9 10 NIL))  
276.  (10 (8 9 10))  
277.  (11 (2 10 11))) 
278. |# 
279. (setf *semantic-network-strands* (pc-voice-leading-no-stats *stm-pcs*)) 
280.  

Example 6-38: Generating voice-leading rules for PCs. 

In Example 6-38 – the comments section (line 178) – the *reduced-strands* 

variable provides a reminder of what is contained within the data set (see Example 

6-37). The voice-leading rules will be derived from a singular strand at a time, and each 

singular strand may contain several PCs with several PC succession possibilities. To 

view a singular strand (recall that there are 8 strands), the *reduced-strands* 

variable can be supplied to the nth i function. The function call (nth 1 *reduced-

strands*) produces the second strand from the bottom up or PCC {2, 2, 1, 1, 2, 2, 4, 

4, 2, 2, 7, 7, 5, 5, 1, 1, 2, 2, 9, 9, 8, 8, 7, 7, 6, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 2, 2, 4, 4, 2, 2, 

7, 7, 6, 6, 5, 5, 4, 4, 3, 3, 2, 2, 9, 8, 7, 6, 5, 4, 3, 3, 2, 2, 2}. If the same function call is 

provided as a parameter to the analyze-voice-leading function, then the 

resulting rules read: (1) PC 3 can move to PC 2, or 3, or 2, or 3, or 2, or 3; (2) PC 6 => 
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PC 5, 5, 6, 5, 6; (3) PC 8 => PC 7, 7, 8; (4) PC 9 => PC 8, 8, 9; (5) PC 5 => PC 4, 4, 5, 

4, 5, 1, 5; (6) PC 7 => PC 6, 6, 7, 6, 7, 5, 7; (7) PC 4 => PC 3, 3, 4, 2, 4, 3, 4, 2, 4; (8) 

PC 1 => PC 2, 1, 2, 1, 2, 1; and (9) PC 2 => (nil), PC 2, 2, 9, 2, 7, 2, 4, 2, 1, 2, 9, 2, 7, 2, 

4, 2, 1, 2. 

All strands are processed with a for loop within the pc-voice-leading-

rules subroutine in lines 182-185. The loop determines the length of the passed in 

strands, meaning how many strands there are, and loops through an analyze-

voice-leading function for each strand in the count, passed in as the i value for the 

nth function parameter. A call to the (pc-voice-leading-rules *reduced-

strands*) subroutine (line 187) results in a collection of voice-leading rules, as 

displayed in lines 190-197. The generated rules many times have repeating departing 

PCs, and different destination PCs, meaning that all the rules are there, but they are 

disjunct. 

The fuse subroutine (lines 212-217) takes all disjointed rules (data) occurring in 

the eight different strands and fuses the rules into just one strand, as shown in line 219-

220. Another subroutine is needed to sort a list of values that can contain alphanumeric 

characters, i.e.: sort-special (lines 200-207). The sort-special subroutine takes data to 

be sorted, and a sort direction predicate as its argument (if no sort-direction predicate is 

provided ascending order will be automatically assigned). Two local variables are 

declared with the let function, (1) holding numbers, and (2) holding other characters. 

Each one of the variables is assigned a result of a stable-sort that either removes 

all alphabetic characters, or all number characters respectively, and then sorts the data 
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according to the passed in predicate sortp. Appending the other variable to the 

numbers variable then assembles a new list. The function is necessary since the 

Common Lisp stable-sort function can either sort a string or a number, but not both. 

The (sort-special '(0 A 9 7 4 1 C 2)) subroutine call shows how a list with 

mixed values can be sorted and displays the sorted list in line 210 – (0 1 2 4 7 9 A 

C). 

With both of the fuse, and the sort-special subroutines in place, the pc-

voice-leading function can assemble a list of rules with one departing PC as the key 

and possible destination PCs as values (lines 222-229). The pc-voice-leading 

function takes the strands as its argument, and assembles the desired list with two 

nested for loops. The first loops counts (j) from 0 to 11 and assembles the key part of 

the list. Sorting (sort-special, in case nil values occur) and fusing (fuse) the results 

of a second loop that counts (i) from 0 to 11 and collects the results of a call to the 

pc-voice-leading-rules function with the supplied strands parameter, 

assembles the values associated with the same key into one values list. The result of 

the operation is shown in lines 234-245. Considering PC 0 as key, the value shows 

repeated PCs (0, 0, 0, 0, 0, 0, 0, 0, 7, 7, 8, 8, 11, 11, 11, 11, 11, 11, 11, 11). As was the 

case previously, the repetition indicates the probability of how PC 0 moves to one of the 

arrival PCs within the values list. Therefore PC 0 has a p of (1) 0.4 of moving to itself, 

(2) 0.2 of moving to PC 7, (3) 0.1 p of moving to PC 8, and (4) a 0.3 p of moving to PC 

11. In line 252 the results of the function call is bound to the *stm-pcs* global variable 

data set. 
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A semantic network shows a more generalized rule set of the PC voice-leading 

procedures. The pc-voice-leading-no-stats function assembles a rules list by 

removing the statistical information from the just generated *stm-pcs* data set. The 

recursion is terminated with an if conditional (line 256), and goes through the key/value 

pairs list, builds a list by adding the key (line 259) to the values list, generated by 

removing duplicate PCs with the help of the #'equalp predicate (line 260). The 

resulting semantic network is shown in lines 266-277 and Example 6-39, and is bound 

to the global *semantic-network-strands* variable data set. PCs 2, 5, and 9 can 

also move to nowhere, or the end, which corresponds to the chord succession rules in 

which the piece must end on PCC {5, 9, 2}, or PCC {5, 9, 2} moves to oblivion. 

((0 (0 7 8 11))  
 (1 (0 1 2))  
 (2 (0 1 2 4 7 9 NIL))  
 (3 (2 3))  
 (4 (2 3 4 5 11))  
 (5 (0 1 4 5 7 10 NIL))  
 (6 (5 6))  
 (7 (5 6 7 9))  
 (8 (4 7 8 10))  
 (9 (2 4 5 7 8 9 10 NIL))  
 (10 (8 9 10))  
 (11 (2 10 11))) 

Example 6-39: PC voice-leading rules in FDL-1. 

 

6.2.20. Batch Analyzing Relationships 

Before moving on and graphing the generated ML data sets, one of the data sets 

can be used to find all transpositional and inversional relationships among PCS. The 

*stm-normal-pccs* can be used to create the necessary PCSC. The process can be 

found a little bit further down in the Learn-Rules.lisp script (line 486-502). 
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486. (defun relations-zoom (pccs) 
487.   "Create a list of all occuring chords." 
488.   (if (null pccs) nil 
489.     (cons 
490.       (caar pccs) 
491.       (relations-zoom (cdr pccs))))) 
492.  
493. ; (relations-zoom *stm-normal-pccs*) 
494.    
495. (setf *pcsc* (relations-zoom *stm-normal-pccs*)) 
496. ; => ((3 7 10) (4 7 11) (6 9 1) (2 5 8 11) (9 0 4) (5 8 0) (7 10 2) (4 7 

10) (1 4 7) (2 5 9)) 
497.  
498. (setf *pcsc-t-relations* (relations *pcsc* 't)) 
499. ; => (((PCS (3 7 10) AND (3 7 10) (ARE TRANSPOSITIONALLY RELATED BY T 

0))) …  
500.  
501. (setf *pcsc-i-relations* (relations *pcsc* 'i)) 
502. ; => (((PCS (3 7 10) AND (4 7 11) (ARE INVERSIONALLY RELATED BY T 2 I)) …  
503.  

Example 6-40: PCS relationships. 

The *stm-normal-pcss* consists of a table that lists all originating and all 

destination PCCs in normal form. All individual PCS can be extracted from the STM by 

supplying it to the relations-zoom function (lines 486-491). The recursive 

relations-zoom function assembles a list of all unique PCS into a PCSC. In line 495 

the global *pcsc* variable is set to the outcome of the (setf *pcsc* (relations-

zoom *stm-normal-pccs*)) function call and the resulting PCSC is shown in line 

496. Once the *pcsc* has been bound, both the *pcsc-t-relations*, and the 

*pcsc-i-relations* global variables can be populated with calls to the relations 

function from the Set-Theory-Functions.lisp script (see section 5.3.14), along 

with their appropriate 't, or 'i arguments (line 498 & 501 respectively). In order to read 

the results not in just one line in the REPL the *pcsc-t-relations*, and *pcsc-i-

relations* global variables should be passed to the print-relations function 

from the Set-Theory-Function.lisp library. The following two examples (Example 
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6-41 and Example 6-42) show the full listing of all transpositionally and inversionally 

related PCS.61 

(PCS (3 7 10) AND (3 7 10) (ARE TRANSPOSITIONALLY RELATED BY T 0)) 
(PCS (4 7 11) AND (4 7 11) (ARE TRANSPOSITIONALLY RELATED BY T 0)) 
(PCS (4 7 11) AND (6 9 1) (ARE TRANSPOSITIONALLY RELATED BY T 2)) 
(PCS (4 7 11) AND (9 0 4) (ARE TRANSPOSITIONALLY RELATED BY T 5)) 
(PCS (4 7 11) AND (5 8 0) (ARE TRANSPOSITIONALLY RELATED BY T 1)) 
(PCS (4 7 11) AND (7 10 2) (ARE TRANSPOSITIONALLY RELATED BY T 3)) 
(PCS (6 9 1) AND (4 7 11) (ARE TRANSPOSITIONALLY RELATED BY T 10)) 
(PCS (6 9 1) AND (6 9 1) (ARE TRANSPOSITIONALLY RELATED BY T 0)) 
(PCS (6 9 1) AND (9 0 4) (ARE TRANSPOSITIONALLY RELATED BY T 3)) 
(PCS (6 9 1) AND (5 8 0) (ARE TRANSPOSITIONALLY RELATED BY T 11)) 
(PCS (6 9 1) AND (7 10 2) (ARE TRANSPOSITIONALLY RELATED BY T 1)) 
(PCS (2 5 8 11) AND (2 5 8 11) (ARE TRANSPOSITIONALLY RELATED BY T 0)) 
(PCS (9 0 4) AND (4 7 11) (ARE TRANSPOSITIONALLY RELATED BY T 7)) 
(PCS (9 0 4) AND (6 9 1) (ARE TRANSPOSITIONALLY RELATED BY T 9)) 
(PCS (9 0 4) AND (9 0 4) (ARE TRANSPOSITIONALLY RELATED BY T 0)) 
(PCS (9 0 4) AND (5 8 0) (ARE TRANSPOSITIONALLY RELATED BY T 8)) 
(PCS (9 0 4) AND (7 10 2) (ARE TRANSPOSITIONALLY RELATED BY T 10)) 
(PCS (5 8 0) AND (4 7 11) (ARE TRANSPOSITIONALLY RELATED BY T 11)) 
(PCS (5 8 0) AND (6 9 1) (ARE TRANSPOSITIONALLY RELATED BY T 1)) 
(PCS (5 8 0) AND (9 0 4) (ARE TRANSPOSITIONALLY RELATED BY T 4)) 
(PCS (5 8 0) AND (5 8 0) (ARE TRANSPOSITIONALLY RELATED BY T 0)) 
(PCS (5 8 0) AND (7 10 2) (ARE TRANSPOSITIONALLY RELATED BY T 2)) 
(PCS (7 10 2) AND (4 7 11) (ARE TRANSPOSITIONALLY RELATED BY T 9)) 
(PCS (7 10 2) AND (6 9 1) (ARE TRANSPOSITIONALLY RELATED BY T 11)) 
(PCS (7 10 2) AND (9 0 4) (ARE TRANSPOSITIONALLY RELATED BY T 2)) 
(PCS (7 10 2) AND (5 8 0) (ARE TRANSPOSITIONALLY RELATED BY T 10)) 
(PCS (7 10 2) AND (7 10 2) (ARE TRANSPOSITIONALLY RELATED BY T 0)) 
(PCS (4 7 10) AND (4 7 10) (ARE TRANSPOSITIONALLY RELATED BY T 0)) 
(PCS (4 7 10) AND (1 4 7) (ARE TRANSPOSITIONALLY RELATED BY T 9)) 
(PCS (1 4 7) AND (4 7 10) (ARE TRANSPOSITIONALLY RELATED BY T 3)) 
(PCS (1 4 7) AND (1 4 7) (ARE TRANSPOSITIONALLY RELATED BY T 0)) 

Example 6-41: All transpositionally related PCS in FDL-1 at the REPL. 

(PCS (3 7 10) AND (4 7 11) (ARE INVERSIONALLY RELATED BY T 2 I)) 
(PCS (3 7 10) AND (6 9 1) (ARE INVERSIONALLY RELATED BY T 4 I)) 
(PCS (3 7 10) AND (9 0 4) (ARE INVERSIONALLY RELATED BY T 7 I)) 
(PCS (3 7 10) AND (5 8 0) (ARE INVERSIONALLY RELATED BY T 3 I)) 
(PCS (3 7 10) AND (7 10 2) (ARE INVERSIONALLY RELATED BY T 5 I)) 
(PCS (4 7 11) AND (3 7 10) (ARE INVERSIONALLY RELATED BY T 2 I)) 
(PCS (6 9 1) AND (3 7 10) (ARE INVERSIONALLY RELATED BY T 4 I)) 
(PCS (2 5 8 11) AND (2 5 8 11) (ARE INVERSIONALLY RELATED BY T 1 I)) 
(PCS (9 0 4) AND (3 7 10) (ARE INVERSIONALLY RELATED BY T 7 I)) 
(PCS (5 8 0) AND (3 7 10) (ARE INVERSIONALLY RELATED BY T 3 I)) 
(PCS (7 10 2) AND (3 7 10) (ARE INVERSIONALLY RELATED BY T 5 I)) 
(PCS (4 7 10) AND (4 7 10) (ARE INVERSIONALLY RELATED BY T 2 I)) 
(PCS (4 7 10) AND (1 4 7) (ARE INVERSIONALLY RELATED BY T 11 I)) 
(PCS (1 4 7) AND (4 7 10) (ARE INVERSIONALLY RELATED BY T 11 I)) 
                                            

61 There is a break in convention in the examples: (1) each PCS is represented as (0 1 2), 
rather than [0, 1, 2]; and (2) T 0 means T0, and T 1 I means T1I. 
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(PCS (3 7 10) AND (5 8 0) (ARE INVERSIONALLY RELATED BY T 3 I)) 
(PCS (3 7 10) AND (7 10 2) (ARE INVERSIONALLY RELATED BY T 5 I)) 
(PCS (4 7 11) AND (3 7 10) (ARE INVERSIONALLY RELATED BY T 2 I)) 
(PCS (6 9 1) AND (3 7 10) (ARE INVERSIONALLY RELATED BY T 4 I)) 
(PCS (2 5 8 11) AND (2 5 8 11) (ARE INVERSIONALLY RELATED BY T 1 I)) 
(PCS (9 0 4) AND (3 7 10) (ARE INVERSIONALLY RELATED BY T 7 I)) 
(PCS (5 8 0) AND (3 7 10) (ARE INVERSIONALLY RELATED BY T 3 I)) 
(PCS (7 10 2) AND (3 7 10) (ARE INVERSIONALLY RELATED BY T 5 I)) 
(PCS (4 7 10) AND (4 7 10) (ARE INVERSIONALLY RELATED BY T 2 I)) 
(PCS (4 7 10) AND (1 4 7) (ARE INVERSIONALLY RELATED BY T 11 I)) 
(PCS (1 4 7) AND (4 7 10) (ARE INVERSIONALLY RELATED BY T 11 I)) 
(PCS (1 4 7) AND (1 4 7) (ARE INVERSIONALLY RELATED BY T 8 I)) 

Example 6-42: All inversionally related PCS in FDL-1 at the REPL. 

 

6.2.21. Graphing Semantic Networks 

The seven semantic network data sets created in 6.2.18 (*semantic-network-

pccs-strands*, *semantic-network-pedal-pccs*, *semantic-network-core-pccs*, 

*semantic-network-normal-pccs*, *semantic-network-t-normal-pccs*, *semantic-

network-prime-pccs*, *semantic-network-strands*) can be translated into graphical 

representations known as digraphs. The digraphs consist of nodes and edges, whereby 

the nodes correspond to the PCCs, and PCs, and the edges represent succession 

rules, and required transformations that underlie the voice-leading principles.62 The 

Graphing-Voice-Leading.lisp script creates the digraphs, and depends on the Learn-

Rules.lisp script that in turn depends on the Analysis-Prototype.lisp, and the Set-Theory-

Functions.lisp scripts.  

12. (defparameter *pc-nodes* nil "PCs nodes.") 

                                            
62 The following digraph code examples are partially derived from code shown in Barski’s book 

Land of Lisp. Cope, Hidden Structure: Music Analysis Using Computers, 252-274. Digraph code is written 
into .dot files, which can be interpreted by software like the open-source software Graphviz. Barski, 114-
124. The following code utilizes Graphiz through Common Lisp. Stephen Rings defines a digraph, or 
directed graph, as “a graph whose set E of edges consists of ordered pairs of elements from the Vertex V, 
” while David Lewin refers to digraphs as “node/arrow system.” Rings, 224. Lewin, 63. "Graphviz - Graph 
Visualization Software" http://www.graphviz.org/ (accessed May 7, 2014).  
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13. (defparameter *pccs-strand-nodes* nil "PCCs nodes from strands.") 
14. (defparameter *pedal-nodes* nil "Pedal nodes.") 
15. (defparameter *core-nodes* nil "Core chord nodes.") 
16. (defparameter *normal-nodes* nil "Normal form nodes.") 
17. (defparameter *t-normal-nodes* nil "Contains the chords, or nodes.") 
18. (defparameter *prime-nodes* nil "Prime chord nodes.") 
19.  
20. (defparameter *pc-voice-leading-edges* nil "PCs edges.") 
21. (defparameter *pccs-strand-edges* nil "PCCs edges from strands.") 
22. (defparameter *pedal-voice-leading-edges* nil "Pedal chords edges.") 
23. (defparameter *core-voice-leading-edges* nil "Core chord voice-leading 

edges.") 
24. (defparameter *normal-form-voice-leading-edges* nil "Normal form edges.") 
25. (defparameter *t-normal-voice-leading-edges* nil "T-normal form edges.") 
26. (defparameter *prime-voice-leading-edges* nil "Contains Voice-Leading 

Paths.") 
27.  
28. ;; ----- Functions & Variables Assignments ----- ;; 
29.  
30. (defun convert->nodes (pccs) 
31.   "Formats voicel leading data for nodes format." 
32.   (if (null pccs) nil 
33.     (cons 
34.      (caar pccs) 
35.      (convert->nodes (cdr pccs))))) 
36.  
37. ; (convert->nodes *semantic-network-strands*) 
38. ; => (0 1 2 3 4 5 6 7 8 9 10 11) 
39. (setf *pc-nodes* (convert->nodes *semantic-network-strands*)) 
40.  
41. ; (convert->nodes *semantic-network-pccs-strands*) 
42. ; => ((2 3 7 10 3 7 10 3) (2 4 7 11 4 7 11 4) (2 6 9 1 6 9 1 6) (2 8 11 2 

5 8 11 2) (2 9 0 4 9 0 4 9) (2 5 8 0 5 8 0 5) (2 7 10 2 7 10 2 7) (2 4 7 
10 4 7 10 4) (2 1 4 7 1 4 7 1) (2 2 5 9 2 5 9 2)) 

43. (setf *pccs-strand-nodes* (convert->nodes *semantic-network-pccs-
strands*)) 

44.  
45. ; (convert->nodes *semantic-network-pedal-pccs*) 
46. ; => ((2 7 10 3) (2 7 11 4) (2 9 1 6) (2 5 8 11 2) (2 0 4 9) (2 8 0 5) (2 

10 2 7) (2 7 10 4) (2 4 7 1) (2 5 9 2)) 
47. (setf *pedal-nodes* (convert->nodes *semantic-network-pedal-pccs*)) 
48. (setf *core-nodes* (convert->nodes *semantic-network-core-pccs*)) 
49. (setf *normal-nodes* (convert->nodes *semantic-network-normal-pccs*)) 
50. (setf *t-normal-nodes* (convert->nodes *semantic-network-t-normal-pccs*)) 
51. (setf *prime-nodes* (convert->nodes *semantic-network-prime-pccs*)) 
52.  
53. ;; ---------------------------------------------- ;; 
54.  
55. (defun convert->edges (pccs) 
56.   "Formats voice-leading data for edges data." 
57.   (if (null pccs) nil 
58.     (cons 
59.      (cons 
60.       (caar pccs) 
61.       (mapcar #'list (cadar pccs))) 
62.      (convert->edges (cdr pccs))))) 
63.  
64. ; (convert->edges *semantic-network-strands*) 
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65. ; => ((0 (0) (7) (8) (11)) (1 (0) (1) (2)) ... ) 
66. (setf *pc-voice-leading-edges* (convert->edges *semantic-network-

strands*)) 
67.  
68. ; (convert->edges *semantic-network-pccs-strands*) 
69. ; => (((2 3 7 10 3 7 10 3) ((2 2 5 9 2 5 9 2)) ((2 3 7 10 3 7 10 3))) ... 

) 
70. (setf *pccs-strand-edges* (convert->edges *semantic-network-pccs-

strands*)) 
71.  
72. ; (convert->edges *semantic-network-pedal-pccs*) 
73. ; => (((2 7 10 3) ((2 5 9 2)) ((2 7 10 3))) ((2 7 11 4) ((2 7 10 3)) ((2 

7 11 4))) ... ) 
74. (setf *pedal-voice-leading-edges* (convert->edges *semantic-network-

pedal-pccs*)) 
75. (setf *core-voice-leading-edges* (convert->edges *semantic-network-core-

pccs*)) 
76. (setf *normal-form-voice-leading-edges* (convert->edges *semantic-

network-normal-pccs*)) 
77. (setf *t-normal-voice-leading-edges* (convert->edges *semantic-network-t-

normal-pccs*)) 
78. (setf *prime-voice-leading-edges* (convert->edges *semantic-network-

prime-pccs*)) 
79.  
80. ;; ---------------------------------------------- ;; 
81.  

Example 6-43: Declaring global variables and re-formatting data. 

The Graphing-Voice-Leading.lisp script consists of a boilerplate from 

lines 1-11. Lines 12-26 show global variables being declared, whereas the first seven 

global variables will hold node values (PCs, and PCCs), and the next seven will hold 

edge values (succession patterns, voice-leading paths or basic transformations). The 

Graphviz program needs to have the nodes and edges formatted in a certain way. The 

required data sets already exist, but need to be “massaged” in order to conform to the 

requirements of creating .dot files with Graphviz. 

The convert->nodes function (lines 30-35 - Example 6-43) converts the 

learned voice-leading data into the required format through recursion. The argument 

provided, will be one of the resulting voice-leading data sets created with the Learn-

Rules.lisp script. The recursion ends when the end of the voice-leading rules are 
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reached, otherwise a new list is created by taking the first of the first, caar, PC or PCC, 

and adding it to remaining PC or PCC by a call back to the top of the convert->nodes 

function with aforementioned remaining PC or PCC. The rules list of the incoming 

*semantic-network-strands* looks like the following example: ((0 (0 7 8 

11)) (1 (0 1 2)) (2 (0 1 2 4 7 9)) (3 (2 3)) (4 (2 3 4 5 11)) (5 

(0 1 4 5 7 10)) (6 (5 6)) (7 (5 6 7 9)) (8 (4 7 8 10)) (9 (2 4 5 

7 8 9 10)) (10 (8 9 10)) (11 (2 10 11))). The convert->nodes function 

(line 30-35) converts this list into the following format (line 38): (0 1 2 3 4 5 6 7 8 

9 10 11), which is then bound to the *pc-nodes* parameter, as a global variable 

(line 39). The following six global variable parameters are dynamically assigned via the 

convert->nodes function in lines 43-51: (1) *pccs-strand-nodes* – consisting of 

ten possible chord choices stacked as PCCs with eight members; (2) *pedal-nodes* 

– containing all ten possible chord choices which are comprised of the pedal tone, and 

the core of a PCC in ascending order (e.g.: (2 5 9 2)); (3) *core-nodes* – 

consisting of all possible PCC cores in ascending order (e.g. (5 9 2)); (4) *normal-

nodes* – comprised of all possible PCC cores in normal form (e.g.: (2 5 9); (5) *t-

normal-nodes* – encompassing all possible chords in t-normal form (e.g.: (0 3 

7); and (6) *prime-nodes* – including all possible chords in prime form. 

The convert->edges function (lines 55-62) is a recursive function that takes a 

voice-leading rules data set as its argument. After checking whether the end of the data 

set was reached through a conditional statement, a list is combined by cons-ing a 

cons-ed list consisting of a caar function result applied to the pccs local variable 

argument, or the key, and a mapcar function that takes the value (from the key/value 
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pair), consisting of a collection of PCs or PCCs, and places these individual values into 

individual lists. The *semantic-network-strands* global variable is converted from 

the following format, ((0 (0 7 8 11)) (1 (0 1 2)) (2 (0 1 2 4 7 9)) (3 

(2 3)) (4 (2 3 4 5 11)) (5 (0 1 4 5 7 10)) (6 (5 6)) (7 (5 6 7 

9)) (8 (4 7 8 10)) (9 (2 4 5 7 8 9 10)) (10 (8 9 10)) (11 (2 10 

11))), to the subsequent format: ((0 (0) (7) (8) (11)) (1 (0) (1) (2)) 

(2 (0) (1) (2) (4) (7) (9)) (3 (2) (3)) (4 (2) (3) (4) (5) (11)) 

(5 (0) (1) (4) (5) (7) (10)) (6 (5) (6)) (7 (5) (6) (7) (9)) (8 

(4) (7) (8) (10)) (9 (2) (4) (5) (7) (8) (9) (10)) (10 (8) (9) 

(10)) (11 (2) (10) (11))). The result of the convert->edges function (line 

65), supplied with the *semantic-network-strands* argument, is bound to the 

*pc-voice-leading-edges* global variable. The convert->edges function binds 

six more global variables holding edges (lines 70-78): (1) *pccs-strand-edges*, via 

(convert->edges *semantic-network-pccs-strands*); (2) *pedal-voice-

leading-edges*, generated through (convert->edges *semantic-network-

pedal-pccs*); (3) *core-voice-leading-edges*, created by way of (convert-

>edges *semantic-network-core-pccs*); (4) *normal-form-voice-

leading-edges*, populated via (convert->edges *semantic-network-

normal-pccs*); (5) *t-normal-voice-leading-edges*, produced by means of 

(convert->edges *semantic-network-t-normal-pccs*); and (6) *prime-

voice-leading-edges*, made thru (convert->edges *semantic-network-

prime-pccs*). 

82. (defun nodes->dot (nodes) 
83.   "Converts node-data to .dot file - the graphviz extension." 
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84.   (mapc (lambda (node) 
85.           (fresh-line) 
86.           (princ "\"") 
87.           (princ node) 
88.           (princ "\"") 
89.           (princ "[label=\"") 
90.           (princ node) 
91.           (princ "\"];")) 
92.         nodes)) 
93.  
94. ; (nodes->dot *pc-nodes*) 
95. ; => 
96. #| 
97. "0"[label="0"]; 
98. "1"[label="1"]; 
99. "2"[label="2"]; 
100. "3"[label="3"]; 
101. "4"[label="4"]; 
102. "5"[label="5"]; 
103. "6"[label="6"]; 
104. "7"[label="7"]; 
105. "8"[label="8"]; 
106. "9"[label="9"]; 
107. "10"[label="10"]; 
108. "11"[label="11"]; 
109. (0 1 2 3 4 5 6 7 8 9 10 11) 
110. |# 
111.  
112. ; (nodes->dot *pedal-nodes*) 
113. ; => 
114. #| 
115. "(2 7 10 3)"[label="(2 7 10 3)"]; 
116. "(2 7 11 4)"[label="(2 7 11 4)"]; 
117. "(2 9 1 6)"[label="(2 9 1 6)"]; 
118. "(2 5 8 11 2)"[label="(2 5 8 11 2)"]; 
119. "(2 0 4 9)"[label="(2 0 4 9)"]; 
120. "(2 8 0 5)"[label="(2 8 0 5)"]; 
121. "(2 10 2 7)"[label="(2 10 2 7)"]; 
122. "(2 7 10 4)"[label="(2 7 10 4)"]; 
123. "(2 4 7 1)"[label="(2 4 7 1)"]; 
124. "(2 5 9 2)"[label="(2 5 9 2)"]; 
125. |# 
126.  

Example 6-44: Building the .dot file - nodes. 

Example 6-44 shows how to generate the nodes component of the .dot document. 

The .dot document is just a text file. The nodes->dot function (lines 82-92) takes the 

nodes as an argument and writes the needed nodes data (the actual data file is written 

later on to the .dot file). The mapc function – similar to the mapcar function, except the 

result is a list, rather than the output of a mapped function – is used to map all the 
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nodes and node labels contained in a rule set by use of a lambda function where node 

is used as the argument against the nodes list (lines 84-92). The contents of the 

lambda function are print statements (princ), new line statements ((fresh-line)), 

and princ statements that write the node data and its corresponding labels that 

organize what is to be printed to a .dot file. A call to the (nodes->dot *pc-nodes*) 

function (line 94), for example, results in the outcome shown in lines 96-108, while a call 

to the (nodes->dot *pedal-nodes*) function (line 112), results in the outcome 

shown in lines 115-124.  

127. (defun label-transformations (pcc-1 pcc-2) 
128.   "Labels the edges according to a transformational scheme." 
129.   (cond ((and (numberp pcc-1) (numberp pcc-2)) (- pcc-2 pcc-1)) 
130.         ((and (listp pcc-1) (listp pcc-2)) (mapcar #'- pcc-2 pcc-1)) 
131.         (t 'nada))) 
132.  
133. (defun edges->dot (edges &optional (trans 0)) 
134.   "Builds possible edges .dot file." 
135.   (mapc (lambda (node) 
136.           (mapc (lambda (edge) 
137.                   (fresh-line) 
138.                   (princ "\"") 
139.                   (princ (car node)) 
140.                   (princ "\"") 
141.                   (princ "->") 
142.                   (princ "\"") 
143.                   (princ (car edge)) 
144.                   (princ "\"") 
145.                   (princ "[label=\" ") 
146.                   (if (eq trans 0) 
147.                     (princ "")  
148.                     (princ (label-transformations (car node) (car 

edge)))) 
149.                   (princ " \"];")) 
150.                 (cdr node))) 
151.         edges)) 
152.  
153. ; (edges->dot *pc-voice-leading-edges* 1) 
154. ; => 
155. #| 
156. "0"->"0"[label=" 0 "]; 
157. "0"->"7"[label=" 7 "]; 
158. "0"->"8"[label=" 8 "]; 
159. ... 
160. "11"->"2"[label=" -9 "]; 
161. "11"->"10"[label=" -1 "]; 
162. "11"->"11"[label=" 0 "]; 
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163. |# 
164.  
165. ; (edges->dot *pedal-voice-leading-edges* 1) 
166. ; => 
167. #| 
168. "(2 7 10 3)"->"(2 5 9 2)"[label=" (0 -2 -1 -1) "]; 
169. "(2 7 10 3)"->"(2 7 10 3)"[label=" (0 0 0 0) "]; 
170. "(2 7 11 4)"->"(2 7 10 3)"[label=" (0 0 -1 -1) "]; 
171. ... 
172. "(2 5 9 2)"->"(2 7 10 4)"[label=" (0 2 1 2) "]; 
173. "(2 5 9 2)"->"(2 4 7 1)"[label=" (0 -1 -2 -1) "]; 
174. "(2 5 9 2)"->"(2 5 9 2)"[label=" (0 0 0 0) "]; 
175. |# 
176.  

Example 6-45: Building the .dot file - edges. 

Thus far only the nodes have been prepared for printing, but the edges, or voice-

leading/succession lines, need to be also prepared to be able to be written to a .dot file, 

which is the task of the edges->dot function in Example 6-45, lines 133-151. Since the 

edges rules data is contained in a two dimensional key/value pair list, two nested mapc 

functions are used to parse the edges data into a .dot file. The first mapc function uses 

a lambda function to map the nodes (line 135), and the second mapc function uses a 

lambda function to map the corresponding edges (lines 136-150). The fresh-line, 

and princ functions are used to format the text string, and to insert the required .dot 

language, populated with the node, and corresponding edge data. A label for each 

edge is also created by a call to the label-transformations function (lines 127-

131), if basic transformations, or trans, has been set to 1, or true (lines 146-148). The 

function calculates the distance between each PC or PCC thru subtraction. The cond 

function within the label-transformations functions makes sure that either just a 

number or a list can be calculated. The procedure creates labels that Tymoczko refers 
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to as “pitch-class voice-leadings,” and are represented in a similar manner.63 Calling the 

(edges->dot *pc-voice-leading-edges* 1) function (line 153) results in the 

.dot formatted text data shown in lines 156-162, while a call to the (edges->dot 

*pedal-voice-leading-edges* 1) function (line 165) results in .dot formatted text 

data shown in lines 168-174. 

177. (defun graph->dot (nodes edges) 
178.   "Fuses nodes->dot, and edges->dot into one .dot file." 
179.   (princ "digraph{") 
180.   (fresh-line) 
181.   (princ "node[fontsize=12,fontname=Helvetica]") 
182.   (fresh-line) 
183.   (princ 

"edge[fontsize=10,fontname=Helvetica,arrowsize=0.75,arrowhead=normal,color
=gray,labelfloat=false]") 

184.   (fresh-line) 
185.   (nodes->dot nodes) 
186.   (edges->dot edges) 
187.   (fresh-line) 
188.   (princ "}")) 
189.  
190. ; (graph->dot *pc-nodes* *pc-voice-leading-edges*) 
191. ; => 
192. #| 
193. digraph{ 
194.   node[fontsize=12,fontname=Helvetica] 
195.   

edge[fontsize=10,fontname=Helvetica,arrowsize=0.75,arrowhead=normal,color=
gray,labelfloat=false] 

196.   "0"[label="0"]; 
197.   "1"[label="1"]; 
198.   "2"[label="2"]; 
199.   ... 
200.   "11"->"2"[label=" -9 "]; 
201.   "11"->"10"[label=" -1 "]; 
202.   "11"->"11"[label=" 0 "]; 
203. } 
204. |# 
205.  
206. ; (graph->dot *pedal-nodes* *pedal-voice-leading-edges*) 
207. ; => 
208. #| 
209. digraph{ 
210.   node[fontsize=12,fontname=Helvetica] 
211.   

edge[fontsize=10,fontname=Helvetica,arrowsize=0.75,arrowhead=normal,color=
gray,labelfloat=false] 

212.   "(2 7 10 3)"[label="(2 7 10 3)"]; 
                                            

63 Tymoczko, 41-45. 
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213.   "(2 7 11 4)"[label="(2 7 11 4)"]; 
214.   "(2 9 1 6)"[label="(2 9 1 6)"]; 
215.   ... 
216.   "(2 5 9 2)"->"(2 7 10 4)"[label=" (0 2 1 2) "]; 
217.   "(2 5 9 2)"->"(2 4 7 1)"[label=" (0 -1 -2 -1) "]; 
218.   "(2 5 9 2)"->"(2 5 9 2)"[label=" (0 0 0 0) "]; 
219. } 
220. |# 
221.  

Example 6-46: Assembling the .dot file. 

The graph->dot function takes the nodes, and edges data just created as its 

arguments to combine the data into a single .dot file, including some needed header 

information (lines 177-188). The same combination of fresh-line and princ 

functions are used to write the .dot text data, this time including what type of .dot file, i.e. 

digraph, is to be created, the header data (font size of nodes, shape of nodes, font size 

of edges, color of edges, arrow types, etc.), and data from the (nodes->dot nodes), 

and (edges->dot edges) functions. A call to the (graph->dot *pc-nodes* 

*pc-voice-leading-edges*) function (line 190) results in the digraph (truncated) 

shown in lines 193-203, and a call to the (graph->dot *pedal-nodes* *pedal-

voice-leading-edges*) function (line 206) results in the abbreviated digraph 

shown in lines 209-219. 

Two more steps are now needed to generate a digraph in a particular format 

(Example 6-47): (1) a function (dot->pdf) that generates the .dot file, opens the dot 

command of the Graphviz program at the command line, and converts the .dot source 

file into a .pdf vector graphics file (lines 114-123), and (2) a function (graph->pdf) with 

which to call the dot->pdf function with different parameters (lines 125-129). 

222. (defun dot->pdf (file-name dot-data) 
223.   "turns dot file into an image file (here .pdf)." 
224.   (with-open-file (*standard-output* 



   318 

225.                    file-name 
226.                    :direction :output 
227.                    :if-exists :supersede 
228.                    :if-does-not-exist :create) 
229.     (funcall dot-data)) 
230.   (run-program "bash" '("-c" "/usr/local/bin/dot -Tpdf") 
231.                :input file-name 
232.                :output (concatenate 'string file-name ".pdf"))) 
233.  
234. (defun graph->pdf (file-name nodes edges) 
235.   "creating the picture of the graph." 
236.   (dot->pdf file-name 
237.             (lambda () 
238.               (graph->dot nodes edges)))) 
239.  
240. ; (graph->pdf "~/your/path/pc-voice-leading-rev.dot" *pc-nodes* *pc-

voice-leading-edges*) 
241. ; (graph->pdf ~/your/path/pccs-strands-voice-leading.dot" *pccs-strand-

nodes* *pccs-strand-edges*) 
242. ; (graph->pdf "~/your/path/pedal-voice-leading.dot" *pedal-nodes* *pedal-

voice-leading-edges*) 
243. ; (graph->pdf "~/your/path/core-voice-leading.dot" *core-nodes* *core-

voice-leading-edges*) 
244. ; (graph->pdf "~/your/path/normal-form-succession.dot" *normal-nodes* 

*normal-form-voice-leading-edges*) 
245. ; (graph->pdf "~/your/path/t-normal-form-succession.dot" *t-normal-nodes* 

*t-normal-voice-leading-edges*) 
246. ; (graph->pdf "~/your/path/prime-form-voice-succession.dot" *prime-nodes* 

*prime-voice-leading-edges*) 
247.  

Example 6-47: Generating a .pdf file from the .dot file at command line from Lisp. 

The dot->pdf function (lines 222-232) opens a stream to which the outcome of 

the graph->dot function can be written. The function takes a file-name, and the 

dot-data as its arguments. The required stream is opened with the with-open-file 

function, which consists of several key word parameters: (1) the name of the stream - 

*standard-output*, (2) the file-name, (3) the :direction parameter set to 

:output; the file is only being written to, not read, and (4) the :if-exists parameter 

that is set to :supersede - meaning “if a file by that name already exists, just toss out 

the old version.”64 Further, the with-open-file function also contains a function call, 

                                            
64 Barski, 122. 
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or funcall, to the dot-data to be inserted into the stream. The run-program 

function (lines 230-232) is only native to the Clozure CL environment – meaning that for 

other Common Lisp distributions like SBCL, CLisp, LispWorks, etc. a different built-in 

function is required – and issues a bash command line command to the dot function, 

including the required file output format (.pdf), with the file-name set to the :input 

key word parameter, and a concatenate-d file-name for the .pdf file set to the 

:output parameter. 

The graph->pdf function (lines 234-238, Example) takes a file-name, the 

nodes, and the edges as arguments, and calls the dot->pdf function with the file-

name, and a call to a lambda function that wraps a (graph->dot nodes edges) 

function call, as arguments. The function can be called with differently set arguments to 

create different types of digraphs, as is shown in lines 240-246.  

In addition to building graphs of chord succession and voice-leading rules, 

statistical information of what probabilities govern these rules will provide a better 

picture of what a generative association network that aided in the composition of FDL-1 

may have looked like. In the next section, the generation of probability tables will be 

discussed. 

 

6.2.22. Building Voice-leading Probability Tables 

The Learn-Rules.lisp script features two more tasks, (1) creating voice-

leading probability tables – discussed in this section, and (2) creating chord succession 

probability tables – discussed in the next section (6.2.22). 

281. ;; -- display PC Voice-leading with probabilities -- ;; 
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282.  
283. (defun sum-non-probs (complement) 
284.   "Assigns 0.0 probabilities to complement PCs in a PCC." 
285.   (if (null complement) nil 
286.     (cons 
287.      (list (car complement) 0.0) 
288.      (sum-non-probs (cdr complement))))) 
289.  
290. ; (setf *pc-two* (cadr (nth 2 *stm-pcs*))) 
291. ; => (0 0 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 7 7 7 7 7 7 7 7 9 9 9 9 9 9 NIL NIL NIL 
NIL) 

292. ; (sum-non-probs (safe-sort (set-difference (chromatic-scale) (copy-seq 
(remove-duplicates *pc-two*))) #'<)) 

293. ; => ((3 0.0) (5 0.0) (6 0.0) (8 0.0) (10 0.0) (11 0.0)) 
294.  
295. (defun sum-probs (amount short-list long-list) 
296.   "Counts occurences of PC in sequence,  
297.    converts occurences to probabilities between 0-1,  
298.    and groups PC with probability." 
299.   (if (null short-list) nil 
300.     (cons 
301.      (list  
302.       (car short-list) 
303.       (float (/ (count (car short-list) long-list) amount))) 
304.      (sum-probs amount (cdr short-list) long-list)))) 
305.  
306. ; (sum-probs (length *pc-two*) (copy-seq (remove-duplicates *pc-two*)) 

*pc-two*) 
307. ; => ((0 0.014084507) (1 0.08450704) (2 0.73239434) (4 0.04225352) (7 

0.056338027) (9 0.04225352) (NIL 0.028169014)) 
308.  
309. (defun check-for-nil (mango &optional (nothing nil) (neg-one -1)) 
310.   (if (null mango) nil 
311.     (cons 
312.       (list 
313.         (if (equal (caar mango) nothing) neg-one (caar mango)) 
314.         (cadar mango)) 
315.       (check-for-nil (cdr mango) nothing neg-one)))) 
316.  
317. ; (check-for-nil '((3 0.0) (5 0.0) (6 0.0) (8 0.0) (10 0.0) (11 0.0) (0 

0.014084507) (1 0.08450704) (2 0.73239434) (4 0.04225352) (7 0.056338027) 
(9 0.04225352) (NIL 0.028169014))) 

318. ; => ((3 0.0) (5 0.0) (6 0.0) (8 0.0) (10 0.0) (11 0.0) (0 0.014084507) 
(1 0.08450704) (2 0.73239434) (4 0.04225352) (7 0.056338027) (9 
0.04225352) (-1 0.028169014)) 

319.  
320. (defun one-pc-stm->an (probs) 
321.   "Converts voice-leading probabilites of one PC." 
322.   (let* ((num-probs (length probs)) 
323.          (no-dupes (copy-seq (remove-duplicates probs))) 
324.          (complement (safe-sort (set-difference (chromatic-scale) no-

dupes) #'<))) 
325.     (check-for-nil 
326.       (stable-sort 
327.         (copy-seq 
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328.           (check-for-nil 
329.             (append 
330.               (sum-non-probs complement) 
331.               (sum-probs num-probs no-dupes probs)))) #'< :key #'car) -1 

nil))) 
332.  
333. ; (one-pc-stm->an *pc-two*) 
334. ; => ((NIL 0.028169014) (0 0.014084507) (1 0.08450704) (2 0.73239434) (3 

0.0) (4 0.04225352) (5 0.0) (6 0.0) (7 0.056338027) (8 0.0) (9 0.04225352) 
(10 0.0) (11 0.0)) 

335.  
336. (defun stm->an (stm) 
337.   "Convert a STM with readable probabilities." 
338.   (if (null stm) nil 
339.     (cons 
340.      (list  
341.       (caar stm)  
342.       (one-pc-stm->an (cadar stm))) 
343.      (stm->an (cdr stm))))) 
344.  
345. ; (stm->an *stm-pcs*) 
346. ; => 
347. #| 
348. ((0 ((0 0.4) (1 0.0) (2 0.0) (3 0.0) (4 0.0) (5 0.0) (6 0.0) (7 0.1) (8 

0.1) (9 0.0) (10 0.0) (11 0.4)))  
349.  (1 ((0 0.21428572) (1 0.4642857) (2 0.32142857) (3 0.0) (4 0.0) (5 0.0) 

(6 0.0) (7 0.0) (8 0.0) (9 0.0) (10 0.0) (11 0.0)))  
350.  (2 ((NIL 0.028169014) (0 0.014084507) (1 0.08450704) (2 0.73239434) (3 

0.0) (4 0.04225352) (5 0.0) (6 0.0) (7 0.056338027) (8 0.0) (9 0.04225352) 
(10 0.0) (11 0.0)))  

351.  (3 ((0 0.0) (1 0.0) (2 0.5) (3 0.5) (4 0.0) (5 0.0) (6 0.0) (7 0.0) (8 
0.0) (9 0.0) (10 0.0) (11 0.0)))  

352.  (4 ((0 0.0) (1 0.0) (2 0.17777778) (3 0.2) (4 0.44444445) (5 0.13333334) 
(6 0.0) (7 0.0) (8 0.0) (9 0.0) (10 0.0) (11 0.044444446)))  

353.  (5 ((NIL 0.032258064) (0 0.06451613) (1 0.048387095) (2 0.0) (3 0.0) (4 
0.20967741) (5 0.48387095) (6 0.0) (7 0.09677419) (8 0.0) (9 0.0) (10 
0.06451613) (11 0.0)))  

354.  (6 ((0 0.0) (1 0.0) (2 0.0) (3 0.0) (4 0.0) (5 0.6) (6 0.4) (7 0.0) (8 
0.0) (9 0.0) (10 0.0) (11 0.0)))  

355.  (7 ((0 0.0) (1 0.0) (2 0.0) (3 0.0) (4 0.0) (5 0.20634921) (6 
0.14285715) (7 0.5555556) (8 0.0) (9 0.0952381) (10 0.0) (11 0.0)))  

356.  (8 ((0 0.0) (1 0.0) (2 0.0) (3 0.0) (4 0.1) (5 0.0) (6 0.0) (7 0.4) (8 
0.4) (9 0.0) (10 0.1) (11 0.0)))  

357.  (9 ((NIL 0.03508772) (0 0.0) (1 0.0) (2 0.10526316) (3 0.0) (4 
0.07017544) (5 0.03508772) (6 0.0) (7 0.07017544) (8 0.14035088) (9 
0.47368422) (10 0.07017544) (11 0.0)))  

358.  (10 ((0 0.0) (1 0.0) (2 0.0) (3 0.0) (4 0.0) (5 0.0) (6 0.0) (7 0.0) (8 
0.05882353) (9 0.47058824) (10 0.47058824) (11 0.0)))  

359.  (11 ((0 0.0) (1 0.0) (2 0.125) (3 0.0) (4 0.0) (5 0.0) (6 0.0) (7 0.0) 
(8 0.0) (9 0.0) (10 0.5) (11 0.375)))) 

360. |#  
361.  
362. (defun take-two (data) 
363.   "Recursion in recursion helper to csv-helper-stm." 
364.   (if (null data) nil 
365.     (cons 
366.      (cadar data) 
367.      (take-two (cdr data))))) 
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368.  
369. (defun csv-helper-stm (an) 
370.   "Organizes STM data for CSV dump." 
371.   (if (null an) nil 
372.     (cons 
373.      (take-two (cadar an)) 
374.      (csv-helper-stm (cdr an))))) 
375.  
376. ; (csv-helper-stm (stm->an *stm-pcs*)) 
377.  
378. (defun show-stm (an) 
379.   "Dumps CSV output to screen." 
380.   (format t "~%~{~%~{~A~^,~}~}~%" an)) 
381.    
382. ; (show-stm (csv-helper-stm (stm->an *stm-pcs*))) 
383. ; => 
384. #| 
385. 0.4,0.0,0.0,0.0,0.0,0.0,0.0,0.1,0.1,0.0,0.0,0.4 
386. 0.21428572,0.4642857,0.32142857,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0 
387. 0.028169014,0.014084507,0.08450704,0.73239434,0.0,0.04225352,0.0,0.0,0.05

6338027,0.0,0.04225352,0.0,0.0 
388. 0.0,0.0,0.5,0.5,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0 
389. 0.0,0.0,0.17777778,0.2,0.44444445,0.13333334,0.0,0.0,0.0,0.0,0.0,0.044444

446 
390. 0.032258064,0.06451613,0.048387095,0.0,0.0,0.20967741,0.48387095,0.0,0.09

677419,0.0,0.0,0.06451613,0.0 
391. 0.0,0.0,0.0,0.0,0.0,0.6,0.4,0.0,0.0,0.0,0.0,0.0 
392. 0.0,0.0,0.0,0.0,0.0,0.20634921,0.14285715,0.5555556,0.0,0.0952381,0.0,0.0 
393. 0.0,0.0,0.0,0.0,0.1,0.0,0.0,0.4,0.4,0.0,0.1,0.0 
394. 0.03508772,0.0,0.0,0.10526316,0.0,0.07017544,0.03508772,0.0,0.07017544,0.

14035088,0.47368422,0.07017544,0.0 
395. 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.05882353,0.47058824,0.47058824,0.0 
396. 0.0,0.0,0.125,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.5,0.375 
397. |# 
398.  

Example 6-48: Voice-leading probabilities table. 

In order to have a complete table that shows voice-leading probabilities from an 

originating PC to a destination PC, non-probabilities need to be included. The sum-

non-probs subroutine (lines 283-288) accomplishes the task. Its argument is a 

complement PCC, or the collection of pitches to which an originating PC cannot move. 

The recursive subroutine constructs a key/value pair list by using one of the 

complementary PCs from the PCC as key, and adds a 0.0 p as the value (lines 286-

288). The subroutine can be tested by first creating a new variable *pc-two*, line 290, 

which is bound to the outcome of a call to the nth i function with the *stm-pcs* 
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supplied as an argument, and selecting the second value (cadr) of the function call (the 

result is shown in line 291). The *pc-two* value is first passed as an argument to the 

copy-seq function in order to ensure that the original *pc-two* variable is not 

destroyed in the ensuing operations. Then, all duplicate PCs are removed from the 

values list, resulting in PCC {0, 1, 2, 4, 7, 9} and NIL. The values list is passed as the 

second argument to the built-in set-difference function, along with the 

chromatic-scale function from the Set-Theory-Functions.lisp library as first 

argument, resulting in the complement PCC {11, 10, 8, 6, 5, 3}. To sort the complement 

use the safe-sort function, supply the complement as its first argument, and the sort 

predicate as its second argument (in this case #'<), which results in the list shown in 

line 293, or ((3 0.0) (5 0.0) (6 0.0) (8 0.0) (10 0.0) (11 0.0)). 

The recursive sum-probs subroutine counts the occurrences of a PC in a PCC, 

and converts those occurrences to probabilities between 0 and 1, and groups the 

probabilities to their corresponding PC. The subroutine uses three arguments, (1) 

amount, or how many pitches there are in the destination value list, (2) a short-list 

of pitches – a PCC without duplicates, and (3) a long-list of pitches – a PCC 

including duplicate PCs. The new list is constructed by assigning occurring PCs from 

the short-list as keys, and building the probability value by counting how many 

times a PC from the short-list occurs in the long-list, dividing that amount by 

the amount of the PCC with duplicate pitches and passing the result to the built-in 

float function, to ensure that the result will not be displayed in the mathematically 

more specific fractional value, but rather the more human readable floating point value. 
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A test of the sum-probs subroutine is displayed in line 306, and the result is shown in 

line 307, or ((0 0.014084507) (1 0.08450704) (2 0.73239434) (4 

0.04225352) (7 0.056338027) (9 0.04225352) (NIL 0.028169014)). 

The built-in stable-sort function throws an error if a supplied argument list 

contains a NIL value. However, a list containing NIL values should also be sortable, for 

readability and consistency reasons. Since all PCs consist of positive integers, 

substituting a NIL value with -1 makes a list sortable without an error. When the sorting 

function completes its task, the -1 value should then be converted back to a NIL value. 

The aforementioned procedure is the purpose of the recursive check-for-nil 

subroutine that can either convert a NIL value to -1, or vice versa, depending on 

whether or not nil, or -1 was supplied as an argument (lines 309-315). A test call to the 

subroutine, and a results set has been provided in lines 317-318. 

The one-pc-stm->an subroutine (lines 320-331) combines the previous three 

subroutines to create a values list for an individual PC, and takes the probabilities 

(probs) of one PC key/value pair as its argument. Three local variables are declared 

with the let* function in lines 322-324: (1) num-probs, containing the length of the PC 

occurrences in the values list; (2) no-dupes, consisting of the PC occurrences in the 

values list with all duplicates removed; and (3) complement, bound to the result of a 

set-difference function supplied with the chromatic-scale function, and the 

previously established no-dupes variable as arguments, which is sorted in ascending 

order. The desired list is created by appending the result of the sum-non-probs 

subroutine that was supplied with the complement argument, with the result of a call to 
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the sum-probs subroutine that uses num-probs, no-dupes, and probs as 

arguments (lines 329-331). The list is checked for NIL, and the matched NIL values are 

substituted with -1 in line 328. Following the procedure, the sequence is copied in order 

to avoid the destruction of the sequence (line 327), when the list is sorted (line 326) by 

the first value (the originating PC) in ascending order (line 331). Once the list has been 

sorted, all -1 values can be converted back to the original NIL values with the check-

for-nil subroutine (line 325), but this time with the first argument being -1, and the 

second argument being NIL. When supplying the *pc-two* variable as an argument 

to the one-pc-stm->an function a probabilities list, as shown in line 334, will be built. 

However, so far only one originating PC key was matched with probabilities 

values. Enter the stm->an function (line 336-343). The recursive function constructs a 

key/value pair list of all PCs occurring as keys (line 341), with their corresponding 

destination PCs and their corresponding probabilities (line 342), by calling the one-pc-

stm->an subroutine. When the stm->an function is called with the *stm-pcs* 

argument the probabilities table shown in lines 348-359 is built. The following take-

two subroutine (lines 362-367), the csv-helper-stm subroutine (lines 369), and the 

show-stm function (lines 378-380), create a CSV dump to the REPL (lines 385-396). 

The task is accomplished through a series of nested subroutines as arguments to the 

show-stm function (line 382). The dumped CSV data then can be converted to a 

spreadsheet table. 

 

6.2.23. Building Chord Succession Probability Tables 
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With the PC voice-leading rules probabilities table built, attention will be turned to 

building various chord, PCCs, normal form, and set class succession rule probabilities 

tables. 

399. ;; ----- PCCs STMs ----- ;; 
400.  
401. (setf *prime-one* '((0 3 6 9) ((0 3 7) (0 3 7) (0 3 6 9)))) 
402.  
403. (defun count-list (comp pcc-list &optional (occur 0)) 
404.   "Count a list in a list. Works like (COUNT)" 
405.   (if (null pcc-list) occur 
406.     (count-list comp (cdr pcc-list) (if (equal comp (car pcc-list)) (+ 

occur 1) (+ occur 0))))) 
407.         
408. (cadr *prime-one*) 
409.         
410. ; (count-list '(0 3 6 9) (cadr *prime-one*)) - (count-list '(0 3 7) (cadr 

*prime-one*)) 
411. ; => 1 
412.  
413. (defun all-pccs-in-stm (stm) 
414.   "Finds all possible chords in a given STM." 
415.   (if (null stm) nil 
416.     (cons 
417.      (caar stm) 
418.      (all-pccs-in-stm (cdr stm))))) 
419.  
420. ; (all-pccs-in-stm *stm-prime-pccs*) 
421. ; => ((0 3 6 9) (0 3 6) (0 3 7)) 
422.  
423. (defun no-probs-pcc (complement) 
424.   "Checks which PCCs do not occur in a singular prime pairing." 
425.   (if (null complement) nil 
426.     (cons 
427.      (list (car complement) 0.0) 
428.      (no-probs-pcc (cdr complement))))) 
429.  
430. ; (no-probs-pcc (set-difference (all-pccs-in-stm *stm-prime-pccs*) (cadr 

*prime-one*) :test #'equal)) 
431. ; => (((0 3 6) 0.0)) 
432.  
433. (defun sum-probs-pcc (amount short-list long-list) 
434.   "Counts occurences of PCC in sequence,  
435.    converts occurences to probabilities between 0-1,  
436.    and groups PCCs with probability." 
437.   (if (null short-list) nil 
438.     (cons 
439.      (list  
440.       (car short-list) 
441.       (float (/ (count-list (car short-list) long-list) amount))) 
442.      (sum-probs-pcc amount (cdr short-list) long-list)))) 
443.  
444. ; (sum-probs-pcc (length (cadr *prime-one*)) (remove-duplicates (copy-seq 

(cadr *prime-one*)) :test #'equal) (cadr *prime-one*)) 
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445. ; => (((0 3 7) 0.6666667) ((0 3 6 9) 0.33333334)) 
446.  
447. (defun one-pcc-stm->an (probs stm-pccs) 
448.   "Converts voice-leading probabilites of one PC." 
449.   (let* ((num-probs (length (cadr probs))) 
450.          (no-dupes (copy-seq (remove-duplicates (cadr probs) :test 

#'equal))) 
451.          (long-list (cadr probs)) 
452.          (complement (set-difference (all-pccs-in-stm stm-pccs) no-dupes 

:test #'equal))) 
453.     (stable-sort 
454.      (copy-seq  
455.       (append 
456.        (no-probs-pcc complement) 
457.        (sum-probs-pcc num-probs no-dupes long-list))) #'< :key #'(lambda 

(x) (reduce '+ (car x)))))) 
458.  
459. ; (one-pcc-stm->an *prime-one* *stm-prime-pccs*) 
460. ; => (((0 3 6) 0.0) ((0 3 7) 0.6666667) ((0 3 6 9) 0.33333334)) 
461.  
462. (defun pcc-stm->an (stm &optional (static-stm stm)) 
463.   "Convert a STM with readable probabilities." 
464.   (if (null stm) nil 
465.     (cons 
466.      (list 
467.       (caar stm) 
468.       (one-pcc-stm->an (car stm) static-stm)) 
469.      (pcc-stm->an (cdr stm) static-stm)))) 
470.  
471. ; (pcc-stm->an *stm-prime-pccs*) 
472. ; => 
473. #| 
474. (((0 3 6 9) (((0 3 6) 0.0) ((0 3 7) 0.6666667) ((0 3 6 9) 0.33333334)))  
475.  ((0 3 6) (((0 3 6) 0.5) ((0 3 7) 0.5) ((0 3 6 9) 0.0)))  
476.  ((0 3 7) ((NIL 0.018867925) ((0 3 6) 0.094339624) ((0 3 7) 0.8490566) 

((0 3 6 9) 0.03773585)))) 
477. |# 
478.  
479. ; (pcc-stm->an *stm-pccs-strands*) 
480. ; (pcc-stm->an *stm-pedal-pccs*) 
481. ; (pcc-stm->an *stm-core-pccs*) 
482. ; (pcc-stm->an *stm-normal-pccs*) 
483. ; (pcc-stm->an *stm-t-normal-pccs*) 
484. ; (pcc-stm->an *stm-prime-pccs*) 
485.  

Example 6-49: Chord succession probabilities tables. 

In line 401 the test variable *prime-one* is bound to a rule set describing the set 

class succession probabilities from an originating fully diminished 7th chord to either set 

class (0 3 7) – twice, or set class (0 3 6 9) – once. Common Lisp’s built-in count 

function can count how many times the same symbol or number occurs in a list. 



   328 

However, the function cannot count how many lists that are the same occur in another 

list. The count-list subroutine (lines 403-406) takes two lists as an argument, (1) a 

one-dimensional list (comp) to be found in (2) a longer, or two-dimensional list (pcc-

list). Further, count-list keeps track of a count (occur) of how many discrete 

times comp occurs in a pcc-list during a recursion. If no items are left in the pcc-

list, or target list, the subroutine returns the number of times comp occurred (line 

405). But, if there are still members left in the pcc-list, the comp list is passed back 

to the count-list subroutine, along with the remainder of the pcc-list, and the 

result of a condition that checks whether the current member that is being examined 

from the pcc-list equals the comp value, as arguments. If the condition is true one is 

added to the occur value, if not zero is added to the occur value (line 406). Making a 

test call to the count-list subroutine with set class (0 3 6 9) as the comp argument 

value, and the result of the cadr of *prime-one* as the pcc-list value – or the 

SCC of ((0 3 7) (0 3 7) (0 3 6 9)), results in 1 (lines 408-409). If the test call to the count-

list subroutine included set class (0 3 7) as the comp argument value, and the cadr of 

*prime-one* as the pcc-list argument value, then the result would have been 2. 

The all-pccs-in-stm subroutine finds all possible PCCs in a given STM, 

recursively (lines 413-418). The recursion is initiated as all previously discussed 

recursions, and the result is a list of PCCs. A test call to the all-pccs-in-stm 

subroutine (line 410), with the *stm-prime-pccs* supplied as an argument results in 

the collection found in line 421. The no-probs-pcc subroutine (lines 423-428) 

examines an entire PCC succession set, and determines which PCCs are non-target 
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PCCs and assigns these PCCs a 0.0 p value, through a recursive procedure. The non-

target PCCs are just a complement that needs to be passed as an argument to the 

subroutine. When calling the no-probs-pcc subroutine (line 430), the complement 

argument is devised by passing the outcome of a call to the all-pccs-in-stm 

function with a *stm-prime-pccs* as first argument, and a call to the cadr of 

*prime-one* as the second argument to the built-in set-difference function along 

with an equality test. The outcome would be a pairing that reads that set class (0 3 6) 

has a 0.0 probability of occurring as a destination PCC (line 431). 

In lines 433-442 the sum-probs-pcc subroutine counts all occurrences of a 

PCC in a sequence of PCCs, converts the occurences to a probabilities value between 

0-1, and groups the PCCs in question as key/value pairs with their appropriate p values 

(lines 439-441). The subroutine requires three arguments: (1) the amount, or how many 

PCCs are within a PCC sequence; (2) a short-list of non-duplicate PCCs; and (3) a 

long-list of all occurring PCCs, including duplicates. The sum-probs-pcc 

subroutine can be tested the following way (line 444): (1) the amount argument is 

created by measuring the length of the cadr of *prime-one*, (2) the short-list 

argument is generated by removing all duplicate PCCs, and (3) the long-list is 

produced by simply providing the raw cadr of *prime-one*.65 The operation 

determines that SC (0 3 6 9) can move to SC (0 3 7) with a p of 0.66, and that SC (0 3 6 

9) can move to itself with a 0.33 p (line 445). 

The one-pcc-stm->an subroutine takes two arguments, (1) a probabilities 
                                            

65 Recall that *prime-one* holds ((0 3 6 9) ((0 3 7) (0 3 7) (0 3 6 9))), while 
the cadr of *prime-one* holds ((0 3 7) (0 3 7) (0 3 6 9)). 
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key/value pair list (probs) where the key is an originating PCC, and the value is a 

destination PCC and its corresponding probability, and (2) a STM consisting of all 

possible originating PCCs, and their possible destination PCCs (lines 447-457). The 

subroutine unifies all principles from the test call to the sum-probs-pcc previously 

described, except that this time four local variables are created via the let* function: 

(1) num-probs holds the value required by the amount argument needed for the sum-

probs-pcc subroutine call (line 449); (2) the no-dupes value collects the value for the 

short-list argument used in the sum-probs-pcc subroutine (line 450); (3) the 

long-list variable holds the values required by the long-list argument for the 

sum-probs-pcc subroutine (451); and (4) the complement holds the values that need 

to be passed as an argument to the no-probs-pcc subroutine that are generated by a 

call to the set-difference built-in function, where the first argument is created by a 

call to the all-pccs-in-stm subroutine with a stm-pccs argument, and the second 

argument is made via the previously assigned no-dupes local variable (452). The 

outcome of the no-probs-pcc subroutine then is appended with the outcome of the 

call to the sum-probs-pcc that in turn is copied in order to avoid destructive behavior 

caused by the stable-sort function, which sorts the newly appended list in 

ascending order according to the key PCCs (lines 453-457). The (one-pcc-stm->an 

*prime-one* *stm-prime-pccs*) function test call (line 459) shows that SC (0 3 6 

9) can move to SC (0 3 7) with a 0.66 p, to SC (0 3 6 9) with a 0.33 p, and to SC (0 3 6) 

with a 0.0 p, meaning that the rule specifies that SC (0 3 6 9) never moves to SC (0 3 6) 

- line 460. 
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The recursive pcc-stm->an function (lines 462-469) unifies all previously 

discussed subroutines in this section and builds a probabilities table that includes all 

possible PCC to PCC successions, and their corresponding probabilities. The function 

takes a stm as an argument, and creates an unaltered copy of the stm as an optional 

argument, or static-stm, for comparison purposes in the ensuing recursion. The 

table is built by assigning each occurring PCC as a key (line 467) to a succession rule 

value along with probabilities that are being built with a call to the one-pcc-stm->an 

subroutine with the current key of the recursion as the first argument, and the entire 

static-stm as second argument (line 469). The (pcc-stm->an *stm-prime-

pccs*) test call results in the following rule set: (1) SC (0 3 6 9) => SC (0 3 7) – with a 

0.66 p, or => SC (0 3 6 9) – with a 0.33 p, but never moves to SC (0 3 6); (2) SC (0 3 6) 

=> SC (0 3 6) – with a 0.50 p, or => SC (0 3 7) – with a 0.50 p, but never moves to SC 

(0 3 6 9); (3) SC (0 3 7) => NIL, meaning it is the PCC on which the piece will end – with 

a 0.02 p, or => SC (0 3 6) – with a 0.1 p, or to SC (0 3 7) – with a 0.85 p, or => SC (0 3 

6 9) – with a 0.03 p (lines 474-476). Lines 479-484 show different PCC succession 

probability tables that can be generated. 

With having learned the voice-leading, and chord succession rules, along with 

their probabilities, the association nets that were used to compose FDL-1 can be 

simulated, since the association nets are semantic nets in which nodes (PCs and PCCs) 

are connected with edges that are weighed according to probabilities. 
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6.2.24. Association Net Simulation 

The framework of FDL-1 may be defined in terms of what different types SCs are 

being used and how these SCs are used in reference to each other. In previous 

sections it was discussed how the SC succession rules can be generated, and how they 

can be represented as semantic networks. Furthermore, it was also shown how to 

generate tables containing not only the basic rules of SC A moving to SC B, but also in 

what frequency successions can occur, or the probabilities in which they occur. 

Hypothetically the gained insights can be used to recompose another version of FDL-1 

with a similar outcome. The framework generated through SC representation within 

semantic networks, and probability tables, can be seen as being the “background,” 

although not from a Schenkerian perspective, but a further abstracted level. The 

redefinition of the term appropriately represents a composition that may exhibit triadic 

characteristics, but may not follow the “tonal” rules from the CPP, and the Ursatz 

concept. 

Table 6-2: SC Succession probabilities and rules in FDL-1. 

SC (0 3 6 9) (0 3 6) (0 3 7) End 
(0 3 6 9) 0.33 0 0.67 0 
(0 3 6) 0 0.50 0.50 0 
(0 3 7) 0.04 0.09 0.85 0.02 

 

Observing the SC succession rules in Table 6-2, it can be determined: (1) SC (0 

3 6 9) => SC (0 3 6 9) – with a 0.33 p (the probabilities have been rounded), or => SC (0 

3 7) – with a 0.68 p; (2) SC (0 3 6) => SC (0 3 6) – with a 0.50 p, or => SC (0 3 7) – with 
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a 0.50 p; and (3) SC (0 3 7) => SC (0 3 6 9) – with a 0.04 p, or => SC (0 3 6) – with a 

0.09 p, or => SC (0 3 7) with a 0.85 p, or => END – meaning that SC (0 3 7) is the last 

SC of a composition – with a 0.02 p. The SCs in Table 6-2 become the nodes, and any 

probabilities become edges in a semantic network, which visualizes the succession 

rules (Figure 6-16). If all nodes were connected to each other with edges, and these 

edges were labeled, or weighed, with the probability data an association network 

emerges. 

 

Figure 6-16: SC semantic network - FDL-1 background. 

The central node in Figure 6-16 is SC (0 3 7), and tension can be created by a 

combination of (1) moving to itself – with the least amount of tension, (2) moving to the 

SC (0 3 6) node – with a higher degree of tension, (3) moving to the SC (0 3 6 9) node – 

with the highest degree of tension, indicated through the change of cardinality in the SC, 

since SC (0 3 6), and SC (0 3 6 9) belong to the same diminished family. All tension 

SCs have to resolve to SC (0 3 7), and only SC (0 3 7) can be used to end the piece.  

(0 3 6 9)   

(0 3 7)

  

(0 3 6)   

  

  

  

  

End
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Using SCs sometimes can obscure more traditional notions of major or minor 

qualities held within PCCs, since PC (0 3 7) is as representation of a minor and a major 

PCC simultaneously. Therefore it can be useful to flesh out the background with the 

addition of PCST0s.  

Table 6-3: PCST0 succession rules - FDL-1 background. 

PCST0 [0 3 6 9] [0 3 6] [0 3 7] [0 4 7] End 
[0 3 6 9] 0.33 0 0.67 0 0 
[0 3 6] 0 0.50 0.50 0 0 
[0 3 7] 0.04 0.11 0.77 0.06 0.02 
[0 4 7] 0 0 0.50 0.50 0 

 

As shown in Table 6-3, a PCST0 [0 3 6 9] – or a fully diminished tetrad – can 

move to itself with a 0.33 p, or resolve to PCST0 [0 3 7] with a 0.67 p. PCST0 [0 3 6], or 

diminished triad, can move to itself with a 0.50 p, or resolve to PCST0 [0 3 7] with a 0.50 

p. Both types of diminished chord do not move to one another, or change cardinality. 

PCST0 [0 3 7] – a minor triad – can move to PCST0 [0 3 6 9] with a 0.04 p, or to a 

PCST0 [0 3 6] with a 0.11 p, or to a PCST0 [0 3 7] – itself – with a 0.77 p, or to a PCST0 

[0 4 7] – a major triad – with a 0.06 p. Further, the composition can also end on PCST0 

[0 3 7], which has a p of 0.02. PCST0 [0 4 7] – a major triad – can move to either PCST0 

[0 3 7] – with a 0.50 p, or can move to PCST0 [0 4 7] – itself – with a 0.50 p. However, 

PCST0 [0 4 7] never moves to a tension chord or PCST0 [0 3 6], or PCST0 [0 3 6 9], but 

can only be approached from a PCST0 [0 3 7], and return to its originator. From a 

tension perspective it can be placed in between a move from PCST0 [0 3 7] to itself, and 
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PCST0 [0 3 6].  

While a motion from PCST0 [0 3 7] to itself is the most common movement, the 

motion from PCST0 [0 3 7] => PCST0 [0 3 6] is the second most common motion, while a 

movement to PCST0 [0 4 7] is only slightly more common then to the tension PCST0 [0 3 

6 9]. Since the motion to PCST0 [0 3 6 9] is the least common movement, excluding the 

end, it can be concluded that a cardinality change creates the highest degree of tension, 

and occurs at a structurally significant point of FDL-1. Further clarity can be gained by 

observing a PCST0 semantic network (Figure 6-17). 

 

Figure 6-17: PCST0 semantic network - FDL-1 background. 

SC networks and PCST0 networks map onto each other, whereas the former are 

more general, and the latter are slightly more specific in regards to more traditional 

understandings of chord modalities. If the SC network represents the skeleton, then the 

addition of a PCST0 network represents the cartilage of the harmonic background. A 

middleground perspective, or perhaps the nervous system or muscular level, can be 

[0 4 7]   

[0 3 7]

  

[0 3 6 9]   

  

[0 3 6]   

  

    

  

End
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achieved through the addition of PCS succession rules, and their corresponding 

probabilities (Table 6-4. PCS).  

Observing the rules in Table 6-4 PCS [1, 4, 7] – {C#, E, G} and belonging to SC 

(0 3 6) – can either move to itself with a p value of 0.50, or it can move to PCS [2, 5, 9] – 

{D, F, A}, belonging to SC (0 3 7) – with a p value of 0.50 and the PC voice-leadings of 

(1, 1, 2). This corresponds with the previous rule (Figure 6-16) that established SC (0 3 

6) => (0 3 7). PCS [2, 5, 8, 11] – {D, F, Ab Cb}, belonging to SC (0 3 6 9) – can move to 

itself with a p value of 0.33, or can move to PCS [7, 10, 2] – {G, Bb, D}, belonging to SC 

(0 3 7) – with a p value of 0.67. The PC voice-leadings do not have one-to-one 

relationship, nor does the fully diminished tetrad resolve to its successor in CPP fashion, 

and therefore their nature will be discussed in connection with PCCs derived from voice-

leading strands. 
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Table 6-4: PCS succession rules - FDL-1 middleground. 

PCS [1, 4, 7] [2, 5, 8, 11] [2, 5, 9] [3, 7, 10] [4, 7, 10] [4, 7, 11] [5, 8, 0] [6, 9, 1] [7, 10, 2] [9, 0, 4] End 
[1, 4, 7] 0.50 0 0.50 0 0 0 0 0 0 0 0 
[2, 5, 8, 11] 0 0.33 0 0 0 0 0 0 0.67 0 0 
[2, 5, 9] 0.10 0 0.55 0 0.10 0 0 0 0.10 0.10 0.05 
[3, 7, 10] 0 0 0.50 0.50 0 0 0 0 0 0 0 
[4, 7, 10] 0 0 0.50 0 0.50 0 0 0 0 0 0 
[4, 7, 11] 0 0 0 0.60 0 0.40 0 0 0 0 0 
[5, 8, 0] 0.14 0 0 0 0 0.43 0.43 0 0 0 0 
[6, 9, 1] 0 0 0 0 0 0 0.60 0.40 0 0 0 
[7, 10, 2] 0 0 0 0 0 0 0.14 0.43 0.43 0 0 

[9, 0, 4] 0 0.67 0 0 0 0 0 0 0 0.33 0 
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PCS [2, 5, 9] can move to PCS [1, 4, 7] with a p value of 0.10 and PC voice-

leadings of (-1, -1, -2), a type of permutation of (1, 1, 2). PCS [2, 5, 9] can also move to 

itself with a p value of 0.55, or to PCS [4, 7, 10] – belonging to SC (0 3 6) – with a p 

value of 0.10, and PC voice-leadings of  (2, 2, 1), a type of permutation of (1, 1, 2). PCS 

[2, 5, 9] can move to both PCS [7, 10, 2], and PCS [9, 0, 4] – {G, Bb, D}, belonging to 

SC (0 3 7), and {A, C, E}, also belonging to SC (0 3 7) respectively – with a p value of 

0.10, whereas the PC voice-leadings – (5, 5, 5), or T5 for the former, and (-5, -5, -5), or 

T-5 for the latter – are transpositionally related to each other, since all three PCS are 

transpositionally related to one another. PCS [2, 5, 9] can also pursue the path to 

silence, meaning it can be the last triad of the composition, which can be assigned with 

a p value of 0.05. No other PCSs can be used as the last PCS.  

PCS [3, 7, 10] – {Eb, G, Bb}, belonging to SC (0 3 7), or PCST0 [0 4 7] – can 

either move to PCS [2, 5, 9], or itself with a 0.50 p value. The PC voice-leading 

operation from PCS [3, 7, 10] to [2, 5, 9] reads (-1, -2, -1), a permutation of (-1, -1, -2). 

PCS [4, 7, 10] – {E, G, Bb}, belonging to SC (0 3 6) – can move to itself with a 0.50 p 

value, or to PCS [2, 5, 9] with a p value of 0.50 though a (-2, -2, -1) PC voice-leading 

operation, the reverse of the PC voice-leading operation of (2, 2, 1). PCS [4, 7, 11] – {E, 

G, B}, belonging to SC (0 3 7) – can move to itself with a p value of 0.40, but moves to 

PCS [3, 7, 10] with a p value of 0.60, and the PC voice-leading operation of (-1, 0, -1). 

PCS [5, 8, 0] – {F, Ab, C}, belonging to SC (0 3 7), or PCST0 [0 4 7] – can move to itself, 

and PCS [4, 7, 11] with a p value of, where the PC voice-leading operation is (-1, -1, -1), 

or T-1. However, PCS [5, 8, 0] can also move to PCS [1, 4, 7] with a 0.14 p-value, and a 
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PC voice-leading operation of (-4, -4, -5), a clear variation of the earlier occurring PC 

voice-leading operation of (-1, -1, -2) at T-3. 

PCS [6, 9, 1] – {F#, A, C#}, belonging to SC (0 3 7) – can move to itself with a 

0.40 p value, or to PCS [5, 8, 0] with a p value of 0.60, and a PC voice-leading operation 

of (-1, -1, -1), or T-1. PCS [7, 10, 2] can move to itself, with a p value of 0.43, or can 

move to PCS [6, 9, 1] with a 0.43 p value, and the PC voice-leading operation of (-1, -1, 

-1), i.e. T-1, but can also move to PCS [5, 8, 0] via the PC voice-leading operation of (-2, 

-2, -2), or T-2, with a p value of 0.14. Last, PCS [9, 0, 4] can move to PCS [2, 5, 8, 11] 

with a 0.67 p value, or can move to itself with a p value of 0.33. Since there is a 

cardinality change involved, triad to tetrad, a clearer PC voice-leading operation can be 

determined by examining PCCs derived from voice-leading strands. Again, the PCSs 

represent the nodes, and the probabilities represent the edges in the PCS semantic 

network (Figure 6-18). The probabilities, or weighed edges, in conjunction create an 

association network (with all 0 value edges omitted for clarity). 

A PCC reduction can be devised by examining PCC succession rules generated 

by building PCCs from voice-leading strands. With the procedure, ambiguities of PC 

voice-leadings, especially in regards to cardinality changes from a triad to a tetrad, or 

vice versa, can be cleared up, since a PCC succession may also include movement to 

and from duplicate PCs. Example 6-24 shows the maximally reduced chords, where all 

voice-leading procedures are accounted for through one-to-one relationships. Table 6-5 

shows the chord succession rules generated by the procedure. 
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Figure 6-18: PCS semantic network - FDL-1 middleground.
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Table 6-5: PCCs from strands succession rules - FDL-1 middleground. 

PCCs from 
Strands 

{2, 1, 
4, 7, 
1, 4, 
7, 1} 

{2, 2, 
5, 9, 
2, 5, 
9, 2} 

{2, 3, 
7, 10, 
3, 7, 

10, 3} 

{2, 4, 
7, 10, 
4, 7, 

10, 4} 

{2, 4, 
7, 11, 
4, 7, 

11, 4} 

{2, 5, 
8, 0, 
5, 8, 
0, 5} 

{2, 6, 
9, 1, 
6, 9, 
1, 6} 

{2, 7, 
10, 2, 
7, 10, 
2, 7} 

{2, 8, 
11, 2, 
5, 8, 

11, 2} 

{2, 9, 
0, 4, 
9, 0, 
4, 9} 

End 

{2, 1, 4, 7, 
1, 4, 7, 1} 0.50 0.50 0 0 0 0 0 0 0 0 0 

{2, 2, 5, 9, 
2, 5, 9, 2} 0.11 0.53 0 0.11 0 0 0 0.11 0 0.11 0.05 

{2, 3, 7, 10, 
3, 7, 10, 3} 0 0.50 0.50 0 0 0 0 0 0 0 0 

{2, 4, 7, 10, 
4, 7, 10, 4} 0 0.50 0 0.50 0 0 0 0 0 0 0 

{2, 4, 7, 11, 
4, 7, 11, 4} 0 0 0.60 0 0.40 0 0 0 0 0 0 

{2, 5, 8, 0, 
5, 8, 0, 5} 0.14 0 0 0 0.43 0.43 0 0 0 0 0 

{2, 6, 9, 1, 
6, 9, 1, 6} 0 0 0 0 0 0.60 0.40 0 0 0 0 

{2, 7, 10, 2, 
7, 10, 2, 7} 0 0 0 0 0 0.14 0.43 0.43 0 0 0 

{2, 8, 11, 2, 
5, 8, 11, 2} 0 0 0 0 0 0 0 0.67 0.33 0 0 

{2, 9, 0, 4, 
9, 0, 4, 9} 0 0 0 0 0 0 0 0 0.67 0.33 0 
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A brief examination of Table 6-5 leads to the conclusion that all PCC succession 

rules, and probabilities are the same as the ones shown in Table 6-4. PCC {2, 1, 4, 7, 1, 

4, 7, 1} – SC (0 3 6) – can either move to itself, or to PCC {2, 2, 5, 9, 2, 5, 9, 2} – SC (0 

3 7) – with the PC voice-leading of (0, 1, 1, 2, 1, 1, 2), which mirrors the movement from 

{C#, E, G} => {D, F, A}, but with the inclusion of the pedal tone D. Table 6-6 shows the 

remaining PCC motions with their corresponding PC voice-leadings (motions of a PCC 

to itself have been omitted, smaller sub-PCCs are in bold). 

Table 6-6: PC voice-leading derived from reassembled PCCs. 

PCC from Strand => Pitch Class Voice-leading 

{2, 2, 5, 9, 2, 5, 9, 2} 

{2, 1, 4, 7, 1, 4, 7, 1} (0, -1, -1, -2, -1, -1, -2, -1) 
{2, 4, 7, 10, 4, 7, 10, 4} (0, 2, 2, 1, 2, 2, 1, 2) 
{2, 7, 10, 2, 7, 10, 2, 7} (0, 5, 5, 5, 5, 5, 5, 5) 

{2, 9, 0, 4, 9, 0, 4, 9} (0, -5, -5, -5, -5, -5, -5, -5) 

{2, 3, 7, 10, 3, 7, 10, 3} {2, 2, 5, 9, 2, 5, 9, 2} (0, -1, -2, -1, -1, -2, -1, -1) 
{2, 4, 7, 10, 4, 7, 10, 4} {2, 2, 5, 9, 2, 5, 9, 2} (0, -2, -2, -1, -2, -2, -1, -2) 
{2, 4, 7, 11, 4, 7, 11, 4} {2, 3, 7, 10, 3, 7, 10, 3} (0, -1, 0, -1, -1, 0, -1, -1) 

{2, 5, 8, 0, 5, 8, 0, 5} 
{2, 1, 4, 7, 1, 4, 7, 1} (0, -4, -4, -5, -4, -4, -5, -4) 

{2, 4, 7, 11, 4, 7, 11, 4} (0, -1, -1, -1, -1, -1, -1, -1) 
{2, 6, 9, 1, 6, 9, 1, 6} {2, 5, 8, 0, 5, 8, 0, 5} (0, -1, -1, -1, -1, -1, -1, -1) 

{2, 7, 10, 2, 7, 10, 2, 7} 
{2, 5, 8, 0, 5, 8, 0, 5} (0, -2, -2, -2, -2, -2, -2, -2) 
{2, 6, 9, 1, 6, 9, 1, 6} (0, -1, -1, -1, -1, -1, -1, -1) 

{2, 8, 11, 2, 5, 8, 11, 2} {2, 7, 10, 2, 7, 10, 2, 7} (0, -1, -1, 0, 2, 2, -3, 5) 
{2, 9, 0, 4, 9, 0, 4, 9} {2, 8, 11, 2, 5, 8, 11, 2} (0, -1, -1, -2, -4, -4, -5, 5) 

 

All triadic sub-PCCs in Table 6-6 are in normal form (highlighted in bold), 

whereas the troublesome tetrad appears as PCC {8, 11, 2, 5}, rather than [2, 5, 8, 11]. 
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All PCCs included the PC 2 pedal. Because additional vertical PCs have been added to 

the triadic PCC that precede and follow the tetrad PCC, a precise PC voice-leading 

procedure can be found, viz. PCC {8, 11, 2, 5} – or {G#, B, D, F}, belonging to SC (0 3 6 

9) – is approached through PC voice-leading (-1, -1, -2, -4) from PCC {9, 0, 4, 9}, or {A, 

C, E, A}, belonging to SC (0 3 7). PCC {8, 11, 2, 5} “resolves” to PCC {7, 10, 2, 7}, or {G, 

Bb, D, G}, also belonging to SC (0 3 7) by applying the (-1, -1, 0, 2) PC voice-leading 

procedure. Therefore, the cardinality change from a triad to a tetrad back to a triad has 

been appropriately handled. With the information at hand a semantic network can be 

created that includes PC voice-leading procedures taking cardinality changes into 

account (Figure 6-19). 

In Figure 6-19, all PCSs are enclosed within the square brackets, with PCs 

separated by commas. If, in order to account for the cardinality change, a PC was 

added to a PCS. The PCS becomes part of a PCC, enclosed with curly braces that 

include the needed PC – {[9, 0, 4], 9}, and {[7, 10, 2], 7}. Since the PCS [2, 5, 8, 11] – 

albeit a symmetrical PCC, belonging to SC (0 3 6 9) – has been rotated to PCC {8, 11, 

2, 5}, thus permutated, it was enclosed in curly braces. Furthermore all PC voice-

leading numbers have been converted to the smallest possible value below six, ascend, 

or descending (prefixed with a negative symbol). In PC voice-leading semantic network 

PCS [2, 5, 9] plays a central role, since it is the tonic triad. The semantic network in 

Figure 6-19 also maps on to the previously described networks in Figure 6-17, and 

Figure 6-16. 
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Figure 6-19: Semantic network - PC voice-leading - FDL-1 middleground. 
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foreground. The foreground shows all PC voice-leading procedures from individual PCs 

to other PCs, rather than grouping PCs into PCCs. The PC voice-leading rules will be 

able to map onto the PC voice-leading procedures shown in Figure 6-19. Further, the 

PC voice-leading rules come along with their own particular probabilities from which a 

foreground level association network can be drawn. 

Table 6-7: PC voice-leading rules - FDL-1 foreground. 

PC 0 1 2 3 4 5 6 7 8 9 10 11 End 

0 0.40 0 0 0 0 0 0 0.10 0.10 0 0 0.40 0 

1 0.21 0.46 0.32 0 0 0 0 0 0 0 0 0 0 

2 0.01 0.08 0.73 0 0.04 0 0 0.06 0 0.04 0 0 0.03 

3 0 0 0.5 0.50 0 0 0 0 0 0 0 0 0 

4 0 0 0.18 0.20 0.44 0.13 0 0 0 0 0 0.04 0 

5 0.06 0.05 0 0 0.21 0.48 0 0.10 0 0 0.06 0 0.03 

6 0 0 0 0 0 0.6 0.40 0 0 0 0 0 0 

7 0 0 0 0 0 0.21 0.14 0.56 0 0.10 0 0 0 

8 0 0 0 0 0.10 0 0 0.40 0.40 0 0.10 0 0 

9 0 0 0.11 0 0.07 0.04 0 0.07 0.14 0.47 0.07 0 0.04 

10 0 0 0 0 0 0 0 0 0.06 0.47 0.47 0 0 

11 0 0 0.13 0 0 0 0 0 0 0 0.50 0.38 0 
 

Evaluating Table 6-7, all PCs at a minimum move to at least one other PC, or to 

themselves, creating either a sense of stasis, or a sense of tension through elongated 

repetitions. PCs 2, 5, and 9 have the most moving-to possibilities, whereas PC 9 has 

the most. Further, the same PCs can be used to end the piece, which substantiates the 

claim that FDL-1 must end with PCS [2, 5, 9]. Figure 6-20 shows the resulting network. 



 

  346 

 

Figure 6-20: Semantic network PC voice-leading rules - FDL-1 foreground. 
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In this section it was shown how to display PC voice-leading, and PCC 

succession rules. A most basic framework was introduced by creating a SC probability 

table alongside a SC semantic network, as a background. Adding PCST0s probabilities, 

and their corresponding semantic networks further elaborated the background. A 

middleground level was established by considering PCS succession rules, and 

probabilities, alongside semantic networks as well. The middleground was further given 

substance by including PC voice-leading procedures, and examples of how cardinality 

changes of PCCs were handled. Last, PC voice-leading rules, along with their 

corresponding probabilities were established. At the same time a semantic network of 

the PC voice-leading procedures was ascertained. The voice-leading rules, chord 

succession rules, probabilities, and semantic networks all act as components of the 

information acquired by the association network, and correspond to the cornerstone of 

FDL-1. The following section features remarks on how this type of analysis can be 

expanded to postulate whether what type of source material was used by Cope to train 

the association network. 

 

6.3. Future Analyses Directions 

The main purpose of this study is to trace algorithmic thought. This section shows 

how to “spin-out” the previous parts of code and analyses in a more modular fashion, 

and points to the applicability of the code examples towards “Big Data” corpus studies. 

What could be pieces that served as source materials for the composition of 

FDL-1? Cope provides the hint that Emily “uses Emmy’s output to create music in new 
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styles.”700 Connecting this thought with the fact that FDL-1 is reminiscent of the style 

brisé, the source material can be further narrowed down. Several pieces from the WPC 

fall into that category: (1) Prelude 15 in G Major (Figure 6-21); (2) Prelude 26 in C Minor 

(Figure 6-22); and (3) Prelude 44 in A Minor (Figure 6-23). The preludes have direct 

lineage to other Bach preludes that fall within the same parameters, and thus serve as 

source material by proxy, for example: (1) The Well-Tempered Clavier, Book 1 - Prelude 

#1 In C Major, BWV 846b (Figure 6-24); (2) The Well-Tempered Clavier, Book 1 - 

Prelude #2 In C Minor, BWV 847 (Figure 6-25); (3) Praeambulum in C Major, BWV 924 

(Figure 6-26); (4) Prelude, BWV 999 (Figure 6-27); and (5) Suite for Cello I in G major, 

Prelude, BWV 1007 (Figure 6-28) - since Cope is a cello player. Another candidate from 

the style brisé category would be Sonata for piano (in the style of Beethoven): Part 2 

(Figure 6-29), which draws upon both BWV 846b (Figure 6-24) and Beethoven’s Sonata 

No.14 'Moonlight' I. Adagio sostenuto (Figure 6-30), and consequently these two piece 

serve as source materials by proxy as well. However, other pieces are also possible. 

The following nine figures (Figure 6-21 - Figure 6-30) show the first few measures of the 

nine pieces posited. 

In the ensuing section some parts of the Analysis-Prototype.lisp script 

will be modularized, by taking a closer look at WPC Prelude 26 in C Minor. 

                                            
700 Cope, Tinman Too: A Life Explored, 475. Cope specifies, Emily uses a “well-selected” corpus, 

or database, of Emmy’s output. Cope, "The Well-Programmed Clavier: Style in Computer Music 
Composition," 20. 
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Figure 6-21: WPC Prelude 15 in G Major (mm. 1-20). 

 

 

Figure 6-22: WPC Prelude 26 in C Minor (mm. 1-6). 
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Figure 6-23: WPC Prelude 44 in A Minor (mm. 1-15). 

 

 

Figure 6-24: WTC Prelude 1 in C Major (mm. 1-8). 
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Figure 6-25: WTC Prelude in C Minor (mm. 1-6). 

 

 

Figure 6-26: Praeambulum, BWV 924 (mm. 1-6). 
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Figure 6-27: Prelude, BWV 999 (mm. 1-12). 

 

 

Figure 6-28: Prelude, BWV 1007 (mm. 1-8). 
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Figure 6-29: Andante sostenuto - After Beethoven (mm. 1-16). 

 

 

Figure 6-30: Adagio sostenuto - Sonata 14 - Beethoven (mm. 1-6). 
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6.3.1. An Analysis Script  

In the previous section algorithms were introduced to aid in the analytical 

process. These algorithms can be re-used in the analysis of Prelude 26. Rather than 

copying and pasting the algorithms, they will be re-used in a separate new file, called an 

analysis script. In the analysis script different previously established algorithms can be 

accessed via their corresponding functions, altered, or others can be added. Previous 

algorithms are loaded as reference file into the analysis script, which is called 

Analysis-WPC-Prelude-26.lisp. 

1. (defparameter *this-path* (directory-namestring *load-truename*)  
2.   "Holds path of this file.") 
3.  
4. (defun library-loader (lib-path &optional file-name) 
5.   "Creates relative paths." 
6.   (load (concatenate 'string *this-path* lib-path file-name))) 
7.  

Example 6-50: First items in an analysis script. 

The very top of the script has to include one global variable and one subroutine: 

(1) *this-path* (lines 1-2) – a variable that is assigned the scripts path information, 

thru the built-in directory-namestring function with the built-in *load-truename* 

variable supplied as an argument, in order to create new relative paths, and (2) the 

library-loader function (lines 4-6) that takes a relative directory followed by a 

forward slash “/”, and the file-name – with its corresponding extension – as its 

argument, in order to build paths to libraries that are required by the script. Below the 

top section the required libraries are loaded (for now, since other libraries can be loaded 

on an “as needed” basis): 

8. ;; ----- Enter Needed Libraries ----- ;; 
9.  
10. (library-loader "Library/" "Utilities.lisp") 
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11. (library-loader "Library/" "MIDI-Input.lisp") 
12. (library-loader "Library/" "Pitch-Count.lisp") 
13. (library-loader "Library/" "Pitch-Space-Range.lisp") 
14. (library-loader "Library/" "Histograms.lisp") 
15. (library-loader "Library/" "Score-Navigation.lisp") 
16. (library-loader "Library/" "Set-Theory-Functions.lisp") 
17. (library-loader "Library/" "Chord-Compression.lisp") 
18. (library-loader "Library/" "Learn-Rules.lisp") 
19. (library-loader "Library/" "Graphing-Voice-Leading.lisp") 
20.  

Example 6-51: Loading desired libraries into an analysis script. 

21. ;; ----- The Analysis Script ----- ;; 
22.  
23. ; ----- Score ----- ; 
24.  
25. (setf *score* (load-midi (concatenate 'string *this-path* "Scores/" "wpc-

prelude-26.mid"))) 
26.  

Example 6-52: Loading a score into an analysis script. 

After the required libraries have been loaded, the actual analysis script can 

begin. The first item to load and bind to the variable *score* is the score that is to be 

analyzed.701 The variable name can be anything, but for the sake of writing self 

documenting code the global variable, signified by the “*” earmuffs as being global, 

*score* has been chosen. Once the global variable has been set and activated by 

placing the cursor flush after the last parenthesis of the line, and entering command E, 

when in OS X, in the Clozure CL environment, the following event notation will flash by 

in the REPL for the entire composition (truncated to only five events, the first three, and 

the last two): 

((0 36 125 2 90) (125 39 125 2 90) (250 43 125 2 90) 
… 
(500000 60 4000 2 90) (500000 48 4000 2 90)) 

                                            
701 Since currently there is only a MIDI library, only MIDI scores can be loaded. However, in future 

versions other score formats, such, as MusicXML, LilyPond, .krn files, etc., should be able to be loaded 
into an analysis script as well. 
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Example 6-53: Content of the *score* variable in an analysis script. 

 

6.3.2. Pitch Data Analysis 

As was previously shown, the pitch data analysis group consists of a pitch count, 

the definition of pitch space through ranges, the pitch space histogram, and the pitch 

class histogram. The count-pitches function from the Pitch-Count.lisp library 

can be used to count the pitches in the composition by assigning the result of the 

function with the supplied *score* argument (Example 6-54, line 31). The value of the 

*pitch-count* variable indicates that there are 1,110 pitch class events in Prelude 26. 

27. ; ----- Statistics ----- ; 
28.  
29. (setf *pitch-count* (count-pitches *score*))) 
30.  

Example 6-54: Assigning a pitch count. 

31. (setf *pitch-space* (find-ambitus *score*)) 
32.  

Example 6-55: Finding the pitch space range. 

Another statistic is the range of pitches occurring in a composition. To find the 

range of pitches the find-ambitus function can be used from the Pitch-Space-

Range.lisp library. The argument to the function is the *score*. The result of the 

find-ambitus function is assigned to the *pitch-space* variable. When calling the 

*pitch-space* variable up in the REPL the following chart is produced: 

Lowest Note:  31 (PC7) 
Highest Note: 87 (PC3) 
Range:        56 Semitones 

Example 6-56: Ambitus information of Prelude 26. 

Comparing the pitch space range to FDL-1 from Example 6-3, one can observe 
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that Prelude 26 occupies a considerable less amount of pitch space (56 semitones, as 

opposed to 83 semitones), but the number combines both of the piano parts. Measuring 

the pitch space of the first piano part in FDL-1 only, then the pitch space occupies 71 

semitones, 1 octave less then both piano parts, and 15 semitones more than the piano 

in Prelude 26. Clearly, from the pitch space range alone no conclusive result can be 

reached, whether FDL-1 has its genesis in Prelude 26. 

33. (setf *ps-histogram* (create-ps-histogram *score*)) 
34. (show *ps-histogram*) 
35. (order-by-midi *ps-histogram* #'<) 
36. (order-by-count *ps-histogram* #'>) 
37. (save *ps-histogram* "Data/Prelude-26-Pitch-Space-Histogram-MIDI.csv") 
38.  

Example 6-57: Adding the *ps-histogram* to the analysis script. 

Even though, Cope indicates that Prelude 26 is in the key of C Minor, it is 

nonetheless interesting to observe the pitch distribution via a pitch space histogram, 

and a pitch class histogram. To create a pitch space histogram the functions from the 

Pitch-Space-Histogram.lisp library are being used within the analysis script 

(Example 6-57, Lines 35-39). The results of the function call to (create-ps-

histogram *score*) are assigned in the analysis script to the *ps-histogram* 

global variable (Line 35). The *ps-histogram* variable is a fixed variable, and should 

not be changed to a different name since the actual name of this variable is being used 

as-is by two functions in the Pitch-Space-Histogram.lisp library.702 Once the 

variable has been initialized, calling the *ps-histogram* variable from the REPL results 

in the following plot pair list:  

                                            
702 At another point the behavior should be changed since it violates functional programming 

principles.  
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((31 1) (32 1) (33 0) (34 1) (35 6) (36 12) (37 0) (38 7) (39 6) (40 2) (41 
5) (42 2) (43 12) (44 7) (45 2) (46 3) (47 11) (48 38) (49 0) (50 22) (51 23) 
(52 2) (53 13) (54 4) (55 28) (56 24) (57 4) (58 13) (59 9) (60 43) (61 0) 
(62 35) (63 58) (64 4) (65 50) (66 12) (67 73) (68 53) (69 14) (70 52) (71 
29) (72 124) (73 4) (74 59) (75 96) (76 6) (77 43) (78 12) (79 39) (80 16) 
(81 3) (82 5) (83 7) (84 10) (85 0) (86 4) (87 1)) 

Example 6-58: *ps-histogram* plot pair list. 

 

Figure 6-31: MIDI pitch histogram from CSV. 

The plot pair list can be displayed at the REPL in a human readable format by 

calling the (show *ps-histogram*) function, and including the function call in the 

analysis script. Further, the data within the histogram can be sorted by count, or by MIDI 

pitch with (1) the (order-by-count *ps-histogram* #'>), and (2) the (order-

by-midi *ps-histogram* #'<) function respectively. Finally, all data can be 

printed to a CSV file from which a histogram can be plotted (e.g.: (save *ps-

histogram* "Data/Prelude-26-Pitch-Space-Histogram-MIDI.csv") – 

Figure 6-31 and Figure 6-32), or an ASCII histogram can be printed to the screen in the 
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REPL by using (lo-fi-histogram *ps-histogram* 2) – where 2 means 1/2 

scale, if the (library-loader "Library/" "Lo-Fi-Histogram.lisp") was 

specified. 

 

Figure 6-32: Histogram of note count from CSV. 

Missing pitches from pitch space are 33, 37, 49, 61, and 85 in Figure 6-31. The 

most frequently appearing pitch is 72, the second most frequent 75, and the third most 

frequent 67. The pattern shows a C Minor key center, with the most frequent pitches 

being part of a C Minor triad, while also consisting of a strong scale degree 5 -> 1 

motion, or 67 -> 72, emphasizing a tonic/dominant relationship. Observing Figure 6-32, 

the fourth frequent pitch is 74, or scale degree 2, further underlining the presence of a 

dominant chord, along with the leading tone still being in the top 15: 71. Minor keys also 

include the use of the minor dominant, represented through the frequency of pitches 70, 

and 58, which also gives rise to a C Aeolian inflection, inherited by proxy through EMI’s 
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compositional process, not untypical of baroque music. Pitches that are not represented 

in the pitch space have been marked with 0, rather than removing them altogether from 

the histogram. While 33 belongs to PC 9, pitches 49, 61, and 85 all belong to PC 1, 

while 73 (PC 1) actually does appear 4 times in the composition. Examining a PC 

histogram can provide further insight into how PCs are being used in Prelude 26. 

The procedure of adding the required functions to produce a PC histogram for the 

analysis script is similar to that of adding a pitch space histogram (Example 6-59, Lines 

41-45). The outcome of the (build-pc-histogram *score*) function is assigned 

to the *pc-histogram* variable. Again, as was the case with the *ps-histogram* 

variable, the variable is a fixed variable meaning only the *pc-histogram* name 

space should be used (both the (order-by-midi *pc-histogram* #'<) function, 

and the (order-by-count *pc-histogram* #'>) function, rewrite the sorted 

values to the *pc-histogram* variable). The (show *pc-histogram*) function 

displays a value pair representation at the REPL. The (lo-fi-histogram *pc-

histogram* 4) function displays an ASCII version of the *pc-histogram* to the REPL. 

39. (setf *pc-histogram* (build-pc-histogram *score*)) 
40. (order-by-midi *pc-histogram* #'<) 
41. (order-by-count *pc-histogram* #'>) 
42. (show *pc-histogram*) 
43. (lo-fi-histogram *pc-histogram* 4) 
44.  

Example 6-59: Integrating the *pc-histogram* into the analysis script. 

0   ******************************************************** 227 
1   * 4 
2   ******************************* 127 
3   ********************************************** 184 
4   *** 14 
5   *************************** 111 
6   ******* 30 
7   ************************************** 153 
8   ************************* 101 
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9   *****- 23 
10  ****************** 74 
11  *************** 62 

Example 6-60: ASCII PC histogram ordered by PCs. 

0   ******************************************************** 227 
3   ********************************************** 184 
7   ************************************** 153 
2   ******************************* 127 
5   *************************** 111 
8   ************************* 101 
10  ****************** 74 
11  *************** 62 
6   ******* 30 
9   ***** 23 
4   *** 14 
1   * 4 

Example 6-61: ASCII PC histogram ordered by PC count. 

Both of the PC histograms (Example 6-60, Example 6-61) show the pitch center 

being around PC 0, and that the key of C Minor in fact is prevalent – PCs 0, 3, and 7 

have been used statistically most frequently. Both examples also accurately represent 

the presence of both the dominant PCC {2, 5, 7, 11} and the minor dominant PCC {2, 5, 

7, 10}. Other PCC combinations derived from statistical use further underline C minor 

characteristics.  

 

6.3.3. Clustered Histograms 

The next issue arising is how the histograms of WPC Prelude 26 relate to the 

histograms of 1. Prelude. Two steps are needed: (1) transposition, and (2) data 

normalization. Either the pitch data of WPC Prelude 26 is transposed to the same key of 

1. Prelude, or vice versa. Since this study is on FDL-1, the pitch material of WPC 

Prelude 26, will be transposed from C Minor up to D Minor by two half steps. The data 

normalization is achieved by dividing the individual pitch count values, of both the pitch 
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space histogram, and the PC histogram, by the pitch count of its corresponding 

composition, in order to achieve data representation between 0 and 1. Which means, for 

example, that if there are 227 occurrences of PC 0 (after T2 PC 2) in Prelude 26, these 

manifestations will be divided by the *pitch-count*, or 1,110, which results in ca. 0.2045.  

In the analysis script six new variables are defined, in order to create a 

normalized, transposed, and clustered histogram: (1) *prelude-26-wpc* – holds all 

the MIDI data of Prelude 26 (essentially the same values as the *score* variable, but 

separated for clarity’s sake), (2) *prelude-01-fdl* – holds all the MIDI data of FDL-

1, (3) *pitch-count-26* – holds the counted PCs number of Prelude 26, (4) 

*pitch-count-01* – holds the counted PCs number of FDL-1, (5) *pc-

histogram-26* – holds the key/value pairs for the histogram generated through 

Prelude 26’s PCs data, and (6) *pc-histogram-01* – holds the key/value pairs for 

the histogram that corresponds to FDL-1. 

1. (defun normalize-histogram (pchg pc-count &optional (transposition 0)) 
2.   "Normalize data through transposition and division." 
3.   (if (null pchg) nil 
4.     (cons 
5.      (list 
6.       (mod (+ (caar pchg) transposition) 12) 
7.       (float (/ (cadar pchg) pc-count))) 
8.      (normalize-histogram (cdr pchg) pc-count transposition)))) 
9.  
10. (defun clustered-histogram (hist-1 pc-count-1 trans-1 hist-2 pc-count-2 

trans-2) 
11.   "Creates a clustered histogram." 
12.   (let ((norm-hist-1 (stable-sort (copy-list (normalize-histogram hist-1 

pc-count-1 trans-1)) #'< :key #'car)) 
13.         (norm-hist-2 (stable-sort (copy-list (normalize-histogram hist-2 

pc-count-2 trans-2)) #'< :key #'car))) 
14.     (labels ((combine-data (a b) 
15.                (if (null a) nil 
16.                  (cons 
17.                   (list (caar a) 
18.                    (cadar a) 
19.                    (cadar b)) 
20.                   (combine-data (cdr a) (cdr b)))))) 
21.       (combine-data norm-hist-1 norm-hist-2)))) 
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22.  
23. (setf *clustered-histogram* (clustered-histogram *pc-histogram-01* 

*pitch-count-01* 0 *pc-histogram-26* *pitch-count-26* 2)) 
24.  
25. (defun save (psh file-name) 
26.   "Saves histogram to a .csv file." 
27.   (with-open-file (csv  
28.                    (concatenate 'string *this-path* file-name) 
29.                    :direction :output 
30.                    :if-exists :supersede) 
31.     (format csv "~%~a,~a,~a~{~%~{~A~^,~}~}~%" 'PC 'Prelude-1-FDL 

'Prelude-26-WPC psh))) 
32.  
33. (save *clustered-histogram* "Data/Preludes-Combined-PC-Histogram-P1-FDL-

P26-WPC.csv") 

Example 6-62: Building a clustered histogram of two compositions. 

Once these variables have been set, the normalization process can start. The 

normalization process requires the definition of another function called normalize-

histogram (Example 6-62, line 1-8). Rather than defining this function in the analysis 

script, the function will be defined in the Histograms.lisp library, so that it may be reused 

at another point. The recursive function takes two arguments, (1) a PC histogram, (2) 

and a count of the PCs. An if condition checks whether the end of a histogram has 

been reached; if not, a new list is constructed by normalizing the key (the PC data) to a 

desired transposition level with mod 12 applied, and combining it with a 

normalized value, which is constructed by taking the count value from the histogram, 

and dividing it by the pc-count value.  

The normalize-histogram function is used as a subroutine within the 

clustered-histogram function (lines 10-21). The function creates a clustered 

histogram from normalized, and transposed data from two different histograms. Six 

arguments need to be provided: (1) the PC histogram of the first composition, (2) the PC 

count of the first composition, (3) the desired transposition level of the first composition, 
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(4) the PC histogram of the second composition, (5) the PC count of the second 

composition, and (6) the desired transposition level of the second composition. Two 

local variables are created at the top of the clustered-histogram function via the let 

function (lines 11-13): (1) norm-hist-1 – containing the outcome of a call to the 

normalize-histogram function with the first compositions histogram, PC count, and 

transposition level supplied as arguments, and (2) norm-hist-2 – also containing a 

call to the normalize-histogram function, with the same arguments that were 

provided to the norm-hist-1 local variable, but this time derived from the second 

composition. 

After the declaration of the local variables, a local recursive function is defined 

thru the label function. The function (lines 14-20) is called combine-data, and 

recursively combines the data from the first, and second normalized histograms, here 

called a, and b. An if statement is used to check when to stop the recursion (line 15). 

However, if there is still histogram data to be processed, then a key/value list is created 

by taking the first item from the first histogram, the key, making it the key again, and 

assign the normalized values from the first, and second histograms to that key. Leftover 

data is passed back to the top of the local combine-data function. In line 21, the local 

variables norm-hist-1, and norm-hist-2 are passed to the local combine-data 

function. The outcome of the (clustered-histogram *pc-histogram-01* 

*pitch-count-01* 0 *pc-histogram-26* *pitch-count-26* 2) function 

call is then assigned to the global variable *clustered-histogram*:  

((0 0.042571306 0.06666667) (1 0.0553427 0.055855855) (2 0.18390805 
0.2045045) (3 0.035759896 0.0036036037) (4 0.09706258 0.114414416) (5 
0.13580246 0.16576576) (6 0.021285653 0.012612613) (7 0.12941678 0.1) (8 
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0.040017027 0.027027028) (9 0.14899957 0.13783784) (10 0.07577693 0.09099099) 
(11 0.034057047 0.02072072)) 

Example 6-63: Clustered histogram represented in a key/value pair list. 

 

Figure 6-33: Clustered histogram of FDL-1, and WPC Prelude 26. 

The *clustered-histogram* variable can be assigned as argument, along 

with a path, to the save function (line 33), which creates a CSV file that can be 

processed into a graphical representation of a clustered histogram for FDL-1, and WPC 

Prelude 26 (Figure 6-33). Observing the PCs in Figure 6-33, one can notice, with the 

exception of PC 3, that the majority of the PCs of both compositions are within an 

acceptable range of each other, with one caveat: sometimes a PC occurs more 

frequently in FDL-1, and sometimes a PC occurs more frequently in WPC Prelude 26. 

The main emphasis still remains to be on PCC {2, 5, 9}, a D Minor triad, meaning that 

centrality is maintained on PC 2.  
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6.3.4. Quick Chord Labeling of WPC Prelude 26 

By adding a few lines to the analysis script (Analysis-WPC-Prelude-

26.lisp) all chords can be instantly labeled in WPC Prelude 26 (Example 6-64). All 

functions and their use have been previously explained in the Analysis-

Prototype.lisp script. Only the first 21 measures will be analyzed, since the “spin-

out” figure resembles FDL-1 the most during those measures (see the complete score in 

the A.4. Appendix). 

34. ; ----- Time Signature ----- ; 
35. (setf *time-signature* '(4 quarter)) 
36.  
37. ; ----- Count Measures ----- ; 
38. (setf *measure-count* (measure-count *score* (car *time-signature*) 

(second (assoc (second *time-signature*) *note-values*)))) 
39.  
40. ; ----- Creating a measured music set ----- ; 
41. (setf *music-set* (measure-numbers *score* *measure-count*)) 
42.  
43. ; ----- Selecting a range of music ----- ; 
44. (setf *selected-music-set* (select-measures '(1 21) *music-set*)) 
45.  
46. ; ----- Selecting only PCs from music set ----- ; 
47. (setf *pitches-music-set* (display-pitches-only *selected-music-set* 

'pc)) 
48.  
49. ; ----- Horizontal Voice-Leading Strands ----- ; 
50. ; ----- All ----- ; 
51. (setf *strands* (create-strands *pitches-music-set*)) 
52. ; ----- Reduced ----- ; 
53. (setf *reduced-strands* (remove-duplicates *strands* :test #'equal)) 
54. ; ----- Build Vertical Chords from Reduced Strands ----- ; 
55. (setf *vertical-chords-from-strands* (build-reduced-chords *reduced-

strands* 22)) 
56.  
57. (defun label-chord (sets) 
58.   "Labeling chords." 
59.   (let ((set (cadr sets))) 
60.     (with-output-to-string (stream) 
61.       (terpri stream) 
62.       (princ "Measure:         " stream) (princ (car sets) stream) 
63.       (fresh-line stream) 
64.       (princ "Set Input:       " stream) (princ set stream) 
65.       (fresh-line stream) 
66.       (princ "Normal Form:     " stream) (princ (normal-form set) stream) 
67.       (fresh-line stream) 
68.       (princ "T-Normal Form:   " stream) (princ (t-normal-form set) 

stream) 
69.       (fresh-line stream) 
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70.       (princ "Prime Form:      " stream) (princ (prime-form set) stream) 
71.       (fresh-line stream) 
72.       (princ "Interval Vector: " stream) (princ (interval-vector set) 

stream) 
73.       (fresh-line stream)))) 
74.  
75. (setf *analysis-detail* (label-all-chords *vertical-chords-from-

strands*)) 

Example 6-64: Label PCCs in WPC Prelude 26. 

After the *analysis-detail* has been bound, the global variable can be recalled at 

the REPL, and the following PCC labels result (Example 6-65). Observing the SCs, it 

becomes immediately clear that WPC Prelude 26 uses the majority of similar SCs as 

FDL-1. 

Measure:         1 
Set Input:       (0 3 7 0 3 7 0 3 0 3 7 0) 
Normal Form:     (0 3 7) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         2 
Set Input:       (0 5 8 0 2 5 8 2 8 2 5 2) 
Normal Form:     (0 2 5 8) 
T-Normal Form:   (0 2 5 8) 
Prime Form:      (0 2 5 8) 
Interval Vector: (0 1 2 1 1 1) 
 
Measure:         3 
Set Input:       (11 2 7 11 2 7 11 2 11 2 7 2) 
Normal Form:     (7 11 2) 
T-Normal Form:   (0 4 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         4 
Set Input:       (0 3 7 0 3 7 0 3 0 3 7 0) 
Normal Form:     (0 3 7) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         5 
Set Input:       (0 3 8 0 3 8 0 3 0 3 8 3) 
Normal Form:     (8 0 3) 
T-Normal Form:   (0 4 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         6 
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Set Input:       (0 2 6 9 0 2 6 9 9 0 6 2) 
Normal Form:     (6 9 0 2) 
T-Normal Form:   (0 3 6 8) 
Prime Form:      (0 2 5 8) 
Interval Vector: (0 1 2 1 1 1) 
 
Measure:         7 
Set Input:       (11 2 7 11 2 7 11 2 11 2 7 2) 
Normal Form:     (7 11 2) 
T-Normal Form:   (0 4 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         8 
Set Input:       (10 4 7 0 4 7 10 4 10 4 7 0) 
Normal Form:     (4 7 10 0) 
T-Normal Form:   (0 3 6 8) 
Prime Form:      (0 2 5 8) 
Interval Vector: (0 1 2 1 1 1) 
 
Measure:         9 
Set Input:       (8 5 8 0 5 8 0 5 0 5 8 0) 
Normal Form:     (5 8 0) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         10 
Set Input:       (7 3 7 0 3 7 0 3 0 3 7 0) 
Normal Form:     (0 3 7) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         11 
Set Input:       (11 2 7 11 2 7 11 2 11 2 7 11) 
Normal Form:     (7 11 2) 
T-Normal Form:   (0 4 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         12 
Set Input:       (0 3 7 0 3 7 0 3 0 3 7 0) 
Normal Form:     (0 3 7) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         13 
Set Input:       (0 5 8 0 2 5 8 2 0 5 8 0) 
Normal Form:     (0 2 5 8) 
T-Normal Form:   (0 2 5 8) 
Prime Form:      (0 2 5 8) 
Interval Vector: (0 1 2 1 1 1) 
 
Measure:         14 
Set Input:       (0 5 8 11 2 8 11 5 11 2 8 11) 
Normal Form:     (11 0 2 5 8) 
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T-Normal Form:   (0 1 3 6 9) 
Prime Form:      (0 1 3 6 9) 
Interval Vector: (1 1 4 1 1 2) 
 
Measure:         15 
Set Input:       (0 4 7 10 4 7 10 4 10 4 7 10) 
Normal Form:     (4 7 10 0) 
T-Normal Form:   (0 3 6 8) 
Prime Form:      (0 2 5 8) 
Interval Vector: (0 1 2 1 1 1) 
 
Measure:         16 
Set Input:       (0 5 8 0 5 8 0 5 0 5 8 0) 
Normal Form:     (5 8 0) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         17 
Set Input:       (0 6 9 0 6 9 0 6 0 6 9 0) 
Normal Form:     (6 9 0) 
T-Normal Form:   (0 3 6) 
Prime Form:      (0 3 6) 
Interval Vector: (0 0 2 0 0 1) 
 
Measure:         18 
Set Input:       (11 2 8 11 2 8 11 2 11 2 8 11) 
Normal Form:     (8 11 2) 
T-Normal Form:   (0 3 6) 
Prime Form:      (0 3 6) 
Interval Vector: (0 0 2 0 0 1) 
 
Measure:         19 
Set Input:       (11 2 7 11 2 7 11 2 11 2 7 11) 
Normal Form:     (7 11 2) 
T-Normal Form:   (0 4 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         20 
Set Input:       (0 3 7 0 3 7 0 3 0 3 7 0) 
Normal Form:     (0 3 7) 
T-Normal Form:   (0 3 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 
 
Measure:         21 
Set Input:       (11 2 7 11 2 7 11 2 11 2 7 11) 
Normal Form:     (7 11 2) 
T-Normal Form:   (0 4 7) 
Prime Form:      (0 3 7) 
Interval Vector: (0 0 1 1 1 0) 

Example 6-65: PCCs labels of WPC Prelude 26. 

By creating an analysis script, conducting a pitch data analysis, creating 
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clustered histograms, and labeling PCCs in WPC Prelude 26 it can be concluded that 

this prelude was used as a ML data source for FDL-1. The next step would include 

establishing PCC succession, and voice-leading rules, along with their probabilities. 

With that information semantic network graphs could be generated and compared to the 

graphs generated for FDL-1. Furthermore, these methods can be expanded, and all the 

modularized functions can contribute to analyzing all nine posited source piece of FDL-1 

as a corpus at once. 
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CHAPTER 7  

CONCLUSION 

 

The dissertation first defined what constitutes to an algorithm, and what 

algorithmic thought is from an orthodox computer science perspective. Furthermore, the 

treatise has shown that algorithmic practice in music can historically be traced back at 

least to antiquity, and each historical period has at least one representation of 

algorithmic practice.1 Algorithmic practice can be part of the compositional process, but 

can also be part of the analytical and music theoretical process. Both practices form a 

symbiotic relationship. However that does not mean that all music is necessarily 

algorithmic in character. But even if music is not algorithmic in character, algorithmic 

processes still can be used to explain and analyze music. 

With the advent of lambda calculus and computing during the twentieth century, 

which continues through the twenty-first century, algorithmic processes can be 

represented as computer code (which is a linguistic representation of mathematical 

code). Musical code, representing musical information, almost instantly became part of 

computing after WWII. Research into AI led to research into the very nature of human 

thought through cognitive science. Musical thought is part of human thought and was 

immediately integrated into AI research. The term of “AI” research in the meantime had 

become rather unpopular through doomsday scenario narratives, since human beings 

                                            
1 Perhaps, it can be traced back even further, but older written records do not exist. It can, 

however, be postulated that from a cognitive perspective algorithmic thought can be traced back to the 
emergence of human intelligence altogether. 
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would like to think of themselves as being on top of the food chain, and from a 

survivalist perspective reject transhumanism. However, all aspects of modern life 

actually make use of AI technology, which can be recognized through veiled terms like: 

problem solving, knowledge representation, planning, learning, natural language 

processing, perception, motion and manipulation, social intelligence, creativity, etc. 

Algorithmic thought is one of the basic building blocks of AI, and all computationally 

devised AI can be algorithmically represented. 

The chapter on David Cope described Cope’s narrative of how he became 

involved with algorithmic composition and his algorithmic thought process from the early 

1980s until now. Cope seems to like to create lore around how he uses algorithmic 

practices to analyze music and to compose music. It seems as if Cope, who is a self 

admitted “Trekkie,” consider himself part of a science fiction narrative, perhaps in the 

same way as a Klingon opera is a musical representation of science fiction narrative.2 

One could claim that Cope is a “science fiction” composer; the same way that Chopin is 

a “Romantic” composer. However, the section also described Cope’s evolution of trying 

to compose with established music theory rules as algorithmic procedures, to actually 

programming learning algorithms that learn, or create their own rules based on analyzed 

works, rather than what music theorist’s had established as the rules of how music 

works.  

Additionally, while working through David Cope’s code representations of 

algorithmic principles, an important aspect of programming came to light. Code itself 

                                            
2 Cope, Tinman Tre: A Life Explored, 499-500. 
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can become obsolete within only five years. One of the single most important problems 

with any type of discourse dealing with computer technology is the problem of 

obsolescence. The programming language may be or become outdated, or have fallen 

into disfavor over other programming languages, due to trends, fads, or just clever 

marketing schemes. The hardware may be or become outdated and aforementioned 

software may not run on any currently available hardware, due to the industry practice 

of planned obsolescence.3 Any work that is affected by obsolescence is by many to be 

considered ephemeral in nature.4 

Common Lisp is the programming language of choice for David Cope. It is clear 

that Cope learned this programming language in the late 1970s and early 1980s, and 

that Lisp was one of the few programming languages that already existed and had 

acquired a certain degree of longevity, since it was developed in the late 1950s. There 

are currently not too many programmers still embracing Lisp. Even Voyager 1, the 

spaceship that just recently had left our solar system, was initially programmed in Lisp, 
                                            

3 “The concept of planned obsolescence was first put forward by Bernard London in 1932, as a 
proposed solution to the Great Depression.” Garnet Hertz and Jussi Parikka, "Zombie Media: Circuit 
Bending Media Archaeology into an Art Method," Leonardo 45, no. 5 (2012): 425. 

4 Francis T. Marchese, "Conserving Digital Art for Deep Time," Leonardo 44, no. 4 (2011): 302. 
Perla Innocenti, "Preventing Digital Casualties: An Interdisciplinary Research for Preserving Digital Art," 
Leonardo 45, no. 5 (2012). Ron Kuivila and David Behrman, "Composing with Shifting Sand: A 
Conversation between Ron Kuivila and David Behrman on Electronic Music and the Ephemerality of 
Technology," Leonardo Music Journal 8, no. Ghosts and Monsters: Technology and Personality in 
Contemporary Music (1998). Jon Ippolito, "Ten Myths of Internet Art," Leonardo 35, no. 5 (2002): 486-
487. Curtis Roads and Morton Subotnick, "Interview with Morton Subotnick," Computer Music Journal 12, 
no. 1 (1988): 14. Stan Link, "The Work of Reproduction in the Mechanical Aging of an Art: Listening to 
Noise," Computer Music Journal 25, no. 1 (2001): 37. Richard Rinehart, "The Media Art Notation System: 
Documenting and Preserving Digital/Media Art," Leonardo 40, no. 2 (2007): 181. Adriana P. Cuervo, 
"Preserving the Electroacoustic Music Legacy: A Case Study of the Sal-Mar Contruction at the University 
of Illinois," Notes, no. September (2011): 37, 47. Hertz and Parikka, however, argue that due to an 
ecological footprint that obsolescence can never be fully achieved if devices still exist, even if it has been 
“consumed” completely. Hertz and Parikka, "Zombie Media: Circuit Bending Media Archaeology into an 
Art Method," 429. 
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but was later re-programmed in another programming language.5  

However, the code that holds the algorithms themselves does not become 

obsolete, rather only the code that implements code in its surroundings. If code used 

any type of GUI (its surroundings), it tended to become obsolete at a more rapid pace, 

since the entire computer industry is based on continual improvement of the user 

experience, or “planned obsolescence” as mentioned above. If, however, code 

remained free from GUI elements, and was kept only in a text-based environment, it 

was still partially functioning. For example, Cope’s ATN code, which did not feature any 

GUI elements, in Computers and Musical Style – from 1991 no less (Appendix B.4. p. 

404) – worked with only a handful of tweaks, while other code from Cope’s Computer 

Models of Musical Creativity – from 2005 – was completely unworkable, due to the 

algorithmic functions of the code not being properly separated from all GUI aspects of 

the code.6 

Common Lisp was chosen for this works, (1) because David Cope used Common 

Lisp, (2) because Cope’s creative process was influenced by the programming 

language he used, and (3) because the reader needs to be taken out of her/his comfort 

zone in order to learn to think through algorithmic problems from the most elemental 

                                            
5 Ron Garrett, "Lisping at Jpl" http://www.flownet.com/gat/jpl-lisp.html (accessed 01.30.2014). 

6 Both music21 and Humdrum are non-GUI based music analysis systems, whereas the former is 
a text based environment, consists of a large collection of functions, and objects that are to be used in 
Python (a modern object-oriented programming language, preferred by programmers to prototype 
software) and its corresponding REPL named IDLE, and the latter consists of a series of very small shell 
scripts, or scripts written in C++ or C, which can be used at the command line. However, any program 
that can be run at the command line can automatically be run in Python’s IDLE REPL, or the Common 
Lisp’s REPL, as was shown in this work when Graphviz was invoked from the command line within 
Common Lisp code to generate graphic representations of semantic networks.   
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level (most people with programming experience will resort to use libraries to solve 

problems, but not solve problems themselves). In the future the work can continue to 

flourish in (1) Common Lisp, (2) Clojure, a very recent Lisp dialect, which can utilize 

entire Java libraries,7 (3) JavaScript, for quick web based and MaxMSP integration, (4) 

Python, a favorite language used for prototyping, especially in regards to machine 

learning,8 or (5) R a statistical programming language, also favored amongst machine 

learning programmers.9 

The algorithmic analysis chapter discussed what kind of computer based music 

analysis systems exist, and gave a very basic overview of what can be achieved with 

these platforms. Furthermore, the chapter postulated how music theory principles from 

set theory can directly be applied to algorithms, and how these can be programmed. 

The chapter treated the subject from a pedagogical perspective. Rather than using pre-

written software to analyze set theory principles the algorithmic music practitioner 

should know how to program these principles. 

The analysis chapter discussed how to integrate all previously discussed 

algorithmic techniques, brought in some additional techniques, and unified these 

techniques into one complete analysis of FDL-1. Of these additional techniques two new 

                                            
7 "Clojure" http://clojure.org/ (accessed November 2, 2014). Akhil Wali, Clojure for Machine 

Learning (Birmingham, U. K.: Packt Publishing, 2014).  

8 "Scikit-Learn" http://scikit-learn.org/stable/ (accessed November 2, 2014); "Mlpy - Machine 
Learning Python" http://mlpy.sourceforge.net/ (accessed November 2, 2014). "Pybrain" 
http://www.pybrain.org/ (accessed November 2, 2014). 

9 "The R Project for Statistical Computing" http://www.r-project.org/ (accessed November 2, 
2014). Drew Conway and John Myles White, Machine Learning for Hackers (Sebastopol: O'Reilly, 2012). 
Brett Lantz, Machine Learning with R (Birmingham, U. K.: Packt Publishing, 2013). 
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methods were created, (1) a chord compression notation scheme, and (2) deriving 

vertical chords from horizontal voice-leading strands. The techniques were not designed 

to replace any existing analytical techniques, but rather add additional analytical 

perspectives. In the process, key finding algorithms, histograms, various tables, chord 

labels, set theory, voice-leading procedures, probability tables, and machine learning 

techniques were utilized, to create semantic networks or knowledge representations of 

FDL-1. The combination of the probability tables and the semantic networks created a 

representation of how Cope’s association networks could hypothetically have looked 

like, after the Emily Howell program had learned Cope’s carefully selected corpus.10  

In sum, the work has taken the reader through a brief history of algorithmic 

practice in music, and examples of how to express these algorithms in a programming 

language have been provided. The beginning of the work featured very simple 

algorithms of easily identifiable algorithmic music practices, which were substantiated 

with a thorough literature review, where these practices have previously been 

considered as algorithmic practices. The end of the work featured more complex 

algorithmic expressions that involved machine learning, and how to apply all the 

algorithms presented in this study in a meaningful manner toward an analytical project. 

The application of these algorithms was closely tied to FDL-1, where the composition 

itself was used as the progenitor of the algorithms that were needed to create an 

                                            
10 A few parameters that have to do with the actual learning process have been omitted. The 

omitted parameters involved affirmation and negation of associations created by the association network. 
It should also be noted that the establishment of semantic networks of voice-leading, and chord 
succession rules is not enough to re-create an actual algorithmic composition; formal aspects also need 
to be considered. 
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expressive analysis. In essence this work represents a tutorial on how to think 

algorithmically through musical problems, and how to realize algorithmic solutions 

through actual programming code expressed in Common Lisp, rather than through 

mathematical representations of algorithms, or pseudo code, in hope that the 

algorithmic procedures can be used in other programming languages.11  

In the age of “Big Data,” knowing the basic algorithms to analyze music will 

become part of every music scholar’s skill set, either as an end user of one of the 

established software platforms, or as a creator to push the envelope forward in what is 

possible with computational music analysis/theory.12 Since “Big Data” includes access 

to almost seemingly unlimited scores, chord succession rules, voice-leading 

procedures, dynamic variations, rhythmic studies, timbre studies etc. can be studied on 

a large-scale basis. In other areas of information research, machine learning techniques 

have become an essential necessity just to be able to process the sheer amount of data 

that exists. This study showed how to use one machine learning technique within a 

music theoretical context with one composition. Many other machine learning 

techniques exist to handle “big data,” and could be tailored for music theory, and 
                                            

11 Coming from a language perspective the study of Common Lisp, with its close relationship to 
lambda calculus, equals the study of Latin or ancient Greek, especially in regards to its role within the 
computer music field. From a music perspective the study of Common Lisp in association with algorithmic 
composition, or more generally computer music composition, is equivalent to the study of sixteenth 
century counterpoint, in order to understand sixteenth century music.  

12 According to David Huron “Big Data” has been a direct result of the interconnectedness of 
researchers through the internet, where data keeps constantly accumulating by (1) “many people working 
collaboratively” – Wikipedia, (2) “many people providing a large market that encourages corporate-
initiated data aggregation (e.g., iTunes, Google, Amazon.com),“ (3) the “Human Genome Project…– 
making Big Data a compelling interest among researchers and granting agencies,” and (4) “expansion of 
score-based materials (e.g., International Music Score Library Project), as well as various audio and MIDI 
formats.” David Huron, "On the Virtuous and the Vexations in an Age of Big Data," Music Perception: An 
Interdisciplinary Journal 31, no. 1 (2013): 4. 
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analysis projects. All functions in this study can be adapted and applied to a large 

corpus of compositions, or even several corpora.13 

                                            
13 “Corpus,” and “corpora” are terms borrowed from NLP, or natural language processing 

practices. James Pustejovsky and Amber Stubbs, Natural Language Annotation for Machine Learning 
(Sebastopol: O'Reilly, 2013), 5-20. 
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A.1. Ma fin est mon commencement 
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A.2. BWV 1087: Verschiedene Canones über die ersten acht Fundamental-Noten 
vorheriger Arie  
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A.3. From Darkness, Light: I. Prelude - Emily Howell (David Cope) 
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!

!

"

!

"#

!

12

$

$

!

"

!

"

$ !

!

$ !

! !

!

!

%

!
&

%

$

$

!

! !

!$

!

!'
!

!'

!

!

$

#
'!

!

# '!

! !

!'
!

!'

!

!

$

#
'!

!

# '!

!

$
#

"

!&

"

!&

!

!

!

$

!

!

$

!

%

!
&

%

$

!$

!

! !

!$!

!

!

!

!

"

!&

"

!&

!

!

!

!

!

!

! %

& !

%

!
"

!

"

!

!

!

!

! (

10

)

(

(

!

!

!

!

!

! "

!

"
!

!

!

!

"

!

"

$ !

!

$ !

! $ !

! !&

"

!&

!

!

!

!

"$

!

!

$

!

!'
!

!'

"

!

"

'#

!

!'
#

!

!

11

!

#

"

!&

"

!&

!

!

* !

!*

!

!

!*

!

%

!&

%*

!

!

!*!

!

!

!

$
$

15

!

# "

!

"

!

!
"

!

"

!

!

!

!

$ *

!

!

*

!

!

!
!$

$ !

!

!

"

!

"

!

$ !

!

& !

"

& !

"$
!

!
'#

!

!'
#

*

!

!

!'

*

#

$

!
'!

!

*

"

!

"#

!

14

!

!'
!

!'

$

!

!!

$

"

!

"

!

$

!

!

!

!

$

!

!!

"

!

"

%

&
!

%

!

!

!

! (

13

(

(

)
!

!'#

!

!'
#

$

$

!

!

%

!

!

$

$

!

!

$

&
!

%

!

!

!

!

!

'!

!
'

$ !

!'#

!

!'
#

$

!

!

$

!

"

!&

"

!

!

!

!

!

!

!

!&

"

!

"#

!

18

'!

!

'
!

!

!

!

!

!

!
"

!

!

!

!

!

!

!

!

!

"

!&

"

!&

!

!

!

!'#

!

!'#

!

%

!&

%

!

!'#

!

'#

!

!

!

!
'

!

!'

!

!

!

"

!&

"

!&"

!

!

!
!

!

!

!

!

%

!&

%

!

!

!

!

"

!&

"

!&

!

!*

!

!

*
!

!*

!

%

!&

%*

!

!

* !

! !

#

"

!

"

!

!

! (

16

)

(

(

!

!

*
!
"

!

"

!

!

!

!*

!

!

!

!

!

!

!

"#

!

17

!

!

!

!

!
"

!

"

!

!

!

!
'#

!

!'
#

*

* !

!

!'
!

!'

*
"

!



 

  385 

 

From Darkness, Light - I. Prelude

!

"

"

"

#

!

"

"

#"

"

#

"

"

$

!

"

"

! "

"

#

"

"

"

"

"

"%&

"

"%
&

"

"
#&

"

21

"

"%
"

"%

#

"

&

"

"

!

"

"%
"

"%"

#

"

# "
! "

"

"

""$

"

"

"

"

! "

"%&

"

"%
&

"

'

"
$

'

!

"

'

"
$

'

"

"

"

"

"

"

"

"%
"

"%

"

"%&

"

"%
&

#

"

#

"

"

!

! (

19

)

(

( "$

"

"

"

"

"

"

#

"$

#

"

"

#

"$

#

"$"

"

"

"

"

"

"

"

"

'

"
$

'

"

"

"

"

"

"

"

#

"

#&

"

20

#

"

"

"

#

"

"

"

"
!

!

24

"

& #

"

# !

#

"

#

"

!

"

"

"

"!

"

"'

"
$

'

"

"

!

!

"

"

!

"

"

"

"

!

!

%"

"
%"

%"

"

& %"

"!

!

&
!

%"

"
%"

"

"

"

& %"

"!

!

&
% !

!
!

&

"$

#

"$ "

"

"

" #!

"

"

!

'

$
"

'

"

"

"

!

!

"

"

! "

"!

"

"

"

"!

$ "

#

$ "

#

!

!

"

"

"

"

"

"

'

$
"

'

"
#

"

#

" "

"

22

(!

!

(

(

)

"

"

!"

"

"

"

!"

"

#

"

#

"
!

"

#

"

#

!

"

"

"

"!

! "

"

$ "

#

"

"

!"

"

$ "

#!

"

"
"

"%
"

"%

"

"%&

"

"%
&

!

"

"

23

"

"

#

#&

"

" "

"

"

"

!

#

"

#
"

!

!

"

" !

"

"

!"

#

$ "

#!

$

*

%"

"
%"

"

**

*

&
%*

*

!

"

"

"

"

"

"

27

"

& #

"

#

*
"

"

*

*

#

"

#
"

*

"
"

"

*"

"

*

* "

"

*

*

"

"

"

"

!

&
%"

"

& %"

"!"

"

"

'

$
"

'

!
#

"

#

&

%"

"
%"

"*

&
%"

"

& %"

*

*

"

*"

"
26

"

& #

"

#

* %"

"
%"

"

*

*

*
#

*"

"

*

$ "

#

$ "

25

(!

!

(

(

)
*

"

"

*

*

'

$
"

'

"

*"

"

* "

"*

"

"

* "

"*

$ "

#

$ "

#

*

*

"

"

"

"

& %"

"

*

*

"

"

*

*

'

$
"

'

"

*

*

"

"

* #

"

#
"

"

" *

"

"

*

"

* *

* "

"

"

"

*

"



 

  386 

 

From Darkness, Light - I. Prelude

!

!

!

!

!"
!

!"

!

!

#

$
!

!

!

!

#%

!

29

$

#

!&

#

!&

!

!

&

!

'

!
& !

'

%

!

!"
%

!!

!

$

'

!

!"
!

!

!

'

!&

'
!

!
"!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!
#

!

#
"

!

!

#

!&

#

!&

!

!

!

!

!
!

!

30#

!

#

!

!
#

!

#

!

!

!

!

!

!

!

!"%

!

!"
%

!

! (

28

)

(

(

#

!

#%

!

!"
!

!"

!

!$

!

!

$

!

#

$ !

!

!

!$

!

! '

$

#

!&

#

!&

%!

!

!

!
%
"!

!

% "!

!

! !

!
!

$

$

#!

$

$

$

#

!

#%

!

32

$

%
"!

!!$

!

!"%

$

!

!"
!

!"

$

$

$ !

!!

$

$

!

!

$

$

#

!&

#

!&

$

$

!

!

!

!$

!

!

$

!

$
!
#

!

#

!

!

$
!
#

$

!

!

$

$

!

!

$

!

#

$

!

!

#

!

#

!
$

!

!

$$ !

!

!

$

!

'

!&

'

$

!$

#

!&

#$

!

!

$ !

$

!

!!&

$ !

!

!

!

'

!&

'!

!

!

!

!

!
#

!

#

#

!&

#

!&

!

!

!

! %!

!

(

31

)

(

(

!

!

!

!"%

!

!

!
"

!

!"
!"%

$

!

!"%

!

!

!

! $

$ "
%

$

$!

!$

!

!

$

!

'

!&

'

$

$

!

!

$

$

!

!

33

!

!!

!

!

$

$

"!

!
"!

!

% #

!

#

$

% "!

!

% "!

!

*

"!

!

"
!

!

!
'

& !

'

!
!

!

!

!!

!

*

!

!

!

*
#

!

!

!

! !

#

!

##
!

*

35

!

% #

!

#

!

!

!!

!!

*

!
#

!

#

!

!

!

&

"
!

!"

*

!& !

#

& !

#

!

!!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

*

'

!&

'

*
#

! *

!

!
"

!

! %

!

!
%
"!

(

*

%!

!

#

!

!

!!

!
(

(

)
34

!
!

!*

#
!

& *!

!

!

#

!

!

!

!*

*

'

& !

'

!

*& !

#

& !

#

!

!*

!

!

* "!

!
"!

!

*

36

!

% #

!

#
*

!

!

% "
!

!

!

!

"

*

%



 

  387 

 

From Darkness, Light - I. Prelude

!

!

"

!

"#

!

39

"

$

!

!

$

$

!

!

$ !

!

!
"

!

!

%

!&

%

!

!

!

!

!

!

!
'

!

!'

!

!'#

!

!'#

!

!'
!

!'

!

!$

!

!'#

!

!'
#

$

#"

!&

$ !

!

!

!

!

!$

"

!&

!

%

!&

%

!

!$

!

!

$!

!

!

!

!

"

!&

"

!&

!

!

!

!

!

!

!

%

!&

%

!
"

!

"

!

!

!

!

! (

37

)

(

( "

!

!

!

!

!

!

!

!
"

!

!
"

!

"

!

!

!

!

!

!

!

&

"

!&

!

!

!

!

!

!

"

!

!

!
'

!

!'

!

!'#

!

!'#

!

"

!

"#

!

38

"

!

"

'!

41

!

#

#
'!

!

# '!

!

$ !

!

!

!

!
'!

!$

!

!

!

!

!

!

& !

"

& !

"

!

!

!

!

"

!

"
!

!

!

!

!$

!

!

$

!

!

$

"

!

"
!

!

!

!

!

!

!

$!

!

!

!

%

& !

%

!

$

!

!

!

!$

$

$

"

!&

"

!&

!

!

!

!'#

!

!'#

!

%

!&

%

#

!

!
'

!

!'

!

!

!

!

!

! (

40

)

(

(

!

!

!

!

!

!

"

!&

"

!&# '!

!

# '!

!

!

!

'!

!

'
!

!

!

!

!

!

%

& !

%

!

!

!

!

!

!

"

!

"

"

!

"
!

!

!

42

!

# "

!

"

'!

!

#

!

!$

!

!

'!
#

!
'!

!
44

!

# "

!

"

$

'!

!

$ "

!&

"

!& $

!

!

$!

!

!

"

$
!

!$

!

"

!$

!

!

!

!

!

$

!

"

!

"

!

!

!

!

!

!

!

!

$

!

!

$

"

!

"

!

!

%

!
&

%

!

!

$ !

!

!

!

$

$

$ "

!&

"

!&

$

!

!

!

!$ *

*

!

!!

!*

!

!

!

%

!
&

%

*

*

"

!&

"

!&

* !

!

*

!

!

**

*

#

*

43

(!

!

(

(

)

#

*

*

*

!

!'#

!

!'

!

!'
!

!'

*

*

*'!

!
'!

!

"

!

"#

!

45

$$

!

!

!

%

!
&

%

!

!'#

!

!'
#

!

!

$

"

!

"

!
*

!

!

*

!

!

*

*

*

!

!

!

!

!

*!

*



 

  388 

 

From Darkness, Light - I. Prelude

!

"

"

"

"

"

"

# "

$

# "

$!

"

"

""

"

!

!

"!

"

$

"

$ "

"

% &"

"!

!

"

"

"

"&
"

"&
%

!

"

"

!

"

"

"

'

"
#

'

"

"
"

"!

"

"
"

"

"

'

"
#

"

!

"

"
!

$

"

$

"

!

!

"

"&
"

"&

$

"

$%

"

48

"

"

!

'

!

"

"&%

"

"&
%

(

(

"

" $

"

$

"
(

"

"

""

"

(

"

"(

# "

$

# "

$

("

"

( "

"

(

(

"

"

"

"

!"

"

!

!

)

46

*

)

)

%

"

"

$

"

$

# "

$

# "

$!

"

(

(

(

&"

"
&"

%
&"

"

% &"

"

(

(

(

&

!
(

47

"

"

% $

"

$

!
(

"

"

(

"

"

(

( (

"

"

(

( "

"

(

"

'

"
#

'

"

"

"

"

"

""

"
&"

"

&
%

50

"

% $

"

$

&
"

"

# "

$

#

"

"

""

"

"

"

$

"

$
"

"

$

"

""

"

$

"

$
"

"

"

"

"

"

"

"

"

"

"

$

"

$

"
'

# "

'

"

"

"
"

"

% &"

""

"

# "

$

# "

$"

"

"

"

"

"

'

# "

'

"

!

!

"

"

!

"

"!

!

# "

$

"

"!

$

"#

"

"!

!

"

"

%

!

!

!

! )

49

*

)

)

!

!

!

"

"&%

"

"&
%

!

&"

"
&"

!

!

"

"

51

"

% $

"

$

"

"

" "

%
&"

"

% &"

&"

"
&"

"

"

"

!

'

!

"

"

"#

'

!

!

!

"

"

!
$

"

$
"

!

!

"

"

&"

"
&"

"

!

!

!

!

"

"!

$

"

$%

"

53 $$

&

"

"

"

"

54

"

% $

"

%

&
# ""

$
"

#& ""

"

"

&%

"

"&%

"

"

"

'

"#

'

"

" "

" "

"
"

$

"

$
"

"

"

"

"

"

$

"

$
"

"

"

"$

"#

$

"#

"

"

"

!

!

"

"

!

"

"!

# "

$

# "

$

#

'

! "

"

"

"!

"

"

"

'

"

!

!
"

"!

"

"

!

!

!

! )

52

*

)

)

!

"

"

! !

"

"

!

"

"

!
"

$

"

$

"

"

"

"

"

"&%
"

"
"

"

"

"

"
$

"

$

&
"

"

"
"

!

"

!

"

'

"#
!

"

"&%

"

"

""&
%

"

"

"

"&%

'



 

  389 

 

From Darkness, Light - I. Prelude

57

!
!

!"

!

!

"

#
$!

!

# $!

# %

!

%
!

!$
!

!$
"& !

%

& !

%"

!

!

"

!

!
"

%

!

%

!

"

!

!!

!

!

!

!

!

%

!

%

!
"

!

!

"

"

!

!

" !

!

!

!

!

!

'

&
!

'

!

!

!

!"

!

!

"

& !

%

& !

%

!

!

!

!"!

!'

&
!

'

!

!

!

#
$!

!

# $!

!

!

!

!

!

!

!

%

!

%

!

!

!

(

56

!

# %

!

%!

!
(

(

)
55

#

$!

!
$!

!

#
$!

!

# $!

"

$!

!
$!

!

'

&
!

'

!

!

!"

!"

!

!

"

!

!

!

!

!

!

!

%

!

%

!

!

!

!

& !

%

%

& !

* *

*

* *

*

$!

!
$!

!

*

!

'

!
&

'

* *

#
$!

!

# $!

!!

!*

"

"

!

%

!

% #
$!

!

!

!

!$#

!

%

!

%#

!

59

!

!

!

!

!

!

"

%

!

%

!

*

!

!

*

*

*

!

!*

!

!

*

!

!

*!

! !

!

*

!

!

*

!

!

** !

!

*

%

!&

%

!&

* !

!

*

!

'

!&

'%

$!

!

!

!!

!

!

!

!

!
!

!

!

%

$

!

!

!

!

!
!

#

%

!

%

!

! (

58

)

(

(

%

!&

%

!& !

!!

!

!

!!

!

"!

!

'

&
!

'

!

" !

!

!

!

& !

%

& !

"

!

!

" %

$!

!
$!

!
60

!

# %

!

%

"

"

!

!

"

#
$!

!

# $!

!

"

!
%

!

%

"

!

!

"

"

!

!

!

!

$!

!
%

!

%

!
"

!

!

"

"

!

!

"

"

!

'

!&

'

"

"

!

!

"

!

!"

!

!&

%

!&

"

!

!"

%

! " !

!"

!

!

%

!&

!

!

%

!& !

!

!

!

!

!

!

!

!

!
$

!

!$$!

!
#!&

'

"

!

!

!

'

!

!$#

!

!$#

!

!

"

%

!

%#

!

63

!
%

!

%

" !

!

!

" !

!

"

"

!

"

!

!

"

"

!

!

"

!

!

#
$!

!

# $!

!

"

!

!

(

(

)
61

(

!

!

!
%!

!

"

"

!

%"

"

"

%

!

%#

!

62
"

!

!

"

"
$#

!

!$
#

" "

"

"

!

!$
!

!$

"

!

!

"

!

!"

& !

%

& !

%

"

"

!

!

"

"

!

'

!&

'!

!"



 

  390 

 

From Darkness, Light - I. Prelude

!

!

"

!

"#

!

65

!

!

!

!

!

!

!

!$#

!

!$#

!

!
$

!

!$

!!!
"

!

"

!

!

!

!

!

% !

"

% !

"

!

!

! !

!

!
"

!

"

!

!

!

!

"

!%

"

!%

!

!

&&&&
$

%

&&&$%

&$
#

&$

66

!

!
$

!

!$

'

(
64

'

!

)

!%

)

!

!
'

!

!$#

!

!$#

!

!"

!

"

!

!

!

!
!

)

!%

) !

!!

!

!

!

!

!

!



 

  391 
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B.1. Glassworks Input Code 

 
  

being selected to the thousands of a cycle; i.e., pitch 1 with a frequency 

of 441.036, pitch 2, a frequency of 439.879, etc.). The result of playing 

these small sounds over a continuous period of time is the illusion of a 

single identifiable pitch with a very unique timbre. See Figures4 and 5. 

21 Ju 1 197S 

PRECEDE I 
F'UNC GLAi!J 
NPTI)(•25U 
INST VIBF'M HIP1 HIP2 8iP3 HIP4 HjR5 HiP7 HIPS, 

. TIN1 TIN2 TINJ TIN!! TIN6 TINSI 
PLHI 
REVERB 122,3771 
• 

Paae 2•t 

HIP1 122,1&61 
P2 ,3,,e6t5 
!I ',16 11 3/, ,3, .,1116/5 ·,iii6, ',3t7 ,3, ,lil6AS ,16, ,31'! ,3,.e61 
P3 SUBR 
P4 HoVE/27 ,5, ,5tie ,5,',3t21il ,3, ',:S/7 ilo ,lil11 
P5 F'll 
P6 
P7 ,811 
PS 
1'9 ,'1!11 
P1@ HOVE/64 91!,23941 
PU 
P12 ,e31 

2,11 
PH ·r11 
Pl!l ;i I 
P16 il 
P17 fl 
P18 Bl 
P1? "1"1 
END I 

HiP2 139,5!371 
P2 1 ,1!14, 'j e61 
PJ SUBR 
P4 HOVE/21 ,01J 
1'5 F'21 
"'• ;u P7 .·e:s1 
PS 4! 
P9 ';821 
P1e HOVE/9S 1152B,Bi 
P1i 
P12 ,e31 
1'13 ·• 761 
P14 F'21 
P15 i1 
1'16 
1'17 'II 
PU 'II 
1'19 "1"1 
END I 
HIP3 146,1891 

figure 4: 

An example of input data for two instruments involved in the section of the tape using the 
release of 'complex sounds' into the performance area. Note the number of controllable 
parameters (19) and the necessary reference to subroutines (pitch vocabulary of 33 note 
just intonation). 

13 Jul 

IPfliNT 
TIC5 

I PRINT 
TyC4 

I PRINT 
·riC7 

I PRINT 
TIC3 

I PRINT 
·r jC1 

I PRINT 
TyC6 

I PRINT 
·ric2 

I PRINT 
TjC'J 

I PRINT 
TyCB 

I PRINT 
'T yC4 

l'PR !NT 
fiC3 

I PRINT 
TyC7 

I PRINT 
'TyC1 

1978 9te5 

P1J< TIC2 
1!,926 0.11!34 1294 .,8 01121'! F"l 

3,651!1 
" ·· 

Ill ', 701il r;. l,l'lllllll 
0,£101' 0,01illl! 1 ',051 

P1J< Tic5 J3 
1278 ',:i 01120 11!,927 iii ',ij33 F"1 

3,649 l'l.iii69 Ill', 71:10 F"2 e,lllB0 
PJ', l!leB 1',11llll8 

P1J< T!C4 
1262 ', i 011211J 0,9 3 " 6 F"1 

3,647 0,069 Ill ', 71/JB F"2 lll,lll01'l 
e,llllll0 1',11H'JS 

P11< TIC7 ;$4_ 
1292 ',4 0ii20 0,937 0,033 F"1 

.3 ,645 Ill .• e·. 10e r2 
e,001!1 0 d'l011! 1',B45 

plJ< TtcJ 35 
01i2e e,94? 1265,5 F"1 

3,642 1'!.068 e ', 71/JB r2 1!1,00111 
G!,lllG!III 0.e0Qi 1',131!1 

P11< TIC1 34 
IIJ,948 0Jt211l F"1 

3,642 0 68 lll ',7fHl F"2 1!1,000 
e,011llll 0.Qj0i;i 1 ', 14S 

P11< TIC6 34 
l/l,957 1268,0 F"1 

3,638 Ill', 71/JB F"2 r.l,lll00 
lll,011JID 1 ',11l13 

P11< TIC2 35 
01121'! 0,958 e ·. 1246,? F'1 

3,631! 0.068 0', 700 F"2 "'·"'"'0 1!1,01!11!1 lll.000 1 ',123 
P1J< Tlc5 

0 01120 0.959 1255,1 F"1 
3,631! 0.068 e ·. 71DIIl r2 B,lil00 
1'!,000 0.i;j0i;i 1,126 

Pli< Tlc6 . 
0ti20 0,961/J 0.036 1275,5 F"1 

3,636 Ill ', 700 8,001!1 
e ',01'l0 0 .11011! 1',033 

P1l< TIC4 34 
0,969 ' 1281', 8 F'1 ' 

3,634 f/J .• IIl6!! e ', 100 r:! 0,01'!1'! 
e ',lllelll 0.001'] 1 ',105 

P1l< TicJ 
1242.,2 0;12"' 0,969 F"1 

3,634 0.068 Ill ', 700 F"2 i!,elll0 
1!1,£101!1 0.000 1 '. 153 

P11< rtc7 
1277,3 0ti20 0,978 0,11!38 F"1 

3,631!1 Ill ', 701il F"2 lll,01'l0 
l'l,0elll 0,000 1', e55 

figure 5: 

An example of printed output (digital information just before 
it is output to the DAC and/or digital synthesizer). Note the 
begin time of each note (first number after TIC reference; 

Paae 1-21 

. 2,eelll. f,iiieiii. e:m3i 
4,1'llil9 1'!,101'! lll,0Biil 

. 2,11l0lil • . . • s6·, ?se 
4,e12 e,lll011l e,B01!1 e,ee0 e,ellllil 

f,iiii0 . e'.03i • sf. is2 
4',11l35 "''· 0011l "' ',110e l'l,BU 

. • . f,iiil0 • • si ',4e2 
4,046 e,000 e,01'l0 0,00e 

2,00" . f,Qilie . "''.03i • 
4',e19 e,000 e.eme "·""'" 

. 2,e0111 . . f,iiif0 . , 
4,081'! lll,G!00 lil,l'lllll!l l'l,lilBI'l l'l,lilBe 

. 2,eelll • . f,Qie0 . e',l'l32 , 
4,113 e,000 e,lllle e.0BIIJ 0,e01'l 

f,iu0 . • sa·. 113 2,B01il 
4,114 1!1,000 0,0e0 0,1ill!l0 

. 2,00" . . f,0i0 . 
4,117 B,0011l e,BIIll!l 1!1,1!11!10 0,0BB 

. 2,0e111 . 
4,11S B,0011l 0,BIIJB B,011llll 1'l,ee0 

2,1!11!1" 
4:,152 e ',000 

. f.iiill0 
0,1il0lil 

' 
"'. 1!11!10 

• 
lll,BU 

f.0ai • 032 • sf, 396 
4,1'.5B Ill ', 000 e ',eia e,l'll'll!l a,eu 

2,1!10111 f,iilliii • . , 
4,181 e'.0ii0 e.ua e,eu e,eu 

i.e., .926 followed by .927 etc.) and durations (the very next 
number shown: .034 - 34 thousands of a second) in this 
section of a complex tone. 

Obviously the structure of each single tiny pitch cannot be separately 

suggesting months of labor per second of sound. Therefore, 

a type of stochastic procedure was employed allowing the computer to 

select randomly within a very defined parametric control the variables of 
4 
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B.2. Glassworks Output Code 

 
  

being selected to the thousands of a cycle; i.e., pitch 1 with a frequency 

of 441.036, pitch 2, a frequency of 439.879, etc.). The result of playing 

these small sounds over a continuous period of time is the illusion of a 

single identifiable pitch with a very unique timbre. See Figures4 and 5. 

21 Ju 1 197S 

PRECEDE I 
F'UNC GLAi!J 
NPTI)(•25U 
INST VIBF'M HIP1 HIP2 8iP3 HIP4 HjR5 HiP7 HIPS, 

. TIN1 TIN2 TINJ TIN!! TIN6 TINSI 
PLHI 
REVERB 122,3771 
• 

Paae 2•t 

HIP1 122,1&61 
P2 ,3,,e6t5 
!I ',16 11 3/, ,3, .,1116/5 ·,iii6, ',3t7 ,3, ,lil6AS ,16, ,31'! ,3,.e61 
P3 SUBR 
P4 HoVE/27 ,5, ,5tie ,5,',3t21il ,3, ',:S/7 ilo ,lil11 
P5 F'll 
P6 
P7 ,811 
PS 
1'9 ,'1!11 
P1@ HOVE/64 91!,23941 
PU 
P12 ,e31 

2,11 
PH ·r11 
Pl!l ;i I 
P16 il 
P17 fl 
P18 Bl 
P1? "1"1 
END I 

HiP2 139,5!371 
P2 1 ,1!14, 'j e61 
PJ SUBR 
P4 HOVE/21 ,01J 
1'5 F'21 
"'• ;u P7 .·e:s1 
PS 4! 
P9 ';821 
P1e HOVE/9S 1152B,Bi 
P1i 
P12 ,e31 
1'13 ·• 761 
P14 F'21 
P15 i1 
1'16 
1'17 'II 
PU 'II 
1'19 "1"1 
END I 
HIP3 146,1891 

figure 4: 

An example of input data for two instruments involved in the section of the tape using the 
release of 'complex sounds' into the performance area. Note the number of controllable 
parameters (19) and the necessary reference to subroutines (pitch vocabulary of 33 note 
just intonation). 

13 Jul 

IPfliNT 
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TyC4 

I PRINT 
·riC7 

I PRINT 
TIC3 
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I PRINT 
TjC'J 

I PRINT 
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I PRINT 
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I PRINT 
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3,651!1 
" ·· 
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0,£101' 0,01illl! 1 ',051 
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1262 ', i 011211J 0,9 3 " 6 F"1 

3,647 0,069 Ill ', 71/JB F"2 lll,lll01'l 
e,llllll0 1',11H'JS 

P11< TIC7 ;$4_ 
1292 ',4 0ii20 0,937 0,033 F"1 

.3 ,645 Ill .• e·. 10e r2 
e,001!1 0 d'l011! 1',B45 
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3,642 1'!.068 e ', 71/JB r2 1!1,00111 
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P11< TIC1 34 
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3,642 0 68 lll ',7fHl F"2 1!1,000 
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1!1,£101!1 0.000 1 '. 153 

P11< rtc7 
1277,3 0ti20 0,978 0,11!38 F"1 

3,631!1 Ill ', 701il F"2 lll,01'l0 
l'l,0elll 0,000 1', e55 

figure 5: 

An example of printed output (digital information just before 
it is output to the DAC and/or digital synthesizer). Note the 
begin time of each note (first number after TIC reference; 

Paae 1-21 

. 2,eelll. f,iiieiii. e:m3i 
4,1'llil9 1'!,101'! lll,0Biil 
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4,113 e,000 e,lllle e.0BIIJ 0,e01'l 

f,iu0 . • sa·. 113 2,B01il 
4,114 1!1,000 0,0e0 0,1ill!l0 

. 2,00" . . f,0i0 . 
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i.e., .926 followed by .927 etc.) and durations (the very next 
number shown: .034 - 34 thousands of a second) in this 
section of a complex tone. 

Obviously the structure of each single tiny pitch cannot be separately 

suggesting months of labor per second of sound. Therefore, 

a type of stochastic procedure was employed allowing the computer to 

select randomly within a very defined parametric control the variables of 
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B.3. Loading MIDI library and MIDI data  

1. (defvar *this-path* (directory-namestring *load-truename*) "Holds path of 
this file.") 

2.  
3. (defun library-loader (lib-path &optional file-name) 
4.   "Creates relative paths." 
5.   (load (concatenate 'string *this-path* lib-path file-name))) 
6.  
7. (defun midi-library-loader () 
8.   (library-loader "Library/" "MIDI-Input.lisp")) 
9.  
10. ;; load MIDI library 
11. (midi-library-loader) 
12.  
13. (defun score-loader-midi (lib-path &optional midi-name) 
14.   "Loads MIDI data through a relative path." 
15.   (load-midi (concatenate 'string *this-path* lib-path midi-name))) 
16.  

 
This Common Lisp code snippet is used in a lot of the code examples in the text, 

where the (score-loader-midi) function is used. The settings will work for Clozure 

Common Lisp, or CCL64, on OS X.651 The first line creates a variable to hold and 

capture the relative path of where the file lives, so that subfolders can be easily 

recognized even when the folder in which the file lives has been moved to a different 

location on the computer.  The (library-loader) function builds relative paths from 

supplied text strings in lines 3-5. The (midi-library-loader) function builds the 

relative path to the MIDI input library via the (library-loader) function, in this case 

by supplying the “Library/” folder as part of the relative path, and by supplying the 

name of the “MIDI-input.lisp” library in lines 7-8. Line 11 shoes a call to the 

(midi-library-loader) function so that the library is ready to use immediately in 

order to avoid warnings in the REPL. Finally, lines 13-15 define the (score-loader-

                                            
651 The easiest way to install CCL is to install it from Apple’s App Store, if you are running OSX. 

For further information on how to install CCL from source, or other systems visit: 
http://ccl.clozure.com/download.html. 
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midi) function, which loads the actual MIDI file into a program in form of the event 

structure described in Cope’s VM. 
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B.4. MIDI-Input.lisp 

1. ;;; ==== MIDI Input Library ====================== ;;; 
2. ;;; 
3. ;;;    Authors: Paul Pelton, Soren Goodman, David Cope, Peter Elsea 
4. ;;;             Alterations by Reiner Kramer: 
5. ;;;             Truncated to only import MIDI files 
6. ;;;     
7. ;;;    Purpose: Loads Bytecode MIDI data from a midi file, and  
8. ;;;             translates it into a list of "Cope Events," for: 
9. ;;;             example: 
10. ;;; 
11. ;;;             ((0 60 1500 1 90) (500 64 1000 1 90) (1000 67 500 1 90)) 
12. ;;; 
13. ;;;             A C-Major Arpeggio. The list is organized in the  
14. ;;;             following fashion:  
15. ;;;             1. Start (ms) 
16. ;;;             2. Pitch (60 = Middle, C = PC, 0 = C4) 
17. ;;;             3. End (ms) 
18. ;;;             4. MIDI Channel 
19. ;;;             5. Velocity (Intensity between 0-127) 
20.  
21. ;;; 
22. ;;;    This library was provided to the participants of WACM 2012  
23. ;;;     
24. ;;;    Peter Elsea's Notes: 
25. ;;; 
26. ;;;    It always gives a list of note events 
27. ;;;    Tempo events are collected and used to calculate times in ms 
28. ;;;    Text Meta events are colleccted into *sequence-strings* 
29. ;;;    Sysex is discarded 
30. ;;;    other events are switched with special variables 
31. ;;;    the function load-midifile requires a valid path as a string. 
32. ;;;  
33. ;;;    pqe 6-04-08 
34. ;;; 
35. ;;; ================================================== ;;; 
36.  
37. (defvar *work-dir* (concatenate 'string  (namestring (user-homedir-

pathname)) "desktop/")) ; default is desktop - moved here from MIDI-Save - 
RK 

38. (defvar *chunk-type* ())             ; only two types are defined so far 
39. (defvar *chunk-length* 0)            ; number of bytes in chunk 
40. (defvar *midi-file-format* 0)        ; type 0 is single track, type 1 is 

multitrack, type 2 is indepentent loops 
41. (defvar *midi-file-ntrks* 0)         ; number of tracks in file 
42. (defvar *midi-file-granularity* 24)  ; number of ticks per quarter note -

- set by file header 
43. (defvar *track-time* 0)              ; unconverted track time, in ticks 
44. (defvar *running-status* 0)          ; running status is used 
45. (defvar *track-end* t)               ; flag for finding ends of tracks 

(rather than byte coounting) EOT sets this nil 
46. (defvar *map-track-to-channel* nil) 
47. (defvar *running-track-number* 0) 
48. (defvar *include-pgm* nil)           ;program changes switch 
49. (defvar *include-ctl* nil)           ;control changes switch 
50. (defvar *include-bend* nil)          ;pitch bend switch 
51. (defvar *include-channel-pressure* nil)  ; channel pressure switch 
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52. (defvar *include-polyphonic-aftertouch* nil) ;polyphonic aftertouch 
switch 

53. (defvar *leave-time-in-ticks* nil)   ;switch style of time reporting 
54.  
55. ;; A place to put metadata -- later version can be more elegant 
56. (defvar *sequence-strings* (make-array 1 :initial-contents #("sequence-

strings") :fill-pointer t :adjustable t )) 
57.  
58. ;; a place to put tempos. all tracks must refer to this when converting 

from ticks to time in ms 
59. ;; format of each entry is (time-in-ticks time-in-ms usec/qn) default is 

500000 usec/qn or 120 
60. (defvar *sequence-tempo-map* (make-array 1 :element-type 'list :initial-

element '(0 0 500000) :fill-pointer t :adjustable t )) 
61. (defvar *sequence-meter-map* (make-array 1 :element-type 'list :initial-

element '(0 4 4) :fill-pointer t :adjustable t )) 
62.  
63. ;; a place to put note data 
64. ;; *sequence-notes* format is (time-ms  note-number duration channel 

velocity) 
65. ;; This is an array to simplify setting durations when note off is 

detected. 
66. (defvar *sequence-notes* (make-array 0 :element-type 'list :initial-

element '(0 0 0 0 0) :fill-pointer t :adjustable t )) 
67.  
68. ; helper for header reading 
69. (defun get-type (input-stream) 
70.   (let ((type-string (make-string 4))) 
71.     (loop for i from 0 to 3 
72.       do (setf (char type-string i) (code-char(read-byte input-stream)))) 
73.     type-string)) 
74.  
75. ; general 32 bit retreiver 
76. (defun get-word (input-stream) 
77.   (let ((value 0)) 
78.     (loop for i from 0 to 3 
79.       do (setq value (+ (* value 256) (read-byte input-stream)))) 
80.     value)) 
81.  
82. ; general 16 bit retriever 
83. (defun get-short (input-stream) 
84.   (+ (* (read-byte input-stream) 256) (read-byte input-stream))) 
85.  
86. ; division is weird- this is a try at making sense out of it 
87. ; granularity is ticks per beat (quarter note) 
88. ;or a frame rate FSP and ticks per frame-- pqe 
89. (defun convert-granularity (division) 
90.   (let ((high-byte (ash division -8))(low-byte (logand #XFF))) 
91.     (case high-byte 
92.       (#XE2 (* 30 low-byte)) 
93.       (#XE3 (* 30 low-byte)) 
94.       (#XE7 (* 25 low-byte)) 
95.       (#XE8 (* 24 low-byte)) 
96.       (t division)))) 
97.  
98. ; read the file header 
99. (defun get-header (input-stream) 
100.   (setq *chunk-type* (get-type input-stream)) 
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101.   (setq *chunk-length* (get-word input-stream)) 
102.   (setq *midi-file-format* (get-short input-stream)) 
103.   (setq *midi-file-ntrks* (get-short input-stream)) 
104.   (setq *midi-file-granularity*(convert-granularity (get-short input-

stream)))) 
105.  
106. ; read a track header 
107. (defun get-track-header (input-stream) 
108.   (setq *chunk-type* (get-type input-stream)) 
109.   (setq *chunk-length* (get-word input-stream))) 
110.  
111. ; time is listed as ticks in variable length quantities 
112. (defun convert-vlq (arg-list &optional (accum 0)) 
113.   (if (> (first arg-list) 127) 
114.       (convert-vlq (rest arg-list) (+ (- (first arg-list) 128) (* accum 

128))) 
115.       (+ (first arg-list) (* accum 128)))) 
116.  
117. ; all events are seperated by a delta time  
118. (defun get-vlq (input-stream) 
119.   (let ((new-byte (read-byte input-stream))) 
120.     (if (< new-byte 128) (list new-byte) 
121.         (cons new-byte (get-vlq input-stream))))) 
122.  
123. ; times are between events, so *track-time* must be accumulated across 

each track 
124. (defun set-track-time (input-stream) 
125.   (incf *track-time* (convert-vlq (get-vlq input-stream)))) 
126.  
127. ; read arbitrary bytes into a list 
128. (defun gather-bytes (input-stream how-many) 
129.   (if (zerop how-many) () 
130.       (cons (read-byte input-stream) (gather-bytes input-stream (1- how-

many))))) 
131.  
132. ; reads a length, then gathers that many 
133. (defun get-metadata (input-stream) 
134.   (gather-bytes input-stream (read-byte input-stream))) 
135.  
136. ; test function for tempo searches 
137. (defun first>= ( data alist) 
138.   (>= data (first alist) )) 
139.  
140. ;; Stuff the tempo map. format of each entry is (time-in-ticks time-in-ms 

usec/qn) 
141. ;; tempo and granualrity are need to convert ticks to ms 
142. ;; storing the time of the tempo change in both formats simplifies the 

calculations 
143. (defun ADD-TEMPO (the-data) 
144.   (let* ((us-qn (+ (ash (first the-data) 16)(ash (second the-data) 8) 

(third the-data))) 
145.          (last-tempo-entry (elt *sequence-tempo-map*  (- (length 

*sequence-tempo-map* )1))) 
146.          (last-tempo-time (second last-tempo-entry)) 
147.          (last-tempo (third last-tempo-entry)) 
148.          (ticks (- *track-time* (first last-tempo-entry)))) 
149.     (vector-push-extend  
150.      (list *track-time*  
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151.            (if *leave-time-in-ticks* *track-time* 
152.                (+ last-tempo-time 
153.                   (/(* ticks last-tempo )(* *midi-file-granularity* 

1000)))) us-qn) 
154.      *sequence-tempo-map*))) 
155.  
156. (defun add-meter (the-data) 
157.   (vector-push-extend  
158.    (list *track-time*  
159.          (first the-data)  
160.          (expt 2 (second the-data))) 
161.    *sequence-meter-map*)) 
162.  
163. ;; the time conversion function 
164. ;; search the tempo map from the end to find tempo in effect at the time 
165.  
166. (defun ticks-ms (ticks) 
167.   (if *leave-time-in-ticks* ticks 
168.       (let* ((current-tempo-entry (find ticks *sequence-tempo-map* :test 

#'first>= :from-end t)) 
169.              (current-tempo-time (second current-tempo-entry)) 
170.              (current-tempo (third current-tempo-entry)) 
171.              (delta-ticks (- ticks (first current-tempo-entry)))) 
172.         (float (+ current-tempo-time (/(* delta-ticks current-tempo)(* 

*midi-file-granularity* 1000))))))) 
173.  
174. ;; most meta-data is text 
175. (defun list-to-string (ascii) 
176.   (if (null ascii) #\.  
177.       (format nil "~A~A" (code-char (car ascii)) (list-to-string (cdr 

ascii))))) 
178.  
179. ;; meta data is mostly in the way, but tempos and end of track are vital 
180. (defun parse-metadata (the-data) 
181.   (case (car the-data) 
182.     (0 ()) ; sequence number 
183.     ((1 2 3 4 5 6 7 8 9 10)  (vector-push-extend (list-to-string (cdr 

the-data)) *sequence-strings* )); text  
184.     (#X20 ()) ; MIDI Channel prefix 
185.     (#X2F (setq *track-end* nil)) ; End of track 
186.     (#X51 (add-tempo (cdr the-data))) ; Set tempo  usec/qn in *sequence-

tempo-map* 
187.     (#X54 ()) ;  SMPTE offset H:M:S:F:F/100 
188.     (#X58 (add-meter (cdr the-data))) ;  Time Signature nnn dd  cc bb 
189.     (#X59 ()) ;  Key Signature 
190.     (#X7F ()) ;  Program specific 
191.     (t ())))  ; unknown 
192.  
193. ;; Other events to parse 
194. ;; note ons are keepers 
195. (defun handle-note (status nn vel) 
196.   (vector-push-extend  
197.    (list (ticks-ms *track-time*) nn 0  
198.          (if  *map-track-to-channel*   
199.               *running-track-number*  
200.               (+ (logand status #X0F) 1)) vel ) 
201.    *sequence-notes* )) 
202.  
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203. ; test function for note off, which must search for matching note on 
204. (defun match-note (status-nn target) 
205.   (if *map-track-to-channel*  
206.       (and (= (second status-nn) (second target)) (zerop (third target))) 
207.       (and (= (second status-nn) (second target))(= (first status-nn) 

(fourth target))(zerop (third target))))) 
208.  
209. ;; search for note on this belongs to and set duration 
210. ;; this doesn't handle overlapping notes of the same pitch well but 

whatcha gonna do? 
211. ;; note number is &rest because we don't get a velocity with running 

status 
212. ;; note off velocity is discarded anyhow 
213. (defun handle-off (status &rest nn  ) 
214.   (let* ((channel (+ (logand status #X0F) 1))  
215.   (where (position (list channel (first nn)) *sequence-notes* :test 

#'match-note :from-end t)) 
216.   (the-note) 
217.   (duration)) 
218.     (if (null where) () ; no matchng note on 
219.         (progn 
220.           (setf the-note (elt *sequence-notes* where)) 
221.           (setf duration (- (ticks-ms *track-time*) (first the-note))) 
222.           (setf (third (elt *sequence-notes* where)) duration))))) 
223.  
224. ;; pqe- added ctls etc if requested 6/02/10 
225. (defun handle-polyphonic-aftertouch (status nn pressure) 
226.   (if *include-polyphonic-aftertouch* 
227.       (vector-push-extend  
228.        (list (ticks-ms *track-time*) nn 0  
229.              (if  *map-track-to-channel*   
230.                   *running-track-number*  
231.                   (+ (logand status #X0F) 1)) (+ 3000 pressure) ) 
232.        *sequence-notes* ) 
233.       (list status nn pressure))) 
234.  
235. (defun handle-control (status cn value) 
236.   (if *include-ctl* 
237.       (vector-push-extend  
238.        (list (ticks-ms *track-time*) cn 0  
239.              (if  *map-track-to-channel*   
240.                   *running-track-number*  
241.                   (+ (logand status #X0F) 1)) (+ 500 value) ) 
242.        *sequence-notes* ) 
243.       (list status cn value))) 
244.  
245. (defun handle-program (status pn) 
246.   (if *include-pgm* 
247.       (vector-push-extend  
248.        (list (ticks-ms *track-time*) pn 0  
249.              (if  *map-track-to-channel*   
250.                   *running-track-number*  
251.                   (+ (logand status #X0F) 1)) 255 ) 
252.        *sequence-notes* ) 
253.       (list status pn))) 
254.  
255. (defun handle-channel-pressure (status pressure) 
256.   (if *include-channel-pressure* 
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257.       (vector-push-extend  
258.        (list (ticks-ms *track-time*) pressure 0  
259.              (if  *map-track-to-channel*   
260.                   *running-track-number*  
261.                   (+ (logand status #X0F) 1)) 2000 ) 
262.        *sequence-notes* ) 
263.       (list status pressure))) 
264.  
265. (defun handle-bend (status lsb msb) 
266.   (if *include-bend* 
267.       (vector-push-extend  
268.        (list (ticks-ms *track-time*) msb 0  
269.              (if  *map-track-to-channel*   
270.                   *running-track-number*  
271.                   (+ (logand status #X0F) 1)) (+ 1000 lsb) ) 
272.        *sequence-notes* ) 
273.       (list status lsb msb))) 
274.  
275. (defun STRIP-SYSEX (input-stream) 
276.   "just delete sysex for now" 
277.   (if (= (read-byte input-stream) #XF7) () 
278.       (strip-sysex input-stream))) 
279.  
280. ;;; this is the grand track data handler 
281. (defun parse-events (status-byte data-byte input-stream) 
282.   (let ((vel)) 
283.     (cond  
284.      ((< status-byte #X90) (handle-off status-byte data-byte (read-byte 

input-stream))) 
285.      ((< status-byte #XA0) (if (zerop (setq vel (read-byte input-

stream))) 
286.                                (handle-off status-byte data-byte ) 
287.                                (handle-note status-byte data-byte vel))) 
288.      ((< status-byte #XB0) (handle-polyphonic-aftertouch status-byte 

data-byte (read-byte input-stream))) 
289.      ((< status-byte #XC0) (handle-control status-byte data-byte (read-

byte input-stream))) 
290.      ((< status-byte #XD0) (handle-program status-byte data-byte )) 
291.      ((< status-byte #XE0) (handle-channel-pressure status-byte data-byte 

)) 
292.      ((< status-byte #XF0) (handle-bend status-byte data-byte (read-byte 

input-stream))) 
293.      ((= status-byte #XF0) (strip-sysex input-stream)) 
294.      ((= status-byte #XFF) (parse-metadata (cons data-byte (get-metadata 

input-stream)))) 
295.      (t ())))) 
296.  
297. ;;; this layer deals with running status 
298. (defun read-and-parse-event (input-stream) 
299.   (let ((first-byte (read-byte input-stream))) 
300.     (if (>= first-byte #X80) (parse-events (setf *running-status* first-

byte) (read-byte input-stream) input-stream) 
301.       (parse-events *running-status* first-byte input-stream)))) 
302.  
303. ;;;; call this once per track 
304. (defun read-track (input-stream) 
305.   (get-track-header input-stream) 
306.   (if (zerop *chunk-length*) () 
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307.       (if (not (equal *chunk-type* "MTrk")) (gather-bytes input-stream 
*chunk-length*) ; discard alien chunks 

308.           (do ((*track-end* t)(*track-time* 0)(*running-status* 0)) 
309.               ((null *track-end*)()) 
310.             (set-track-time input-stream) 
311.             (read-and-parse-event input-stream))))) 
312.  
313. ;;;; initialize all those specials 
314. (defun setup () 
315.   (setf *sequence-strings* (make-array 1 :initial-contents #("sequence-

strings") :fill-pointer t :adjustable t )) 
316.   (setq *sequence-tempo-map* (make-array 1 :element-type 'list :initial-

element '(0 0 500000) :fill-pointer t :adjustable t )) 
317.   (setq *sequence-meter-map* (make-array 1 :element-type 'list :initial-

element '(0 4 4) :fill-pointer t :adjustable t )) 
318.   (setq *sequence-notes* (make-array 0 :element-type 'list :initial-

element '(0 0 0 0 0) :fill-pointer t :adjustable t )))  
319.  
320. ;; test function for sorting by time (& channel pqe 6/02/10) 
321. (defun earlier (alist blist) 
322.   (if (= (first alist) (first blist)) 
323.       (< (fourth alist) (fourth blist)) 
324.       (< (first alist) (first blist)))) 
325.  
326. ;;;;;;;; Ta-Da ;;;;;;;;;;;;;;; 
327. (defun load-midi (fstring ) 
328.   (with-open-file (input-stream fstring :element-type '(unsigned-byte 8) 

:if-does-not-exist nil) 
329.     (setup) 
330.     (get-header input-stream) 
331.     (do ((track-index 0 (+ track-index 1))) 
332.         ((>= track-index *midi-file-ntrks*) ()) 
333.       (setq *running-track-number* track-index) 
334.       (read-track input-stream)) 
335.     (setq *sequence-notes* (sort *sequence-notes* #'earlier)) 
336.     (loop for notes across *sequence-notes* collect (mapcar #'round 

notes)))) 
337.  
338. ; test with a short file 
339. ; this is the path format for mac 
340. ; if you put your stuff directly in documents, your path may be 
341. ; "/Users/name/your/directory/midifile.mid" 
342. ; (load-midi "/Users/name/your/directory/midifile.mid") 
343.  
344. ;; calling (get-tempo-list) 
345. ;; returned ((0 120) (0 120) (17000 114) (23973 110) (28328 123)) 
346. ;; functions for tempo analysis -- after loading *sequence-tempo-map* 

will contain an array of 
347. ;; tempo changes (including a default for files that have none) 
348. ;; GET-TEMPO-LIST formats this as a list of times and tempo changes. 
349.  
350. (defun read-tempo-map (tempo-map) 
351.   (loop for tempo across tempo-map 
352.     collect (list (floor (second tempo)) 
353.                   (floor(/ 60000000 (third tempo)))))) 
354.              
355. (defun get-tempo-list () (read-tempo-map *sequence-tempo-map*)) 
356.  
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357. ;;;;; The MIDI loader requires a full pathname as an argument 
358. ;; (load-midi "/Users/name/your/directory/midifile.mid") 
359. ;; this will get a file from *work-dir* 
360. (defun get-midi (fname) 
361.   (load-midi (make-pathname :directory *work-dir* :name fname))) 
362.  
363. ;(get-midi "midifile.mid") 
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B.5. ATN Generator from Computers and Musical Style 

1. ;;; ----- A simple ATN generator ----- ;;; 
2.  
3. (defparameter *rs* (make-random-state t) "Create proper random numbers.") 
4. (defparameter count-down 1) 
5.  
6. ;; ----- Syntax Database ----- ;; 
7.  
8. (setf (get 'articles 'syntax) '(adjectives subjects1 subjects2)) 
9. (setf (get 'adjectives 'syntax) '(subjects1 subjects2)) 
10. (setf (get 'subjects1 'syntax) '(composers1)) 
11. (setf (get 'subjects2 'syntax) '(composers2)) 
12. (setf (get 'composers1 'syntax) '(verbs1)) 
13. (setf (get 'composers2 'syntax) '(verbs2)) 
14. (setf (get 'verbs1 'syntax) '(conjunctions)) 
15. (setf (get 'verbs2 'syntax) '(conjunctions)) 
16. (setf (get 'conjunctions 'syntax)  
17.       '(list 'descriptors (if (evenp count-down) 
18.                             'objects1 
19.                             'objects2))) 
20. (setf (get 'descriptors 'syntax)  
21.       '(list (if (evenp count-down)                   
22.                'objects1                            
23.                'objects2))) 
24. (setf (get 'objects1 'syntax) '(conjunctions)) 
25. (setf (get 'objects2 'syntax) '(conjunctions)) 
26.  
27. ;; ----- Meaning Database ----- ;; 
28.  
29. (setf (get 'articles 'meaning) '((the) (this) (that))) 
30. (setf (get 'adjectives 'meaning) '((dark) (beautiful) (lyrical))) 
31. (setf (get 'subjects1 'meaning) '((sonata) (symphony) (concerto))) 
32. (setf (get 'subjects2 'meaning) '((aria) (opera) (song))) 
33. (setf (get 'composers1 'meaning) '((by mozart) (by beethoven) (by 

haydn))) 
34. (setf (get 'composers2 'meaning) '((by bellini) (by verdi) (by puccini))) 
35. (setf (get 'verbs1 'meaning) '((was easy to play) (was hard to play))) 
36. (setf (get 'verbs2 'meaning) '((was hard to sing) (was a breeze to 

sing))) 
37. (setf (get 'conjunctions 'meaning) '((and))) 
38. (setf (get 'descriptors 'meaning) '((also) (very) (yet))) 
39. (setf (get 'objects1 'meaning) '((lyrical) (sweet))) 
40. (setf (get 'objects2 'meaning) '((profound) (deep))) 
41.  
42. ;; ----- Functions ----- ;; 
43.  
44. (defun choose-one (choices) 
45.   "Randomly chooses an item from a list." 
46.   (elt choices (random (length choices) *rs*))) 
47.  
48. (defun generate-atn (beginning) 
49.   "Generates an ATN." 
50.   (if (zerop count-down) 
51.     (list 'objects1) 
52.     (and 
53.      (if (equal beginning 'conjunctions) 
54.        (setq count-down (1- count-down)) 
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55.        t) 
56.      (cons 
57.       beginning 
58.       (generate-atn 
59.        (choose-one 
60.         (if (equal beginning 'conjunctions) 
61.           (eval (get beginning 'syntax)) 
62.           (if (equal beginning 'descriptors) 
63.             (eval (get beginning 'syntax)) 
64.             (get beginning 'syntax))))))))) 
65.  
66. (defun construct-sentence () 
67.   "Create a new syntactically correct sentence." 
68.   (setq count-down (choose-one '(1 2))) 
69.   (apply (function append) 
70.          (mapcar  
71.           (lambda (x) (choose-one (get x 'meaning))) 
72.           (generate-atn 'articles)))) 
73.  
74. (construct-sentence) 
75.  
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