
APPROVED:

David Bard-Schwarz, Major Professor
Andrew May, Minor Professor
Thomas Sovík, Committee Member
Frank Heidlberger, Chair of the Department

of Music History, Theory, and
Ethnomusicology

Benjamin Brand, Director of Graduate
Studies

James C. Scott, Dean of the College of
Music

Costas Tsatsoulis, Interim Dean of the
Toulouse Graduate School

ALGORITHMIC MUSIC ANALYSIS: A C ASE STUDY OF A PRELUDE

FROM DAVID COPE’S “FROM DARKNESS, LIGHT”

Reiner Krämer, B.M., M.M.

Dissertation Prepar ed for the Degree of

DOCTOR OF P HILOSOPHY

UNIVERSITY OF NORTH TEXAS

May 2015

Krämer, Reiner. Algorithmic Music Analysis: A Case Study of a Prelude from

David Cope’s “From Darkness, Light.” Doctor of Philosophy (Music Theory), May 2015,

433 pp., 16 tables, 57 figures, 125 examples, bibliography, 278 titles.

The use of algorithms in compositional practice has been in use for centuries.

With the advent of computers, formalized procedures have become an important part of

computer music. David Cope is an American composer that has pioneered systems that

make use of artificial intelligence programming techniques. In this dissertation one of

David Cope’s compositions that was generated with one of his processes is examined

in detail. A general timeline of algorithmic compositional practice is outlined from a

historical perspective, and realized in the Common Lisp programming language as a

musicological tool. David Cope’s compositional output is summarized with an

explanation of what types of systems he has utilized in the analyses of other

composers’ music, and the composition of his own music.

Twentieth century analyses techniques are formalized within Common Lisp as

algorithmic analyses tools. The tools are then combined with techniques developed

within other computational music analyses tools, and applied toward the analysis of

Cope’s prelude. A traditional music theory analysis of the composition is provided, and

outcomes of computational analyses augment the traditional analysis. The outcome of

the computational analyses, or algorithmic analyses, is represented in statistical data,

and corresponding probabilities. From the resulting data sets part of a machine-learning

technique algorithm devises semantic networks. The semantic networks represent

chord succession and voice leading rules that underlie the framework of Cope’s

prelude.

Copyright 2015

by

Reiner Krämer

ii

ACKNOWLEDGEMENTS

All musical and code examples in this dissertation that were authored, co-written,

or composed by David Cope, are used with his permission.

iii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ... iii

LIST OF TABLES .. vi

LIST OF FIGURES ... vii

LIST OF EXAMPLES .. x

LIST OF ABBREVIATIONS ... xvi

CHAPTER 1 INTRODUCTION .. 1

1.1 Overview .. 1

1.2 Running Code Example in Clozure CL .. 7

CHAPTER 2 ALGORITHMS ... 11

2.1 What is an Algorithm? .. 11

CHAPTER 3 ALGORITHMIC PRACTICE IN MUSIC .. 23

3.1 Introduction .. 23

3.2 Before the Twentieth Century .. 24

3.3 Algorithmic Practice in the Twentieth Century ... 86

CHAPTER 4 DAVID COPE ... 108

4.1 On David Cope .. 108

4.2 Emmy ... 121

4.3 Emily Howell .. 140

4.4 Cope’s Algorithmic Analyses ... 156

CHAPTER 5 ALGORITHMIC ANALYSIS .. 158

5.1 Brief History ... 158

iv

5.2 Current Systems .. 160

5.3 Set Theory Analysis ... 163

CHAPTER 6 ANALYSIS .. 195

6.1 General Remarks ... 195

6.2 FDL-1 ... 200

6.3 Future Analysis Directions ... 347

CHAPTER 7 CONCLUSION ... 371

APPENDIX A SCORES ... 379

APPENDIX B CODE EXAMPLES ... 398

BIBLIOGRAPHY ... 413

v

LIST OF TABLES

Page

Table 3-1: Guido's vowel array assignment algorithm (Guido-1) 28

Table 3-2: Matrix from lines 4-8 .. 52

Table 3-4: Josquin's Missa Hercules Dux Ferrariae subject 56

Table 3-5: Soggetto Cavato pitch-vowel assignment .. 56

Table 4-1: David Cope works .. 114

Table 4-2: Miscellaneous writings ... 119

Table 4-3: Published music of Emmy .. 136

Table 4-4: Works completed with the aid of Emily Howell 156

Table 5-1: SC differences ... 183

Table 6-1: Chord successions in FDL-1 .. 209

Table 6-2: SC Succession probabilities and rules in FDL-1 332

Table 6-3: PCST0 succession rules - FDL-1 background 334

Table 6-4: PCS succession rules - FDL-1 middleground .. 337

Table 6-5: PCCs from strands succession rules - FDL-1 middleground 341

Table 6-6: PC voice-leading derived from reassembled PCCs 342

Table 6-7: PC voice-leading rules - FDL-1 foreground .. 345

vi

LIST OF FIGURES

Page

Figure 1-1: Clozure CL listening window ... 8

Figure 1-2: Typing functions directly into the REPL .. 9

Figure 1-3: Evaluating an expression at the REPL ... 9

Figure 1-4: Opening a .lisp file and evaluating a function from script at the REPL . 10

Figure 3-1: Guido-1 algorithm represented in modern notation 29

Figure 3-2: Guido-2 algorithm applied to a line of text .. 29

Figure 3-3: Guido's second algorithm outcome ... 32

Figure 3-4: Detractor est - Talea ... 40

Figure 3-5: Detractor est - Color ... 40

Figure 3-6: Detractor est - tenor, Talea and Color combined 41

Figure 3-7: Guillaume Machaut's Ma fin, first 20 measures, tenor 45

Figure 3-8: Guillaume Machaut's Ma fin, following 20 mm. retrograde (tenor) 46

Figure 3-9: Gradual Benedicta .. 48

Figure 3-10: Versus Omnis curet homo .. 49

Figure 3-11: Musical acrostics - Ut queant laxis ... 57

Figure 3-12: Kepler's seven "melodies." ... 59

Figure 4-1: Associative network showing learned voice-leading procedures 154

Figure 4-2: Associate network showing chord successions 155

Figure 5-1: Input/Output Formats .. 162

Figure 6-1: Algorithmic shorthand notation of BWV 846a 198

Figure 6-2: BWV 846a as blocked chords ... 199

vii

Figure 6-3: BWV 846b, M. 1 - repetition as ornamentation 202

Figure 6-4: BWV 846b, M. 1 - stretched .. 203

Figure 6-5: BWV 846b, M. 1 - arpeggio integration, octave displacement & slice . 203

Figure 6-6: BWV 846b, M. 1 - final transformations .. 204

Figure 6-7: Chord-A .. 205

Figure 6-8: Chained FDL-1 algorithm .. 208

Figure 6-9: Pitch space histogram of FDL-1, sorted by MIDI 220

Figure 6-10: Pitch space histogram of FDL-1, sorted by count 221

Figure 6-11: PC histogram FDL-1, sorted by PCs .. 225

Figure 6-12: PC histogram FDL-1, sorted by count .. 227

Figure 6-13: Compressed chord voice-leading graph ... 273

Figure 6-14: One-to-one chord reduction graph .. 282

Figure 6-15: Graphed zeroed strands ... 284

Figure 6-16: SC semantic network - FDL-1 background ... 333

Figure 6-17: PCST0 semantic network - FDL-1 background 335

Figure 6-18: PCS semantic network - FDL-1 middleground 340

Figure 6-19: Semantic network - PC voice-leading - FDL-1 middleground 344

Figure 6-20: Semantic network PC voice-leading rules - FDL-1 foreground 346

Figure 6-21: WPC Prelude 15 in G Major (mm. 1-20) ... 349

Figure 6-22: WPC Prelude 26 in C Minor (mm. 1-6) ... 349

Figure 6-23: WPC Prelude 44 in A Minor (mm. 1-15) ... 350

Figure 6-24: WTC Prelude 1 in C Major (mm. 1-8) ... 350

Figure 6-25: WTC Prelude in C Minor (mm. 1-6) .. 351

viii

Figure 6-26: Praeambulum, BWV 924 (mm. 1-6) .. 351

Figure 6-27: Prelude, BWV 999 (mm. 1-12) .. 352

Figure 6-28: Prelude, BWV 1007 (mm. 1-8) .. 352

Figure 6-29: Andante sostenuto - After Beethoven (mm. 1-16) 353

Figure 6-30: Adagio sostenuto - Sonata 14 - Beethoven (mm. 1-6) 353

Figure 6-31: MIDI pitch histogram from CSV .. 358

Figure 6-32: Histogram of note count from CSV ... 359

Figure 6-33: Clustered histogram of FDL-1, and WPC Prelude 26 365

ix

Figure A-1: Ma fin est mon commencement.. 380

Figure A-2: BWV 1087: Verschiedene Canones über die ersten acht
 Fundamental-Noten vorheriger Arie.. 382

Figure A-3: From Darkness, Light: I. Prelude - Emily Howell (David Cope)........... 383

Figure A-4: Prelude 26 in C Minor from the Well-Programmed Clavier - Emmy... .391

Figure A-5: BWV 846b - Prelude 1 in C Major from the Well-Tempered Clavier -
 J. S. Bach..396

LIST OF EXAMPLES

Page

Example 2-1: Euclidian algorithm in pseudo code .. 17

Example 2-2: Parsing the Euclidian algorithm in pseudo code 17

Example 2-3: Euclidian algorithm in Lisp .. 18

Example 2-4: Traced recursion of the euclid function in Common Lisp 19

Example 3-1: Guido’s Micrologus algorithm 2 in Lisp ... 31

Example 3-2: Guido's Micrologus algorithm 1 & 3 in Common Lisp 34

Example 3-3: Outcome of Example 3-2 .. 36

Example 3-4: Isorhythmic algorithm in Lisp .. 42

Example 3-5: Outcome of Example 3-4 .. 44

Example 3-6: Retrograde algorithm .. 47

Example 3-7: Inversion algorithm (as seen in Figure 3-9) .. 52

Example 3-8: Outcome of the inversion algorithm .. 54

Example 3-9: Transposition .. 68

Example 3-10: Augmentation and diminution ... 69

Example 3-11: Steinhaus-Johnson-Trotter permutations algorithm in Common Lisp . 73

Example 3-12: The 24 permutations of PCC {0, 3, 7, T} ... 74

Example 3-13: Creating a random tone row from a PCC ... 89

Example 3-14: Six 12-tone series generated with the Fisher-Yates algorithm 90

Example 3-15: Generating Schoenberg's 48 forms .. 92

Example 3-16: Outcome of Example 3-15 .. 96

Example 4-1: Cope's intervallic inversion function in current Common Lisp 123

x

Example 4-2: A simple semantic network in Common Lisp 147

Example 4-3: Sentences exchanged between Apprentice and user 149

Example 4-4: Nodes and weighed edges produced by Apprentice 149

Example 4-5: Sentences exchanged between Apprentice and user in German 150

Example 4-6: Nodes with weighed edges in German ... 151

Example 4-7: Monophonic musical conversation with Apprentice 152

Example 4-8: Notes with weighted voice-leading ... 153

Example 4-9: Node/edge weights from a harmonic conversation 155

Example 5-1: Musical event representation as summarized in Virtual Music 163

Example 5-2: Set-Theory-Functions.lisp library global variables 165

Example 5-3: The utility safe-sort function in Set-Theory-Functions.lisp 165

Example 5-4: Finding a complementary set ... 167

Example 5-5: Transposition in Set-Theory-Functions.lisp 168

Example 5-6: Inversion in Set-Theory-Functions.lisp ... 169

Example 5-7: CPP-Forms ... 170

Example 5-8: Finding rotations - normal form ... 171

Example 5-9: Finding intervals between first and last pitches in rotated PCCs 172

Example 5-10: List of keys (Intervals) from previous example 173

Example 5-11: Finding the smallest key from a group of sets 173

Example 5-12: Finding rotations with duplicate keys .. 174

Example 5-13: Finding the interval from first PC to second to last PC 175

Example 5-14: Pulling all subroutines together to find normal form 176

Example 5-15: Normal form .. 177

xi

Example 5-16: Normal form T0 in Set-Theory-Functions.lisp 178

Example 5-17: Finding all transpositions of a PCC... 179

Example 5-18: Finding all inversions of a PCC .. 180

Example 5-19: Prime form in Set-Theory-Functions.lisp .. 181

Example 5-20: Finding interval vectors ... 183

Example 5-21: Enumerating interval types in a set... 184

Example 5-22: Interval vectors in Set-Theory-Functions.lisp 185

Example 5-23: Calculating transpositional relationships between two sets 186

Example 5-24: Calculating index sums between PCs .. 188

Example 5-25: Calculating inversional relationships between Two PCCs 189

Example 5-26: Batch processing relationships ... 192

Example 6-1: Counting pitches in a composition .. 213

Example 6-2: Finding the range of a composition .. 215

Example 6-3: Pitch space range of FDL-1 .. 216

Example 6-4: Generating data for a pitch space histogram in Common Lisp 218

Example 6-5: Creating a PC histogram in Common Lisp 223

Example 6-6: Analysis prototype - global variable bindings 231

Example 6-7: Analysis prototype - counting measures ... 234

Example 6-8: Analysis prototype - selecting a part ... 236

Example 6-9: Analysis prototype - grouping musical events by measure numbers 239

Example 6-10: Analysis prototype - selecting a measure range 242

Example 6-11: Selected m. 1 - MIDI representation ... 244

Example 6-12: Analysis prototype - segmentation patterns 246

xii

Example 6-13: Choosing pitches without rhythmic or durational values 251

Example 6-14: Building the compression notation .. 254

Example 6-15: Labeling all chords in FDL-1 with set theory functions 257

Example 6-16: Programmatic set theory analysis of FDL-1 268

Example 6-17: Plotting compressed chord data ... 270

Example 6-18: PC content of *pitches-music-set* .. 274

Example 6-19: MIDI pitch content of *pitches-music-set* ... 275

Example 6-20: Creating voice-leading strands ... 276

Example 6-21: Strands via the create-strands function .. 277

Example 6-22: Generating unique strands ... 278

Example 6-23: Re-assembling chord succession from vertical reduction 279

Example 6-24: One-to-one vertical chord reduction ... 280

Example 6-25: Abbreviated CSV list of vertical one-to-one chord reduction 281

Example 6-26: Zeroed strands ... 283

Example 6-27: CSV formatted zeroed strands ... 284

Example 6-28: Global variables in Learn-Rules.lisp ... 286

Example 6-29: Analyzing chord successions and voice-leading 287

Example 6-30: PCCS parameter .. 290

Example 6-31: Chord-succession rules .. 290

Example 6-32: Creating data sets in order to generate voice-leading rules 292

Example 6-33: Normal form PCCs data set of FDL-1 ... 294

Example 6-34: Building STMs from chord successions .. 296

Example 6-35: Converting STMs to semantic networks ... 298

xiii

Example 6-36: Set class succession rules in FDL-1 ... 298

Example 6-37: *reduced-strands* from Example 6-22 .. 299

Example 6-38: Generating voice-leading rules for PCs .. 302

Example 6-39: PC voice-leading rules in FDL-1 ... 305

Example 6-40: PCS relationships ... 306

Example 6-41: All transpositionally related PCS in FDL-1 at the REPL 307

Example 6-42: All inversionally related PCS in FDL-1 at the REPL 308

Example 6-43: Declaring global variables and re-formatting data 310

Example 6-44: Building the .dot file - nodes ... 313

Example 6-45: Building the .dot file - edges ... 315

Example 6-46: Assembling the .dot file .. 317

Example 6-47: Generating a .pdf file from the .dot file at command line from Lisp ... 318

Example 6-48: Voice-leading probabilities table ... 322

Example 6-49: Chord succession probabilities tables .. 327

Example 6-50: First items in an analysis script ... 354

Example 6-51: Loading desired libraries into an analysis script 355

Example 6-52: Loading a score into an analysis script ... 355

Example 6-53: Content of the *score* variable in an analysis script 356

Example 6-54: Assigning a pitch count ... 356

Example 6-55: Finding the pitch space range .. 356

Example 6-56: Ambitus information of Prelude 26 ... 356

Example 6-57: Adding the *ps-histogram* to the analysis script 357

Example 6-58: *ps-histogram* plot pair list ... 358

xiv

Example 6-59: Integrating the *pc-histogram* into the analysis script 360

Example 6-60: ASCII PC histogram ordered by PCs.. 361

Example 6-61: ASCII PC histogram ordered by PC count .. 361

Example 6-62: Building a clustered histogram of two compositions 363

Example 6-63: Clustered histogram represented in a key/value pair list 365

Example 6-64: Label PCCs in WPC Prelude 26 ... 367

Example 6-65: PCCs labels of WPC Prelude 26 .. 370

xv

Example B-1: Glassworks Input Code ... 399

Example B-2: Glassworks Output Code .. 400

Example B-3: Loading MIDI library and MIDI data.. 401

Example B-4: MIDI-Input.lisp.. 403

Example B-5: ATN Generator from Computers and Musical Style......................... 411

LIST OF ABBREVIATIONS

AI Artificial intelligence

AIT Algorithmic information theory

AC The Algorithmic Composer

ACY Algorithmic cycle

ALICE Algorithmically integrated composing rnvironment

ATN Augmented transition network

ATNs Augmented transition networks

b. beat

bb. beats

C4 Middle C is specified as C4, either lower case or upper case

CAC Computer assisted composition

CGM Computer generated music

CMMC Computer Models of Musical Creativity

CMS Computers and Musical Style

CMJ Computer Music Journal

CPP Common practice period

CSV Comma separated value(s)

EMI Experiments in Musical Intelligence

FDL From Darkness, Light

FDL-1(-6) From, Darkness Light, 1. Prelude, etc.

HMMs Hidden Markov models

HS Hidden Structure

xvi

IDE

IRCAM

Integrated development environment

Institut de Recherche et Coordination Acoustique/Musique

m.

MAIT

MIDI

ML

measure

Musical algorithmic information theory

Musical instrument digital interface

Machine learning

mm.

NC

NLP

p

measures

Navajo cycle

Natural language

processing Probability

PC Pitch class (or pc in code examples)

PCs Pitch classes

PCC

PCCs

Pitch class collection, unordered collection of pitches (or pcc in code

examples), represented as {3, 1, 2}

Plural of PCC

PCS Pitch class cet, ordered collection of pitches, or normal form,
represented as [1, 2, 3]

PCSC Pitch class set collections

PCST0 Pitch class set, ordered collection of pitches transposed to 0,
represented as [0 1 2]

PTC Post tonal cycle

SC

SCs

SCC

STM

Set class, represented as (0 1 2)

Plural of SC

Set class collection, represented as ((0 1 2) (0 3 6) (0 3 7))

State transition matrix

xvii

q

REPL

RN

SAIL

SARA

VM

WPC

quarter

Read–eval(uate)–print loop

Roman numeral

Stanford Artificial Intelligence Laboratory

Simple analytic recombinancy algorithm

Virtual Music

The Well-Programmed Clavier

xviii

 1

CHAPTER 1

INTRODUCTION

The problem with music theorists is that they generate
papers (theories) only once every five years or so, when
they should be concentrating on intelligent systems that can
come up with a theory every five minutes.

Marvin Minsky

1.1. Overview

The vast and ever expanding field of computer music is comprised of several

different disciplines or dimensions. One of these dimensions is the generation of

unexplored timbres or sounds (sound synthesis, sampling, sound art – with its

corresponding geneses in the practices of electroacoustic music). The dimension is

known as computer generated music (CGM). Another aspect is the interactivity of

musicians with computer programs (interactive computer music), such as modern music

software creation environments like MaxMSP, PureData, ChucK, OpenMusic, or PWGL

that either augment, enhance or extend instrumental sounds, or algorithmically generate

musical reactions to what is being played by a musician or a group of musicians.1 An

additional feature expresses itself in cross-disciplinary or hybridized interactivity

(connecting musical gestures and computational devices, such as smart phones, tablet

computers, three dimensional cameras, or circuit bent non-computerized apparati in

1 Electroacoustic principles that lead to the expansion of timbre are created in these software
environments, and connect the timbres to actions of the computer, or “traditional” musician. Generally,
music created with these software environments falls under the auspice of CGM, but increasingly is
incorporating elements of CAC.

 2

conjunction with single-board programmable micro-controllers to animations, dance, or

robotics). Another dimension is computer-assisted composition (CAC) that utilizes

complex conditional, probabilistic, chaos, fractal, set theory, Markov analysis, cellular

automata, artificial life, fuzzy logic, pattern matching, learning, and/or genetic algorithms

to manipulate data for sonification purposes.2 All of these differentiations of computer

music practice present extraordinary challenges to mathematicians, scientists, computer

scientists, engineers, composers, musicologists or music theorists alike. The

dissertation focuses on CAC in respect to music theory.

The practice of music theory closely associates with CAC. The development of

sets of rules occupies a central spot within CAC. These sets of rules are known also in

the field of mathematics and computer science as algorithms.3 Therefore, CAC is

grounded in the practice of algorithmic composition. CAC shares algorithmic procedures

with music theory, which are an essential part of music theoretical discourse for

centuries.

Chapter 1 is the introduction to the dissertation, provides an overview, and shows

how to run the code examples. Chapter 2 of this dissertation examines what constitutes

an algorithm from a computer science, and mathematical perspective, along with code

examples, while chapter 3 examines algorithmic procedures as applicable to

composition and music theory. Further, chapter 3 studies sets of rules that have existed

2 Miller Puckette finds the CAC acronym cumbersome and alludes to a preference for CAO,
derived from the French “Composition Assistée par Ordinateur.” Miller Puckette, "Preface," in The Om
Composer's Book, ed. Carlos Agon, Gérard Assayag, and Jean Bresson, (Paris: Editions DELATOUR
FRANCE/Ircam-Centre Pompidou, 2006), ix.

3 David Cope, Techniques of the Contemporary Composer (New York: Schirmer Books, 1997),
192.

 3

throughout the history of music theory and which of these sets of rules actually are

classifiable as algorithms or algorithmic procedures. The study is accompanied by code

examples of algorithms that were created and in use during the style periods of

antiquity, the Middle Ages, the Renaissance, the baroque, the classical, the romantic,

and the twentieth century. Particular attention is paid to how algorithmic practice has

influenced music within the twentieth century and the beginning of the twenty-first

century in the third segment. Furthermore, the chapter contextualizes CAC from its

inception following the period after World War II to present practice, its role in computer

music, and the emergence of AI in CAC.

The musical nucleus of this discourse is a prelude that comes from a set of three

preludes and fugues titled “From Darkness, Light” written by the American composer

David Cope and his “co-conspirator” Emily Howell.4 Cope is a composer that forms a

symbiotic relationship between the compositional process and music theory. In addition,

he is considered one of the composers on the forefront of algorithmic composition in the

United States. David Cope can be regarded as a composer who writes music (and

computer programs) directly with the assistance or music theory, i.e. detailed music

analyses. Cope substantiates his practice through numerous interviews, journal and

book publications, and compositions.

Chapter 4 shows Cope’s evolution as a composer that utilizes CAC. The first

section provides a short background and biography of the composer. The section also

4 Guy Raz and David Cope, "Virtual Composer Creates New Music", NPR

http://www.npr.org/templates/story/story.php?storyId=113719483 (accessed January 2, 2012). “Emily
Howell” is the name of the computer program David Cope wrote to assist him in the compositional
process.

 4

features a list of compositions and writings by the composer. Cope created many

different computer programs, written in the Lisp programming language, to solve

different musical problems, which are discussed chronologically.5 The second section

examines Cope’s EMI (Experiments in Musical Intelligence), a collection of computer

programs that analyze any music by a given composer, store the results of their

analyses in large databases, and then re-create new work of a given composer, by

recombining the “musical DNA” of patterns stored in the databases.6 The discussion

leads the reader through Cope’s use of expert systems, his concept of recombinant

music and signatures, augmented transition networks and SPEAC, association nets,

proto-ALICE (CUE), and association networks, ALICE and the end of Emmy. Emmy is

the progenitor of Emily Howell; a computer program with an anthropomorphized name

that uses an associative network.7 The third section in chapter 4 shows how Emily came

to be, how an associate networks function, how these networks are different from neural

nets, and what can be accomplished using associate networks. Additionally, a brief

summary on future CAC projects by David Cope is provided. The fourth section in

Chapter 4 illuminates Cope’s approach toward music analysis.

Chapter 5 creates an overview of different algorithmic music analysis

approaches. The chapter begins with a brief history. The second section provides

information on the most commonly used systems currently. The third section provides

5 This section also makes the case of why David Cope uses Common Lisp.

6 Jonathan Mitchell, "Musical DNA", WNYC http://www.radiolab.org/2007/sep/24/musical-dna/
(accessed January 2, 2012).

7 David Cope had to change EMI to Emmy due to a trademark conflict with a record company of
the same name.

 5

algorithms to solve set theory music problems, including procedures that have been

previously visited in chapter 3, and techniques from the set theory canon. These

techniques include finding complements of sets, transposition, inversion, normal form,

prime form, interval vectors, transpositional and inversional relationships, and how to

creates batch procedures for the aforementioned techniques.

Chapter 6 unites previously discussed code examples and applies the algorithms

to analysis problems that arise during the discourse of analyzing FDL-1. Once the

algorithms have been appropriately applied to the music analysis, the program will be

“generating rules from itself, rather than imposing user-prescribed rules.”8 The first

section discusses what a prelude is, and provides an analysis of FDL-1 without the help

of a computer (traditional analysis). The second section examines how points made

during the previous analysis can be substantiated and enhanced through algorithmic

analysis. The section discusses how to count pitches in order to define a pitch space

and histograms. Further, a chord compression script is introduced that essentially

creates chord reductions.

Another aspect explains how to programmatically handle computer

representations of scores, including segmentation, tailored to FDL-1. Reduction

algorithms are introduced that create vertical reductions, from which PCCs can be

programmatically labeled. An additional horizontal reduction scheme is introduced that

presents how to create voice-leading strands. From the reductions, data sets are

created for ML purposes. ML is used to establish PCCs succession rules, and voice-

8 David Cope, Hidden Structure: Music Analysis Using Computers, The Computer Music and
Digital Audio Series, vol. 23 (Middleton, Wis.: A-R Editions, 2008), xxiii.

 6

leading rules of FDL-1. All interrelationships of PCCs are programmatically established.

With the acquired ML data semantic networks are drawn, and furthermore, chord

succession and voice-leading probabilities tables are calculated.

The third section of chapter 6 shows how to break all previously discussed

scripts into modular components for easier script reuse, via an analysis script. The

section also postulates what piece may have been used to learn voice-leading and

chord succession rules by Cope to compose FDL-1. Additionally, the section shows how

to apply “Big Data” techniques (clustered histograms) to music analysis, and how to

approach future corpus studies. Chapter 7 summarizes, adds additional conclusions to

this study, and provides an outlook toward the future. Unless otherwise noted all

translations in this work are my own. All code examples in this dissertation are original

unless they have been specifically marked as being David Cope’s, or as being from

another source. Furthermore, all musical examples in this work have been attributed to

their composers, whereas all musical examples written by David Cope have been used

with David Cope’s permission, and all other musical examples are within the public

domain.

Since FDL-1 is a composition that was composed by a human composer with the

aid of an association network computer program, not all structural facets of the

composition will be exposed through “traditional” music analysis. Instead, I propose the

use of an algorithmic music analytical computer framework to aid in the analysis of the

music. This framework is partially based on other previously established frameworks,

but more importantly is also based on algorithmic techniques used by the composer to

 7

create the composition, and on analytical techniques advocated by the composer.9

However, the purpose of the study is not based on building the framework, but rather on

the algorithmic thought process that occupied the composer. In order to follow David

Cope’s algorithmic compositional thought process, all code examples will be thought

through in Common Lisp, with the idea being that language shapes thought.10 It is

posited that in this case, the use of a certain programming language, and the

programmer’s/composer’s understanding of that language, influences the musical

thoughts and ideas of a composition in the same way as a “pianistic” piece, a

composition written at the piano, will have certain musical attributes.

1.2. Running Code Example in Clozure CL

The following instructions are provided for running the code examples of the work

in OSX 10.8, or larger. If the reader runs other –nix based operating systems, the use of

Emacs in conjunction with slime and Clozure CL, SBCL, or Clisp is recommended for

running the code examples at the command line (also possible with OSX). If the reader

runs a Windows based operating system, LispWorks – personal edition, is

recommended. Most code examples will work in all the aforementioned environments,

except when outside programs to generate graphics (.pdfs, digraphs, histograms, etc.)

9 The subsequent analytical frameworks are employed: (1) music21 by Michael Scott Cuthbert,

"Music21: A Toolkit for Computer-Aided Musicology", Massachussetts Institute of Technology
http://web.mit.edu/music21/ (accessed March 30, 2014). (2) Humdrum. David Huron, "The Humdrum
Toolkit: Software for Music Research", Ohio State University http://www.musiccog.ohio-
state.edu/Humdrum/ (accessed March 30, 2014). (3) The programming methods described in Cope,
Hidden Structure: Music Analysis Using Computers.

10 Lera Boroditsky, "How Language Shapes Thought," Scientific American, February 2011, 63-65.
In other words, the idea of linguistic relativity may be applicable to programming languages as well.

 8

are being used. In these cases the reader should consult online forums for their

particular setup.

In OSX 10.8 or higher, the easiest way to run Clozure CL, is to download and

install the app from Apple’s App Store.11 Alternatively, Clozure CL can also be built from

source, but please consult the Clozure CL web site for detailed instructions.12 Start

Clozure CL, once the environment has been successfully installed. Clozure CL’s

listening window will appear (Figure 1-1).

Figure 1-1: Clozure CL listening window.

Commands, functions, etc. can be typed directly into the REPL (or read-evaluate-

print-loop, another name for the listener window) as the following screenshot shows

(Figure 1-2):

11 "Clozure CL", Apple, Inc. https://itunes.apple.com/us/app/clozure-cl/id489900618 (accessed

October 1, 2014).

12 "Chapter 2. Obtaining, Installing, and Running Clozure CL", Clozure Associates
http://ccl.clozure.com/manual/chapter2.html (accessed October 1, 2014).

 9

Figure 1-2: Typing functions directly into the REPL.

After a command has been entered into the REPL, and the ENTER, or RETURN

key has been pushed the typed-in expression is evaluated (the same evaluation can

also be achieved with the keyboard shortcut of CMD + E, akin to evaluating patches in

Max, or Pd):

Figure 1-3: Evaluating an expression at the REPL.

It is most cumbersome to type an entire script into the REPL, so it’s easier to

create a file that contains variables, functions, macros, objects, etc. that can be

evaluated partially or as a whole. The next screenshot (Figure 1-4) shows a file, which

was saved to the hard drive with a .lisp extension. The file contains a script copied and

 10

pasted from this dissertation (Example 2-3).

Figure 1-4: Opening a .lisp file and evaluating a function from script at the REPL.

Two green bars appear around an expression that contains the appropriate

parentheses. If the green bars do not appear, the cursor can be placed after the last

parenthesis of an expression, and the green bars will appear (unless there is an

unbalanced amount of parentheses in the script, i.e. the script has a parenthesis

missing). Once the cursor has been placed after the expression, and the green bars do

appear the expression can be evaluated by selecting the keyboard shortcut of CMD + E.

The entire script file, meaning all expressions enclosed with balanced parentheses

within a script file, can be evaluated with the keyboard shortcut SHIFT + CMD + E. The

result of the script can be seen in the listener window.

 11

CHAPTER 2

ALGORITHMS

2.1. What is an Algorithm?

The French mathematician Jean-Luc Chabert states, “it is not easy to give a

precise definition of the word ‘algorithm.’”1 A popular notion on the topic is reflected in

the opinion that an algorithm is deeply entrenched within the field of computer science

and programming. However, the presumption that an algorithm is dependent on the

existence of a computer program is false. The mathematical algorithm has long existed

before any computer program came to be.2 Algorithmic procedure exists independently

from any particular technology.3 The mathematical historians Boyer and Merzbach

attribute the first historically recorded algorithms to Mesopotamian mathematicians that

created a square root process.4 Conceptually, the algorithm “has undergone a long

evolution: it was not until the twentieth century that a satisfactory formal definition was

achieved, and ideas about algorithms have evolved further even since then.”5 A basic

algorithm can be simply defined as a “set of step by step instructions” or “recipe,” which

1 Jean-Luc Chabert, "Algorithms," in The Princeton Companion to Mathematics, ed. Timothy
Gowers, June Barrow-Green, and Imre Leader, (Princeton, New Jersey: Princeton University Press,
2008), 106.

2 “Before There Were Computers, There Were Algorithms,” eds. Thomas H. Cormen et al.,
Introduction to Algorithms, 3rd ed. (Cambridge, MA: MIT Press, 2009), xiii.

3 Évelyne Barbin et al., A History of Algorithms, ed. Jean-Luc Chabert, trans., Chris Weeks (New
York: Springer Verlag, 1999), 1.

4 Carl B. Boyer and Uta C. Merzbach, A History of Mathematics, 3rd ed. (Hoboken, New Jersey:
John Wiley & Sons, Inc., 2011), 16.

5 Chabert, 106.

 12

needs to be completed or followed by an operator or participant.6

These “recipes, rules, techniques, processes, procedures, methods, etc.” are all

inclusive within the term algorithm.7 The Chinese term “shu (meaning rule, process or

stratagem) both for mathematics and in martial arts” existed before the word algorithm.8

The syllable ju from the anglicized Japanese word ju-jitsu, meaning “‘procedural rules

for suppleness’ or ‘algorithms for suppleness’,” is derived from the Chinese shu.9 From

an etymological perspective, the modern term algorithm can be traced to “the Greek

word ἀρῐθμός (number)” and “the name of the Persian mathematician Abu Jafar

Muhammad ibn Musa al-Kwarizimi.”10 The Persian mathematician from the ninth

century wrote a treatise called al-Mukhtasr fi Hisab al-Jabr wa l-Muqabala that “gave us

the word ‘algebra’ from ‘al-Jabr.’”11

The treatise was about “the calculation with Indian numerals, which was

translated into Latin around 1120 AD as ‘Algorismi de numero Indorum,’” and the

6 Barbin et al., 1. David Cope calls these algorithms (not dependent on any type of technology)

“paper algorithms.” Keith Muscutt and David Cope, "Composing with Algorithms: An Interview with David
Cope," Computer Music Journal 31, no. 3 (2007): 12.

7 Barbin et al., 2.

8 Ibid.

9 Ibid.

10 Gerhard Nierhaus, Algorithmic Composition (New York: Springer Verlag, 2009), 2. Abu Jafar
Muhammad ibn Musa al-Kwarizimi (c. 780 - 850) was also an astronomer and geographer, and “a
member of the House of Wisdom, an academy of scientists in Baghdad.” Kenneth Rosen, Elementary
Number Theory and Its Applications, 5th ed. (New York: Addison-Wesley, 2005), 55.

11 Barbin et al., 2. The title of the treatise is sometimes listed as Kitab al jabr w’al-muqabala and
translates to “Rules of restoration and reduction.” Gareth Loy, Musimathics, vol. 1 (Cambridge, MA: MIT
Press, 2006), 462. Boyer and Merzbach go further by explaining that “word ‘al-jabr’ presumably meant
something like ‘restoration’ or ‘completion’ and seems to refer to the transposition of subtracted terms to
the other side of an equation; the word ‘muqabalah’ is said to refer to ‘reduction’ or ‘balancing’—that is,
the cancellation of like terms on opposite sides of the equation.” Boyer and Merzbach, 207.

 13

Latinized author’s name was given as “Algorismus.”12 During the Middle Ages,

mathematical scholars described “the counting tables or abacus methods” as traditional

calculation practice, and the “new positional notation calculation methods” as algorisms,

algorismus, or algorithmus.13 During the seventeenth century Gottfried Wilhelm Leibniz

(1646-1716) posits the notion of an algorithm in his idea of “a universal language that

would allow one to reduce mathematical proofs to simple computations.”14 The French

enlightenment period mathematician, mechanician, physicist, philosopher and music

theorist Jean le Rond d’Alembert (1717-1783), who co-edited the Encyclopédie, ou

dictionnaire raisonné des sciences, des arts et des métiers with Denis Diderot, defined

the term algorithm as “terme arabe, employé par quelques Auteurs, & singulierement

par les Espagnols, pour signifier la pratique de l'Algebre.”15 Further, d’Alembert

12 Nierhaus, 2. What we commonly refer to as “Arabic numerals” in fact were the numerals that

“had been adapted from Indian” mathematical practice, and are called “Arabic numerals,” because the
treatise by al-Kwarizimi was written in Arabic. Barbin et al., 2.

13 Barbin et al., 2. The original meaning of algorism from Arabic is “number series.” David Cope,
The Algorithmic Composer, Computer Music and Digital Audio Series, vol. 16 (Madison, WI: A-R Editions,
2000), 1. Algorism was mentioned by Abu Jafar Muhammad ibn Musa al-Kwarizimi in his aforementioned
treatise and “referred only to the rules of performing arithmetic using Hindu Arabic numerals, but evolved
into ‘algorithm’ by the eighteenth century.” Rosen, 54.

14 Chabert, 111. Even though the binary system had existed long before Leibniz’s time, Leibniz
was an important contributor to the formalization of the binary system as it is known and treated in
mathematics today through the publication of his memoire Explication de l'Arithmétique Binaire from
1703. Barbin et al., 40. Leibniz’s vision “of the possibility of reducing logic to mechanical operations” is in
many respects the foundation of modern circuitry. Ibid., 43.

15 Jean le Rond d'Alembert, "Algorithme", University of Chicago http://artflx.uchicago.edu/cgi-
bin/philologic/getobject.pl?c.0:1216.encyclopedie0311 (accessed October 11, 2012). This phrase is
translated to “Arab term, used by several authors, and particularly by the Spanish to mean the practice of
algebra” by Chris Weeks. Barbin et al., 2. In music theory, Jean le Rond d’Alembert is mostly know for his
treatise titled Eléments de musique théorique et pratique suivant les principes de M. Rameau (1752),
which primarily synthesized Rameau’s Génération harmonique (1737) and Démonstration du principe de
l’harmonie (1750) and was one of the “most widely read source for information of Rameau’s theory in
France and Germany (where it appeared in translation by Marpurg in 1757),” according to Thomas
Christensen’s biographic entry on d’Alembert in the New Grove Dictionary of Music. However,
Christensen also critiques d’Alembert’s reductionist opus as being a “disservice to the empirical richness

 14

explains, “Ainsi l'on dit l'algorithme des entiers, l'algorithme des fractions, l'algorithme

des nombres sourds.”16

The logicians Charles Babbage (1791-1871), George Boole (1815-1864),17

Friedrich Ludwig Gottlob Frege (1848-1925), and Giuseppe Peano (1858-1932) “tried to

formalize mathematical reasoning by an ‘algebraization’ of logic” in the nineteenth and

early twentieth centuries and thereby furthered the idea of an algorithm.18 Chabert

points to the aforementioned general twentieth century understanding of what the word

algorithm became to mean, namely “any process of systematic calculation, that is a

process that could be carried out automatically.”19 The implication here is that the

process is finite, poses a question and achieves some type of goal.20

Another attribute of an algorithm can be iteration and recurrence, although not

and musical sophistication of Rameau’s theory.” Thomas Christensen, "Alembert, Jean Le Rond D’",
Grove Music Online. Oxford Music Online. Oxford University Press.
http://www.oxfordmusiconline.com/subscriber/article/grove/music/07068 (accessed October 12, 2012).

16 d'Alembert. Chris Weeks translates this phrase to mean “In this sense, we say the algorithm of
integral calculus, the algorithm of the exponential calculus, the algorithm of sines.” Barbin et al., 2.

17 Boolean logic is named after Boole and is used today in computer based search engines via
the Boolean operators of () - grouping words or phrases, AND - a narrowing search containing all words
separated, OR - a broadening search containing any words separated, and NOT - a narrowing not
containing included words. Boolean values in programming are either TRUE and/or FALSE in
combinations of the above-mentioned Boolean operators.

18 Chabert, 111.

19 Barbin et al., 2.

20 The Austrian composer Karlheinz Essl incorporates this conclusion into his definition of the
word algorithm in stating that it is “a predetermined set of instructions for solving a specific problem in a
limited number of steps.” Karlheinz Essl, "Algorithmic Composition," in Electronic Music, ed. Nick Collins
and Julio d'Escriván, (New York: Cambridge University Press, 2007), 107. Charles Dodge further
underlines this definition that “each step must be defined unambiguously and there must be a definite
path to the completion of the algorithm.” Charles Dodge and Thomas A. Jerse, Computer Music, 2nd ed.
(New York: Schirmer Books, 1997), 429. Rowe also explains that algorithms are defined by “a limited
number of parameters.” Robert Rowe, Machine Musicianship (Cambridge, MA: MIT Press, 2001), 6.

 15

required.21 The mathematicians Kurt Friedrich Gödel (1906-1978), Alonzo Church

(1903-1995), and Stephen Cole Kleen (1909-1994) formulated the idea of the existence

of mathematical recursive functions in connection with algorithms between 1931-1936.22

Church’s thesis, also known as the Church-Turing thesis, of the effectively calculable or

computable function falls within the realm of the recursive functions.23 Alan Turing

(1912-1954) found that “every function that was computable...was recursive and vice

versa.”24 Turing’s proof is now known as the Turing Machine, and “functions that are

computable by Turing machines are precisely those that can be programmed on a

computer.”25 Furthermore, “recursive functions are the same as Turing-computable

21 Barbin et al., 4. The Babylonian square root algorithm (ca. 1,900 BCE)—also known as the

Babylonian method —already contained an iterative procedure, which is the same algorithm that
sometimes is attributed “to the Greek scholar Archytas (428-365 BCE) or to Heron of Alexandria (ca. 100
CE); occasionally, one finds it called Newton’s algorithm.” Boyer and Merzbach, 26. The essence of the
Babylonian square-root algorithm was learned by Pythagoras in Mesopotamia via the three means, “the
arithmetic, the geometric, and the subcontrary (later called the harmonic)—and...the ‘golden proportion’
relating two of these: the first of two numbers is to their arithmetic mean as their harmonic mean is to the
second of the numbers.” Ibid., 51.

22 Chabert, 111.

23 Ibid., 113. Chabert explains the effectively calculable functions “for any primitive recursive
function there is an algorithm for computing it. (For example, the operation of primitive recursion can
usually be realized in a rather direct way as a FOR loop).” Ibid., 112. The Church-Turing thesis is called a
thesis, since it is “an intuitive notion, actually quite like that of ‘algorithm,’” and “lies in the realm of
metamathematics.” Ibid., 113.

24 Ibid.

25 Ibid. Turing designed the Turing Machine to answer David Hilbert’s (1862-1943) tenth problem
or Entscheidungsproblem (decision problem) from 1900, and further developed in 1922, which posed
“whether there was a ‘mechanical process’ by which one could determine whether any given
mathematical statement could be proved.” Ibid. Also, the Turing Machine actually is not a mechanical
device, but rather an idea that shows the computability of a function, in other words it is the epitome of an
algorithm. Goldreich and Wigderson explain what the Turing Machine mathematically does the following
approach: “A Turing machine converts a sequence of 0s and 1s into another sequence of 0s and 1s. If we
wish to use mathematical language to discuss this, then we need to give a name to the set of {0,1}-
sequences. To be precise, we consider the set of all finite sequences of 0s and 1s, and we call this set I.
It is also useful to write In for the set of all {0,1}-sequences of length n. If x is a sequence in I, then we
write |x| for its length: for instance, if x is the string 0100101, then |x| = 7. To say that a Turing machine
converts a sequence of 0s and 1s into another such sequence (if it halts) is to say that it naturally defines

 16

functions.”26 Thereby, Turing, together with Church, formalized the notion of an

algorithm.27

In the 1950s the application of Euclid’s method “for determining the greatest

common divisor of two integers” was used to explain an algorithm anachronistically,

since “the calculations involve successive divisions until the remainder becomes zero”28

Examining Euclid’s algorithm, from his treatise Elements (ca. 300 BCE), of the greatest

common divisor (GCD), the following GCD recursion theorem can be devised: “For any

nonnegative integer a and any positive integer b, gcd(a, b) = gcd(b, a mod b).”29

Cormen expresses the GCD algorithm the following way:30

a function from I to I. If M is the Turing machine and fM is the corresponding function, then we say that M
computes fM...Thus, every function f : I → I gives rise to a computational task, namely that of computing f.
We say that f is computable if this is possible: that is, if there exists a Turing machine M such that the
corresponding function fM is equal to f.” Oded Goldreich and Avi Wigderson, "Computational Complexity,"
in The Princeton Companion to Mathematics, ed. Timothy Gowers, June Barrow-Green, and Imre Leader,
(Princeton, New Jersey: Princeton University Press, 2008), 263.

26 Chabert, 113.

27 Goldreich and Wigderson, 262. Church’s logical formalization happened independently from
Turing and is represented in Church’s conceptualization of λ-calculus. Church’s λ-calculus was used by
“John McCarthy, the creator of Lisp (and a former student of Church),” who “borrowed lambda notation
from the lambda calculus and used it for describing functions” in the Lisp programming language. David
S. Touretzky, Common Lisp: A Gentle Introduction to Symbolic Computation (Menlo Park, California: The
Benjamin/Cummings Publishing Company,Inc., 1990), G-9. “The formalism for variables in LISP is the
Church lambda notation.” John McCarthy et al., Lisp 1.5 Programmer's Manual, 2nd ed. (Cambridge, MA:
MIT Press, 1985), 17. “LISP stands for LISt Processor.” Touretzky, 31. Common Lisp is a dialect of
McCarthy’s Lisp.

28 Barbin et al., 4. The Euclidian example is a classic textbook example.

29 Cormen et al., 934.

30 Ibid., 935.

 17

1. euclid(a, b)
2. if b == 0
3. return a
4. else return euclid(b, a mod b)

Example 2-1: Euclidian algorithm in pseudo code.

Cormen then shows what each recursion accomplishes:31

1. euclid(30,21) = euclid(21,9)
2. = euclid(9,3)
3. = euclid(3,0)
4. = 3

Example 2-2: Parsing the Euclidian algorithm in pseudo code.

The greatest common divisor between 30 and 21 is 3. The operation proceeds in

the following fashion: when value b is 0, or the remainder is 0, return the value a (in this

case 3); this is the termination of the operation and the recursion stops. Without the

termination the recursion would continue indefinitely, or until the end of the computers

memory, in which case the program would create a stack overflow and then terminate,

or perhaps terminate the operational capability of the entire computer. However, every

other time, when value b is not 0, the function calls itself, by first inserting value b as the

new value a, and then inserting the evaluated outcome of the operation value a modulo

value b as value b into the function. It follows then that in the first cycle of the iteration

21 is inserted as a, and the outcome of the expression 30 modulo 21 is inserted as b, in

this case 9 (since 21 fits into 30 once and leaves 9 over, the remainder of the Euclidian

division). Now, 9 is inserted as the new value a and the evaluation of the operation 21

modulo 9, or 3, since 9 fits into 21 twice and leaves 3 as the remainder, is inserted as

value b into the same function anew. From here 3 is inserted into the function as value a

31 Ibid.

 18

and the operation of 9 modulo 3, or 0, since there is no remainder, is inserted into the

function as value b. As stated above once value b is 0 the operation stops and returns

value a, or 3, and no further modulo operation is needed. The GCD algorithm is applied

in Common Lisp the following way:32

1. (defun euclid (a b)
2. "Recursive function to find greatest common denominator, or GCD."
3. (declare (notinline euclid))
4. (if (eq b 0) a
5. (euclid b (mod a b))))
6.
7. ; checking the function with provided arguments
8. (euclid 30 21)

Example 2-3: Euclidian algorithm in Lisp.

The euclid function is defined in lines 1-8, which takes two numbers (a and b)

as arguments. Line 2 includes a documentation text string to describe what the function

is intended to accomplish. The third line is not necessary for the actual euclid function

to operate. The declare function ensures that the euclid function cannot be

redefined later and therefore the entire recursion can be debugged at the REPL. The

actual recursion of the euclid function is stated in lines 4-5, meaning that if the

number value b equals 0, then return the number value a, if not pass the number value

b along with the mod value of a and b as arguments to the top of the euclid function,

32 Common Lisp already provides a (gcd a b) built-in function within its language core, but the

built-in function is probably written very similarly to this example. As can be seen, the Euclidian algorithm
in Common Lisp is the most efficient representation of the algorithm, since it requires the least amount of
code in comparison to Cormen’s pseudo code, prose, or the succeeding “modern” JavaScript
interpretation:

1. function euclid(a, b) {
2. if(b == 0){
3. return Math.abs(a);
4. }
5. else{
6. return euclid(b, a % b);
7. }
8. }

 19

and repeat this procedure until value b indeed is 0. Line 7 shows a comment that is not

evaluated in the script and serves as a documentation string, while line 8 shows how to

use the function with two number arguments: (euclid 30 21). Evaluating the

function results in 3 at the REPL. However, if (trace euclid) is entered at the

REPL, and then (euclid 30 21) is re-entered at the REPL, the actual steps of the

recursion operation are shown literally at the REPL (since the declare function was

used). The following example shows these steps displayed at the REPL:

0> Calling (EUCLID 30 21)
 1> Calling (EUCLID 21 9)
 2> Calling (EUCLID 9 3)
 3> Calling (EUCLID 3 0)
 <3 EUCLID returned 3
 <2 EUCLID returned 3
 <1 EUCLID returned 3
<0 EUCLID returned 3
3

Example 2-4: Traced recursion of the euclid function in Common Lisp.

Cormen explains, “the algorithm cannot recurse indefinitely, since the second

argument strictly decreases in each recursive call and is always nonnegative, and

therefore, Euclid always terminates with the correct answer.”33 Yet, the algorithm

recurses, as many times as needed to find the correct answer without having to specify

how much iteration it requires. Euclid’s algorithm “knows” this automatically.34 In

33 Cormen et al., 935.

34 Automation, thus, is a key feature of an algorithm. Besides using the Euclidian algorithm to
describe the nature of an algorithm, the algorithm itself can be applied to generating rhythm as has been
shown by Godfried Toussaint. Godfried T. Toussaint, "The Euclidean Algorithm Generates Traditional
Musical Rhythms," in Proceedings of BRIDGES: Mathematical Connections in Art, Music, and Science
(Banff, Alberta, Canada: 2005).

 20

addition, “the Pythagoreans thought of musical intervals as involving the process of

continued subtraction or antanairesis...later formed the basis of Euclid’s algorithm.”35

There are other criteria that constitute an algorithm. That is why Gareth Loy

differentiates between algorithms and methodologies.36 He makes this demarcation

because of the existence of strict orthodoxy surrounding the term algorithm in regards to

computer science, in particular programming or more specific programming theory from

the 1960s and 1970s. Donald Knuth set forth that an algorithm must display five

“important features,” one of which has been previously discussed (finiteness), and

several additions to the 1950s Euclidian notion.37 These additional characteristics, as

paraphrased by Loy are definiteness (“each step of an algorithm must be precisely

defined”), input (“an algorithm has zero or more inputs”), output (“an algorithm has one

or more outputs, i.e., quantities which have a specific relation to the inputs”), and

effectiveness (“the operations to be performed in the algorithm must be sufficiently basic

that they can in principle be done exactly and in a finite length of time”).38 Loy suggests

that in a strict sense algorithms used by composers are often based on nondeterministic

methodologies and therefore are not true algorithms from a Knuthian perspective (he

specifically cites Guido d’Arezzo’s method of assigning pitches to specific vowel

35 David J. Benson, Music: A Mathematical Offering (New York: Cambridge University Press,

2006), 163. Antanairesis means successive subtraction.

36 Loy, 288.

37 Donald E. Knuth, The Art of Computer Programming, ed. Michael A. Harrison and Richard S.
Varga, 2nd ed., 4 vols., vol. Volume 1 - Fundamental Algorithms (Menlo Park, California: Addison-
Wesley, 1969), 4.

38 Ibid, 4-10.

 21

iterations from Micrologus).39 Loy considers these methodologies “art” rather than

algorithmic since they not always produce the same result from the same input due to

arbitrary subjective choices.40

In regards to algorithmic composition, specific classes of algorithms are utilized

that not always produce determinate and finite outputs, as in continuous sound

installations or computer assisted composition programs.41 For example stochastic

algorithms, based on probabilistic methods, can produce different results from the same

input and are nonetheless algorithmic in nature.42 Other such algorithms are based on:43

1. Markov models (“originally developed in the context of language
processing”).

2. Generative grammars (“formalisms for the generation of musical
structure”).

3. Transition networks (data storage, recombination, Petri nets).
4. Chaos and self-similarity (“graphical realizations of fractals and other

aspects of the heterogeneous field of chaos theory”).
5. Genetic algorithms (application of “quasi-biological procedures in a virtual

biological environment”).
6. Cellular automata (“extreme complex behavior...from simple initial rules”).
7. Neural networks (“generate outputs, whose sequences of note values

need not necessarily occur in the underlying corpus”).
8. Artificial intelligence (rule-based systems, logical reasoning, machine

learning, “different forms of knowledge representation”).
An algorithm can be defined “as a formalizable and abstracting procedure,”44 and

39 Loy, 285-287, 289-290.

40 Ibid., 290. However, Loy does provide an algorithm for Guido’s Method on p. 291 in form of a
computer program that uses algorithms.

41 Nierhaus, 2.

42 Ibid.

43 Ibid., 4-5.

44 Ibid., 2.

 22

“due to its rule-based nature...can be expressed as a computer program.”45 In essence,

from an ontological perspective, many compositional procedures and music theoretical

concepts, share these traits with mathematical and computational algorithms. The next

section will look at formalized and abstracting procedures, or algorithms, that have

existed throughout the history of compositional practice and music theory.

45 Essl, 108.

 23

CHAPTER 3

ALGORITHMIC PRACTICE IN MUSIC

3.1. Introduction

While lecturing at the Workshop in Algorithmic Computer Music 2012

(WACM2012), David Cope boldly proclaimed that any composition that utilizes some

“set of rules” is inherently an algorithmic composition. Additionally, Cope asserted, “all

music analysis is algorithmic,” because “it compares musical processes in a work under

study to a corpus of know rules.”1 The previous section showed how an algorithm is

defined from a mathematical and computational perspective, and how this definition can

be applied to music.2 From Cope’s statement it can be deduced that all music theory is

the creation or reverse engineering of algorithms that help musicians, musicologists,

music theorists, music aficionados, and other composers better understand the music of

a composer, but also further propagate a certain compositional style of a composer

through the use of a defined algorithm.3 Any such algorithm is much more complex than

the example of Euclid’s algorithm, and it is a collection of many such algorithms that is

held together by meta algorithms, which then can be interpreted as programs.

Generally, rounds, hockets, canons, fugues, and variations of traditional music are all

1 Cope, Hidden Structure: Music Analysis Using Computers, 7.

2 Loy’s criticism of the lax use of the term algorithm has been clearly stated. However, since this
study is on music by David Cope, Cope’s definition will be taken into closer consideration.

3 The “use of the word algorithm in precomputational analysis also relates to analyses that are
clearly programmable in some meaningful way.” Cope, Hidden Structure: Music Analysis Using
Computers, 7.

 24

examples of formalizable musical processes.4

3.2. Before the Twentieth Century

3.2.1. Antiquity

Rule-based thinking, the introduction of chance operation, and the process of

automation have been part of musical discourse since the times of antiquity. From a

music automation perspective, perhaps some of the most ancient music creation

devices include the Aeolian harps5 and wind chimes,6 “since the outcome of their

performance, in both case, depends on the direction and amount of wind that nature

provides unpredictably.”7 The automated devices are the algorithms. Even though the

musical outcome can be unpredictable, or indeterminate, meaning that the algorithm

4 Curtis Roads, The Computer Music Tutorial (Cambridge, MA: MIT Press, 1996), 823.

5 Aeolian harps are named after the Greek god of wind Αἴολος – Aiolos – and described by
Battista Porta (1535-1615) in Magiae naturalis (1558), and later by Athanasius Kircher in Phonurgia nova
(1673). David Cope, Computers and Musical Style, Computer Music and Digital Audio Series, vol. 6
(Madison, WI: A-R Editions, 1991), 2.

6 The wind chime or tintinnabulum (Latin - also “bell”) was used by the ancient Romans mostly to
bring good luck and ward off evil spirits. J. N. Adams, The Regional Diversification of Latin 200 Bc-Ad 600
(New York: Cambridge University Press, 2008), 321. David Cope collects wind chimes, and at his home
office he has hundreds of wind chimes suspended from the ceiling. One of Cope’s favorite composers,
Arvo Pärt (* 1935), uses the derivative tintinnabulation (noun) or tintinnabular/tintinnabuli (adjective) of the
Latin word tintinnabulum to describe a generative compositional procedure in his own music. Paul Hillier
describes Pärt’s concept in connection to the composition “Magister Ludi,” the “word refers to the ringing
of bells, music in which the sound materials are in constant flux, though the overall image is one of stasis,
of constant recognition.” Paul Hillier, "Arvo Pärt: Magister Ludi," The Musical Times 130, no. 1753 (1989):
134. John Roeder clearly outlines the algorithmic features of Pärt’s compositional process in his article
“Transformational Aspects of Arvo Pärt’s Tintinnabuli Music.” John Roeder, "Transformational Aspects of
Arvo Pärt's Tintinnabuli Music," Journal of Music Theory 55, no. 1 (2011): 1-41. Examples of Pärt’s
tintinnabular compositions are “Fratres,” “Cantus In Memoriam Benjamin Britten,” “Tabula Rasa,” “Spiegel
im Spiegel,” etc. David Cope used “Cantus In Memoriam Benjamin Britten” as a listening example at
WACM2012 and revealed the anecdote of how Pärt composed this piece via a “set of rules” on a piece of
paper (paper algorithm) on a train, which was later realized by one of Pärt’s assistants.

7 Cope, Computers and Musical Style, 2.

 25

does not depend on an operator, but on wind that may or may not blow, the pitch

collections of Aeolian harps and wind chimes are finite.

Another mechanical realization of an algorithm was the Hydraulis, developed by

the Greek inventor and mathematician Ktesibios (ca. 285-222 BC), who “was

fascinated by pneumatics and wrote an early treatise on the use of hydraulic systems

for powering mechanical devices.”8 According to Leoni, “the Hydraulis, used water to

regulate the air pressure inside an organ,” in which “ a small cistern called the pnigeus

was turned upside down and placed inside a barrel of water.”9 Further, “a set of pumps

forced air into pnigeus, forming an air reservoir, and that air was channeled up into the

organ’s action.”10

Also from antiquity, the great ancient Greek polymaths, Pythagoras (583-500

BC), Plato (427-347 BC), Aristotle (384-322 BC) set forth theoretical concepts pertaining

mostly to the ideas that “were philosophical or mathematical in regard to tuning.”11

Further, the Pythagorean tradition, to which platonic and neo-platonic thinking belong as

well, was “primarily concerned with number theory and relationship between music and

the cosmos.”12 The concept of early automatic music was represented that “music and

mathematics were not separate studies; an understanding of one was thought to lead

8 Stefano A. E. Leoni, "Le Diverse Et Artificiose Machine ... To Make Music," in Yearbook of the
Artificial Nature, Culture & Technology, ed. Massimo Negrotti and Fumihiko Satofuka, (New York: Peter
Lang, 2006), 62.

9 Ibid.

10 Ibid.

11 Cope, Hidden Structure: Music Analysis Using Computers, 7.

12 Thomas J. Mathiesen, "Greek Music Theory," in Western Music Theory, ed. Thomas
Christensen, (New York: Cambridge University Press, 2002), 114.

 26

directly to an understanding of the other.”13 This led to the idea of “music of the

cosmos.”14 Plato examined the music of the spheres in The Republic and according to

Cope, “maintained that the universe sings and is constructed in accordance with

harmony; and he was the first to reduce the motions of the seven heavenly bodies to

rhythm and song”15 Aristoxenus (355-? BC), to whom another ancient Greek music

theoretical tradition is attributed – the Aristoxenian tradition – that is based in

Aristotelian thinking,16 stayed clear from tuning and focused his studies on intervals,

scales, melody, and consonance, by using “numerical measurements when describing

musical phenomena.”17 The neo-Platonist Aristides Quintilianus (ca. 200s AD) whose

treatment of harmonics is “largely Aristoxenian,”18 describes music “as a numerical art

connected…directly to mathematics and involved patterns.”19

3.2.2. Middle Ages

During the early Middle Ages (ninth century), several treatises, namely Musica

enchiriades, Scolia enchirides, Hucbald’s (ca. 840-930) De harmonica institutione, and

13 Cope, Computers and Musical Style, 5-6.

14 Ibid.

15 Ibid., 6.

16 Mathiesen, 114.

17 Cope, Hidden Structure: Music Analysis Using Computers, 7-8. To be clearer, the Aristoxenian
tradition includes notes, intervals, genera, scales, tonoi and harmoniai, modulation, and melic
composition. Mathiesen, 120-130.

18 Oliver Strunk, "Aristedes Quintilianus," in Source Readings in Music History, ed. Leo Treitler,
(New York: W. W. Norton & Company, 1998), 47.

19 Cope, Hidden Structure: Music Analysis Using Computers, 8.

 27

Alia musica, were compiled to describe the practice of Gregorian chant.20 Musica

enchiriadis introduced a “method for improvising a second voice to a given Gregorian

chant by singing in parallel intervals such as fourths and fifths - a practice later

described as Organum.”21 These instructions “were called canon (from the Greek word

kanon = rule) and had their first bloom in the Franco-Flemish polyphony of the fifteenth

century.”22

Guido d’Arezzo (ca. 991-1031) was a pedagogue of the medieval era, mainly

known for his mnemonic device of what is now called the “Guidonian Hand,” which

Cope calls “a kind of algorithm in itself” that creates “a simple organization of rules from

memorization.”23 However, the most cited example of algorithmic thinking of the

medieval era is Guido’s Micrologus Guidonis de disciplina artis musicae from ca.

1026.24 In chapter 17, titled Quod ad cantum redigitur omne, quod dicitur – “Anything

20 Strunk, "Anonymous (9th Century)," 189.

21 Essl, 109. There are at least five distinct styles of organum: (1) "parallel" organum (c. 800,
which is never truly "parallel" because of the need to begin and end on a unison and the need to change
to some other allowable interval in order to avoid the tritone appearing in a series of fourths); (2) "free" or
"Guidonian" organum (c. 1025, which places less emphasis on parallelism); (3) organum in a 2:1 or 3:1
metric relationship as described in the Ad organum faciendum (c. 1100, which introduces "passing
tones"); (4) the "melismatic" organum in the schools of St. Martial and Santiago de Compostela (c. 1125);
and (5) "Notre Dame" organum (c. 1175, in which at least one voice is found in measured rhythm against
an unmeasured tenor).

22 Ibid.

23 Cope, Hidden Structure: Music Analysis Using Computers, 12.

24 Curtis Roads sets Micrologus’ date to 1026. Roads, 822. Micrologus is also mentioned in
Gareth Loy, "Composing with Computers: A Survey of Some Compositional Formailsms and Music
Programming Languages," in Current Directions in Computer Music Research, ed. Max V. Mathews and
John R. Pierce, (Cambridge, MA: MIT Press, 1989). Loy in Musimathics, Vol. 1, also mentions
Micrologus, and offers an argument of how the vowel assignment algorithm is not an algorithm in the
Knutian sense as mentioned in the previous section of this chapter. Loy, 289-292. Gerhard Nierhaus cites
Micrologus. Nierhaus, 21-23. Robert Rowe discusses Guido’s Micrologus. Rowe, 6. Die Reihe, Vol. 8
references Micrologus. Helmut Kirchmeyer, "Vom Historischen Wesen Einer Rationalistischen Musik," in

 28

that can be spoken, can be brought into song,” – Guido describes a method “for

automatic generation of melodies from text.”25 The description of this algorithm is as

follows:26

Then we take these five vowels, since they lend such concordance to the words,
and no less help you sing the song and the neumes. They set then in order of the
letters of the monochord, and since there are only five, are being repeated, until
every tone has a corresponding vowel, in the following fashion:27

Table 3-1: Guido's vowel array assignment algorithm (Guido-1).

Γ A B C D E F G. a b [s] c d e f g. aa bb [s] [s] cc dd.

a e i o u. a e i o u. a e i o u. a e i o

In this order one should consider that everything that is spoken is moving within
these five letters, and that one needs to alternate, as mentioned before, the five
notes that were assigned according to length. This being the case, let us take a

Die Reihe - Rückblicke, ed. Herbert Eimert, (Vienna: Universal Edition, 1962). Cope discusses the
Micrologus in all his writings on algorithmic composition. Wason describes the Micrologus as a
compositional pedagogical treatise. Robert Wason, "Musica Practica: Music Theory as Pedagogy," in
Western Music Theory, ed. Thomas Christensen, (New York: Cambridge University Press, 2002). V. J.
Manzo describes the Micrologus in his description of algorithmic composition with Max/MSP. V. J.
Manzo, Max/Msp/Jitter for Music (New York: Oxford University Press, 2011), 26. Richard Crocker
describes Micrologus’ content. Richard Crocker, "Musica Rhythmica and Musica Metrica in Antique and
Mediecal Theory," Journal of Music Theory 2, (1958).

25 Nierhaus, 21-23. Nierhaus erroneously claims that the theory of motus (Latin: movement),
described in chapter 15 of Micrologus, forms the basis of the motet for the coming centuries. However,
the word motet really is derived from the French word for word, or mot. H. Sanders Ernest et al., "Motet",
Grove Music Online. Oxford Music Online. Oxford University Press.
http://www.oxfordmusiconline.com/subscriber/article/grove/music/40086pg1 (accessed October 28,
2012). Nierhaus is indeed correct though in regards to setting text to music and its historical context within
the motet practice. Guido d'Arezzo, "Micrologus", Indian University http://www.chmtl.indiana.edu/tml/9th-
11th/GUIMIC_TEXT.html (accessed October 28, 2012).

26 The vowel assignment algorithm will be referred to “Guido-1.”

27 d'Arezzo. (“Has itaque quinque vocales sumamus, forsitan cum tantum concordiae tribuunt
verbis, non minus Cantilenae praestabunt et neumis. Supponantur itaque per ordinem litteris monochordi,
et quia quinque tantum sunt, tamdiu repetantur, donec unicuique sono sua subscribatur vocalis, hoc
modo:”).

 29

sentence and its syllables, apply the corresponding notes, and sing the notes
toward which the vowels point:28

Figure 3-1: Guido-1 algorithm represented in modern notation.

Guido then proceeds to explain how this algorithm is applied to text (Sancte

Ioannes meritorum tuorum copias nequeo digne canere), which essentially is a pattern-

matching algorithm (Figure 3-2).29

Figure 3-2: Guido-2 algorithm applied to a line of text.

The pattern-matching algorithm proposed by Guido matches a vowel within a

syllable of text to a certain pitch level. The collection of resulting pitches is then strung in

28 Ibid. (“In qua descriptione id modo perpende, quia cum his quinque litteris omnis locutio

moveatur, moveri quoque et quinque voces ad se invicem, ut diximus, non negetur. Quod cum ita sit,
sumamus modo aliquam locutionem, eiusque syllabas illis sonis adhibitis decantemus, quas earumdem
syllabarum vocales subscriptae monstraverint, hoc modo.”)

29 Ibid. (“Saint John of the merit of your powers, I cannot sing worthily.”) The text assignment
algorithm will be referred to as “Guido-2.”

e i o uo u a oa e i u a ea ue i i o

 30

order of occurrence into a melodic strand. The following Lisp example shows how this

pattern-matching algorithm works with the sentence that Guido originally proposes

(Figure 3-2, Example 3-1):

1. (defparameter *vowels* '(a e i o u)
2. "Holds vowels.")
3.
4. (defparameter *pitches* '(60 62 64 65 67)
5. "Holds pitches.")
6.
7. (defparameter *sentence*
8. "Sancte Ioannes meritorum tuorum copias nequeo digne canere")
9.
10. (defparameter *vowel-pitch-matrix*
11. (mapcar #'list *vowels* *pitches*)
12. "Holds the vowel/pitch matrix.")
13.
14. (defparameter *melody* nil
15. "Holds algorithmic melody.")
16.
17. (defun string->list (sentence)
18. "Converts a string to a list."
19. (let ((sentence (if (find #\space sentence)
20. (remove #\space sentence) sentence)))
21. (if (eq (length sentence) 0) nil
22. (cons
23. (read-from-string (subseq sentence 0 1))
24. (string->list (subseq sentence 1))))))
25.
26. (defun remove-consonants (sentence vowels)
27. "Removes consonants from a list."
28. (let ((sentence (string->list sentence)))
29. (remove-if-not #'(lambda (x)
30. (OR (eq x (nth 0 vowels))
31. (eq x (nth 1 vowels))
32. (eq x (nth 2 vowels))
33. (eq x (nth 3 vowels))
34. (eq x (nth 4 vowels))))
35. sentence)))
36.
37. (defun pitched-melody (melody vowel-pitch-matrix)
38. "Assign pitches to sequence of vowels according to vowels-pitch-

matrix."
39. (if (eq melody nil) nil
40. (cons
41. (second (assoc (car melody) vowel-pitch-matrix))
42. (pitched-melody (cdr melody) vowel-pitch-matrix))))
43.
44. (progn
45. *pitches*
46. *vowels*
47. *vowel-pitch-matrix*
48. *sentence*
49. (string->list *sentence*)

 31

50. (setf *melody*
51. (remove-consonants *sentence* *vowels*))
52. (pitched-melody *melody* *vowel-pitch-matrix*))
53.

Example 3-1: Guido’s Micrologus algorithm 2 in Lisp.

The first line of Example 3-1 defines a variable that holds five *vowels* (a, e,

i, o, u), and contains a documentation string of what type of value is represented by

the variable in line 2. Line 4 specifies a variable containing a series of *pitches*

(represented as MIDI pitch values – g, a, b, c, d) that will be assigned to the vowel

sequence at a later point.30 The variable *sentence* in lines 7-8 holds the sentence

that serves as the melodic generator (Sancte Ioannes meritorum tuorum copias nequeo

digne canere, as used by Guido in Figure 3-2). Line 10-12 declares the *vowel-

pitch-matrix* variable that holds the 2-dimensional vowel-pitch assignment, which

is populated by the previously declared *vowels*, and *pitches* variables that were

mapped to each other via the mapcar function, or ((A 60) (E 62) (I 64) (O

65) (U 67)). In lines 14-15 an empty variable *melody* is declared that will hold the

generated melody later in the script. The string->list function (lines 17-24) takes

the text string from the *sentence* variable, and converts all occurring characters to

a list: (S A N C T E I O A N N E S M E R I T O R U M T U O R U M C O

30 Asterisks surround global variables in Common Lisp, a practice also known as “earmuffs.”

Conrad Barski, Land of Lisp: Learn to Program in Lisp, One Game at a Time! (San Francisco: No Starch
Press, 2011), 23. Robert Brown and François-René Rideau, "Google Common Lisp Style Guide", Google,
Inc. https://google-styleguide.googlecode.com/svn/trunk/lispguide.xml (accessed October 2, 2014). Global
variables are available everywhere within a script, unlike local variables in a function, which are only
available to the function that they occur in. In the following script an example of a local variable would be
sentence, which is provided as an argument to the string->list function.

 32

P I A S N E Q U E O D I G N E C A N E R E).31 Since only vowels are used

for the pitch generation, all consonants need to be trimmed from the previously

generated letter list, which is the purpose of the remove-consonants function in lines

26-35. Here is the resulting letter sequence: (A E I O A E E I O U U O U O I A

E U E O I E A E E). All that’s left to do is to assign pitches recursively to the

generated vowel sequences, which is done via the pitched-melody function in lines

37-42. This is the generated melody: (60 62 65 60 62 62 64 65 67 67 65 67

65 64 60 62 67 62 65 64 62 60 62 62).32

Figure 3-3: Guido's second algorithm outcome.

Guido shows an additional example with which to set another text to music

according to his vowel placement scheme, and how adding another vowel note

assignment array can vary this principle, as ut tibi paullo liberius liceat evagari,33

essentially shifting the vowel array (Guido-3 - Example 3-2). Guido exemplifies not just

one algorithm (Guido-1 - Figure 3-1), the vowel pitch assignment, and as mentioned by

numerous cited sources, the note assignment to text syllable vowel occurrences (Guido-

2 - Figure 3-2), but a third algorithm that manipulates the vowel-pitch array through shift

31 However, any other sentence can be used by assigning it to the variable *sentence*, and it

would generate different melodies.

32 The progn function (lines 44-52) sequentially process all variables and functions of Guido’s
second algorithm and generates the melody at once. The function is akin to trigger in Pd or Max. The red
MIDI pitch indicates an anomaly where two consecutive vowels in the Latin text produce two different
pitches, but Guido’s resulting melody only assigns one pitch.

33 (“…to give you a little more freedom in order to be permitted to roam.”)

 33

operations (Guido-3 - Example 3-2).34 The “phase shift” procedure of the vowel to pitch

assignment is reminiscent of combining a color (multiple repeating melody) and talea

(rhythmic model) segments in an isorhythmic motet.35 To illustrate that the vowel to

pitch assignment is a recursive algorithm of finite quality the following example is

provided in Lisp:36

1. ;;; ===== algorithms guido-one, and guido-three ===== ;;;
2.
3. ;; ----- variables ----- ;;
4.
5. (defparameter *gamut*
6. '(43 45 47 48 50 52 53 55 57 59
7. 60 62 64 65 67 69 71 72 74 76)
8. "Holds the gamut.")
9.
10. (defvar *vowels*
11. '(a e i o u)
12. "Holds vowels.")
13.
14. ;; ----- guido-one ----- ;;
15.
16. (defun guido-one (vowels gamut)
17. "Assigns five vowels sequentially to the pitches
18. of the gamut. Repeats assigning vowels sequentially
19. until the entire gamut has been assigned with vowels."
20. (if (null gamut) nil
21. (if (null vowels)
22. (cons
23. (list (first gamut) (first *vowels*))
24. (guido-one (rest *vowels*) (rest gamut)))
25. (cons
26. (list (first gamut) (first vowels))
27. (guido-one (rest vowels) (rest gamut))))))
28.
29. ; testing guido-one
30. ; (guido-one *vowels* *gamut*)
31.
32. ;; ----- guido-three ----- ;;
33.
34. (defun rotate (vowels direction)
35. "Rotate order of vowels."

34 Loy acknowledges the algorithmic nature of this procedure. Loy, 298.

35 The color and talea definitions here are taken from Algorithmic Composition. Nierhaus, 21-23.
More on the isorhythmic motet is to follow.

36 The example above can be copied and pasted into a Common Lisp run-time environment and
run. The Γ-ut is described here in MIDI pitch numbers.

 34

36. (cond
37. ((eql direction 'right)
38. (setf *vowels*
39. (append
40. (last vowels)
41. (butlast vowels))))
42. ((eql direction 'left)
43. (setf *vowels*
44. (append
45. (rest vowels)
46. (list (first vowels)))))
47. (t "The direction is specified using
48. the terms 'left' or 'right' as parameters.")))
49.
50. ; testing guido-three ;
51. (rotate *vowels* 'left)
52. (rotate *vowels* 'right)
53.
54. ;; ----- use ----- ;;
55.
56. ; now combining the two:
57. ; 1. Rotate
58. ; 2. Assign vowels sequentially
59. (rotate *vowels* 'left)
60. (guido-one *vowels* *gamut*)
61.

Example 3-2: Guido's Micrologus algorithm 1 & 3 in Common Lisp.

Lines 1-4 provide organization of the script via formatted documentation strings.

The amount of semicolons used as documentation string delimiters determines the

color-coding within the Clozure Common Lisp IDE. Lines 5-8 define the global variable

gamut, and a discrete pitch sequence is assigned. Lines 10-12 define the global

variable *vowels* with its corresponding five vowel assignment. Lines 16-27 define a

recursive function that is the algorithm described by Guido called guido-one. The

function takes two parameters as its argument, namely the vowel sequence, and the

gamut. Line 20 shows an if/else statement that stops the recursion of the algorithm by

stating that if no pitches of the gamut are available anymore, return nil, or the end of

the new list that is being generated by the algorithm. Line 21 utilizes another, or nested,

if/else statement that evaluates whether the end of the vowel sequence has been

 35

reached. If the end of the vowel sequence has been reached, line 22 creates a new

list, also known as cons-ing, by (line 23) combining the first value of the

remaining pitches of the gamut with a new re-bound instance of the original *vowels*

sequence, which then (line 24) recurses back to the guido-one function with the re-

bound *vowels* sequence and the remaining pitch sequence of the gamut.37 If the

end of the vowel sequence has not been reached (line 25), line 26 creates a new list

by assigning the first available pitch from the gamut to the first available vowel

from the vowels sequence. The remaining items from the vowels sequence and the

gamut are then passed to the guido-one function anew in line 27. Line 30 provides a

REPL instantiation of the guido-one function, by including the global variables of the

vowels and *pitches* lists.38

Guido describes how more creative freedom is allowed by assigning rotated

instances of vowel sequences to pitch sequences. Guido limits the possibilities of

rotation from “a, e, i, o, u” to “o, u, a, e, i.” It should be noted that De Musica, by

someone named John, around 1100 – modeled after Guido’s Micrologus – appearing in

a letter to the Abbott or bishop John of Fulgentius, does advocate further rotations of the

vowels sequence in Chapter 20 titled “How chants can be composed by means of their

37 Re-binding a global variable by a function violates the orthodox practice of functional

programming, and is considered a “mutation,” which is supposed to be avoided. Barski, 293.

38 REPL stands for read-evaluate-print loop and is an interactive computer environment, also
called a listener. Other computer music programming environments such as Pd, MaxMSP, OpenMusic,
and PWGL all feature listeners as well. Philosophically, the loop of the REPL is an endless loop and can
continue indefinitely, until some sort of quit command is issued. This quality gives the loop a sort of “alive”
or “organic” quality, while programming.

 36

vowels.”39 The integration of the vowel rotation occurs in line 34 of Example 3-2, by

defining the rotate function. The function checks for the condition whether the vowel

sequence should be rotated to the 'right or the 'left (lines 37 and 42). If the vowels

are to be rotated toward the right, the global variable *vowels* is rebound (line 38)

through the operation of prepending (line 39) the last vowel of the list (line 40) to the

beginning of the list, and adding the remainder of the list (line 41). If the vowels are to

be rotated toward the left, then the global variable *vowels* is rebound through the

operation of appending the first vowel of the list (line 46) to the remaining vowel list

(line 45). Lines 51 and 52 provide functionality to run the rotate function in the REPL

repeatedly by the user (user defined recursion). The outcome of guido-one produces

the matrix in Example 3-3, and corresponds to what Guido showed in Table 3-1 and

Figure 3-1. Furthermore, the vowels can be rotated either to the left or the right, and

new matrices of vowel-pitch assignments can be created by then running other

instances of the guido-one function (lines 56-60).

((43 A) (45 E) (47 I) (48 O) (50 U) (52 A) (53 E) (55 I) (57 O) (59 U) (60 A)
(62 E) (64 I) (65 O) (67 U) (69 A) (71 E) (72 I) (74 O) (76 U))

Example 3-3: Outcome of Example 3-2.

Guido is known also for establishing “the framework for our conventional system

of music notation” by creating a system in which a staff with lines and spaces is

accompanied by a clef.40 Now composers could notate pitches, but the problem of

39 Warren Babb and Claude V. Palisca, Hucbald, Guido, and John on Music: Three Medieval

Treatises. (New Haven: Yale University Press, 1978), 87, 144-146.

40 Mary Simoni and Roger B. Dannenberg, Algorithmic Composition: A Guide to Composing
Music with Nyquist (Ann Arbor: The University of Michigan Press, 2013), 7. Claude V. Palisca and
Dolores Pesce, "Guido of Arezzo [Aretinus]", Grove Music Online. Oxford Music Online. Oxford University

 37

notating rhythm was still not solved. According to Cope, Johannes de Garlandia’s (ca

1270-1320) De Mensurabili musica “provides clear algorithms for the practical use of

rules in analyzing music of its day,” and was built on Guido’s contributions by “proposing

a new theory of consonances,”41 dividing them into perfect (unison, octave), imperfect

(major third, minor third), and medial (fifth, fourth) types while ascribing the same

attributes to dissonances (imperfect – major sixths, minor sevenths, medial – whole

tone, minor sixths, perfect, semitone, tritone, major seventh).42 These intervallic

relationships are important, since Garlandia “stresses melodic independence between

the voices (diversi cantus).”43 Foremost, “Garlandia also defined classes of organum,

pitches, and ligatures.”44 “Musica menusurabilis refers to rhythmically notated

polyphonic music (as opposed to the “unmeasured” music of the plainchant – musica

plana).”45 Along with ideas of rhythmic durations Garlandia also introduced the concept

of rests, along with its notation, in the same treaty.”46 Ars cantus mensurabilis (1280), by

Press http://www.oxfordmusiconline.com/subscriber/article/grove/music/11968 (accessed February 1,
2014).

41 Cope, Hidden Structure: Music Analysis Using Computers, 12. However, Cope gets the dates
wrong for Johannes de Garlandia – Cope says that Johannes lived from 1195-1272, but New Grove gives
the dates of 1270-1320. Rebecca A. Baltzer, "Johannes De Garlandia", Grove Music Online. Oxford
Music Online. Oxford University Press.
http://www.oxfordmusiconline.com/subscriber/article/grove/music/14358 (accessed January 31, 2014).

42 Sarah Fuller, "Organum-Discantus-Contrapunctus in the Middle Ages," in Western Music
Theory, ed. Thomas Christensen, (New York: Cambridge University Press, 2002), 486.

43 Ibid.

44 Cope, Hidden Structure: Music Analysis Using Computers, 12.

45 Anna Maria Busse Berger, "The Evolution of Rhythmic Notation," in Western Music Theory, ed.
Thomas Christensen, (New York: Cambridge University Press, 2002), 629.

46 Ibid., 630. The concept of the emerging complexity of polyphonic music directly contributes to
the development of notation. Music notation itself can be seen as being algorithmic. For one, symbolic

 38

Franco of Cologne, was popular during the Middle Ages and Renaissance, due to its

clarity and its good organization.47 Franco re-evaluates Garlandia’s concepts, and

“places the separate note value rather than the modal pattern at the center.”48 In effect,

“by notating rhythm using separate note shapes and ligatures, a singer could now read

and perform a score without the knowledge of rhythmic modes.”49 One of the

characteristics of the Ars Nova movement depends on the ability to notate complex

rhythmic schemes.

A contemporary of Garlandia’s Jacques de Liège (1270-1340) published

Speculum musice (1340) and subdivided the practice of “music theory into five

categories: Heavenly (celestis), cosmic (mundana), human (humana), instrumental

(sonorous) and analysis (practica).”50 Pilippe de Vitry (1291-1361) was involved in the

compilation of the Roman de Favel and more importantly published Ars nova (1320),

after which a whole new epoch of late medieval music is named.51 In addition, de Vitry is

also credited with having written some of the first isorhythmic motets.52 Isorhythmic

assignment of notes and their duration (array algorithm), modern notation in the twentyfirst century is
usually conducted on computers utilizing algorithms, and “music notation itself has constraints that often
require algorithmic solutions.” Cope, The Algorithmic Composer, 12. It turns out, however, that Garlandia
is really only an editor of De mensurabili musica. Baltzer.

47 Berger, 632.

48 Ibid., 634.

49 Ibid.

50 Cope, Hidden Structure: Music Analysis Using Computers, 12. Jacque de Liège also opposed
elements of the Ars Nova practice as set forth by de Vitry.

51 Margaret Bent and Andrew Wathey, "Vitry, Philippe De", Grove Music Online. Oxford Music
Online. Oxford University Press. http://www.oxfordmusiconline.com/subscriber/article/grove/music/29535
(accessed October 24, 2012).

52 Ibid.

 39

motets reached their zenith with Guilliame de Machaut (1300-1377), and are considered

by many to be part of algorithmic practice.53

“Isorhythm” (from Greek ἴσος – ‘equal’, and ρυθμός – ‘rhythm’) as a term did not

exist during the Middle Ages, but was implied through the use of the term talea and

color.54 The melodic repetition occurs in the tenor of a given motet.55 There are many

different variations of isorhythmic motets, some feature one or multiple colors, one or

multiple taleas, and can also feature different proportions within taleas, expressed in

schemes of diminution and augmentation.56 The following example shows the talea and

color, and how these are combined in the tenor part of an isorhythmic motet titled

Detractor est from the Roman de Fauvel (the composer is unknown):57

53 Nierhaus, 21-23. Roads, 822. Loy. Kirchmeyer. Rowe, 6. Cope, The Algorithmic Composer, 3.

54 Margaret Bent, "Isorhythm", Grove Music Online. Oxford Music Online. Oxford University
Press. http://www.oxfordmusiconline.com/subscriber/article/grove/music/13950 (accessed October 28,
2012). Examine footnote 37 and its corresponding text for the definition of color and talea.

55 Ibid.

56 Although musicians generally understand the "isorhythmic motet" to include a repeated
rhythmic pattern (talea) and a repeating but non-congruent melodic pattern (color), it is only the talea that
defines the motet as "isorhythmic." Many examples of the "isorhythmic" motet exist without an
accompanying color.

57 Willi Apel and Archibald T. Davidson, Historical Anthology of Music, 2 vols., vol. 1 (Cambridge,
Massachusetts: Harvard University Press, 1977), 45-46. English title: Withdrawn. By the 12th century,
musicians were already measuring out blocks of "time" by creating rhythmic patterns that would then be
repeated to form the architectural basis of a composition. This measured-off block of time would later
come to be called, in Latin, a talea. The word talea was a tailor's term meaning "stick" or "cutting." The
talea was much like today's yardstick; it could be used as a gauge to measure out a consistent length of
cloth or, in music, "time." In Detractor est, the rhythmic-mode patterns of the Notre Dame school are
evolving into the mature talea of the isorhythmic motet. The pattern has been expanded from the very
simple rhythmic mode, and the newly devised pattern is repeated and/or replaced with a new pattern,
giving the work an architectural structure, in the tenor, of aaaba.

43

 40

Figure 3-4: Detractor est - Talea.

Figure 3-5: Detractor est - Color.

The measures in Figure 3-6 show how the talea (Figure 3-4) and color (Figure

3-5) are superimposed on top of each other to form the isorhythm.58 On first

observation, the example does not seem to have a lot in common with Guido’s algorithm

as mentioned above (Table 3-1 and Figure 3-1). However, Example 3-4 shows how an

algorithm in Lisp would take care of the isorhythmic procedure from Figure 3-4, Figure

3-5, and Figure 3-6.

58 Measures 42 and 43 are the end of the piece and alter the talea structure for cadential

purposes.

 41

Figure 3-6: Detractor est - tenor, Talea and Color combined.

1. (defparameter *color*
2. '(55 57 59 57 57 57 55
3. 57 55 57 55 55 53 52
4. 55 57 60 60 59 60 62
5. 60 62 62 60 60 62 59
6. 60 59 57 55 57 59 57
7. 57 60 62 60 60 59 57
8. 57 59 60 59 57 59 59)
9. "A pitch class collection representing the color.")
10.
11. (defparameter *talea*
12. '(dh q h dh qr qr q q h dhr)
13. "Holds the talea, or representative values for durations, and rests.")
14.
15. (defun isorhythm (talea color)
16. "Recursive function to build an isorhythm with the talea and color as

arguments."
17. (if (null color) nil
18. (if (null talea)
19. (cons
20. (list (first *talea*) (first color))
21. (isorhythm (rest *talea*) (rest color)))
22. (cons
23. (cond

!
"

6

#
$ $

52

#
1

! !
3

#$
% &

!

4

&

$ $

11

&
10

#
12

"
!

8

$#
7
%

! &#
9

!!

#
18

"!$
17

! # $
14

#
15

!!
13
%

$&
16

&

! #
24

"#
21

!!! # $
20 22

&
19
%

23

$$&

26

$#! #
27

!
&!

28

$&
25
% #

30

"!$
29

!
32

$#! &
34

&!
33

#
35

$$%
31

#
36

! "

! !
39

#$
38

#! & $ $
41

&
40

! !
42

#
37
%

#
43

!

 42

24. ((eql (first talea) 'qr)
25. (list (first talea) (first (push 'r color))))
26. ((eql (first talea) 'dhr)
27. (list (first talea) (first (push 'r color))))
28. (t (list (first talea) (first color))))
29. (isorhythm (rest talea) (rest color))))))
30.
31. ; ----- running the algorithm ----- ;
32. (isorhythm *talea* *color*)
33.

Example 3-4: Isorhythmic algorithm in Lisp.

Lines 1-9 in Example 3-4 define the global variable that will hold a PPC that

represents the *color*. The PCC Lines is expressed in MIDI pitch values whereas

middle C equals 60. Lines 11-13 define the *talea* global variable. The *talea*

consists of representative values of note durations and rests (dh = dotted half, h = half,

q = quarter, dhr = dotted half rest, qr = quarter rest). The isorhythm algorithm is

defined by the recursive function named isorhythm and accepts the talea and the

color as arguments in line 15. Line 17 declares an if/else condition that evaluates to

true when the end of the color is reached, and returns a nil value to end the

recursion. When the condition is false a nested if/else statement is initiated that

determines the end of the talea (line 18). If the end of the talea evaluates true, the

first value of the talea is re-bound to the global variable *talea* and is combined

with the corresponding first value of the color (line 20). The remaining list items

from the talea and the color sequences are then passed back into the function

isorhythm for recursion (line 21). If the end of the talea has not been reached

another list is created in line 25. The first item of the talea is assigned to the

first corresponding item of the color (line 27), and the remaining items from the

talea and color sequences are recursively passed back to the isorhythm function

 43

(line 29).

However, another nested conditional statement determines whether or not a rest

occurred in the talea and a rest instead of a note needs to be inserted into the new

list (lines 25 - 27). If, for example a quarter rest ('qr) is indicated in the talea list

(line 24), then the first item of the talea sequence is combined with the first item

of the outcome of an operation that first inserts the atom 'r and then pushes the rest of

the color sequence one value over to the right in the list’s index (line 25).59 This is

done so that the interruption of the color list picks up where it left off when it is passed

back into the recursion function isorhythm with the remaining values of the talea

and color sequences in line 29. Lines 26 and 27 accomplish the same goal except

with a dotted half rest ('dhr). Since the conditional statement is a switch statement (a

compound if/else statement that decided on more than one if/else condition via the

cond function) a default value is established in line 28. In order to run the algorithm a

call to the function isorhythm with its corresponding parameters of *talea* and

color is provided in line 32 for REPL operation. The resulting isorhythmic matrix of

the isorhythm algorithm is shown in Example 3-4 (which corresponds to Figure 3-6).60

((DH 55)(Q 57)(H 59)(DH 57)(QR R)(QR R)(Q 57)(Q 57)(H 55)(DHR R)
 (DH 57)(Q 55)(H 57)(DH 55)(QR R)(QR R)(Q 55)(Q 53)(H 52)(DHR R)
 (DH 55)(Q 57)(H 60)(DH 60)(QR R)(QR R)(Q 59)(Q 60)(H 62)(DHR R)
 (DH 60)(Q 62)(H 62)(DH 60)(QR R)(QR R)(Q 60)(Q 62)(H 59)(DHR R)
 (DH 60)(Q 59)(H 57)(DH 55)(QR R)(QR R)(Q 57)(Q 59)(H 57)(DHR R)
 (DH 57)(Q 60)(H 62)(DH 60)(QR R)(QR R)(Q 60)(Q 59)(H 57)(DHR R)
 (DH 57)(Q 59)(H 60)(DH 59)(QR R)(QR R)(Q 57)(Q 59)(H 59))

59 An atom in Common Lisp corresponds to something that is neither a list nor a number, and in

this case is represented by a symbol.

60 The note names (in MIDI values) are paired with their durations. If a rest occurs the MIDI note
value is assigned “R.”

 44

Example 3-5: outcome of Example 3-4.

Comparing the isorhythm algorithm (Example 3-4) to the guido-one algorithm

(Example 3-2) shows that they are very similar. The only changes, aside from a different

naming structure, have been italicized (Example 3-4, lines 23 - 27). These changes

were needed to compensate for the integration of rests. Surprisingly, both algorithms set

out to accomplish two different musical tasks, but remain structurally the same. In effect,

these formal techniques were used in two ways, (1) “to achieve an underlying unity and

direction in a work,” and (2) “to determine an independent agent of choice for certain

details.”61

During the Middle Ages other algorithmic procedures seem to appear within

contrapuntal practice that derive their heritage from practices within Euclidian

geometry.62 Two often cited early examples are Guillaume Machaut’s secular three part

rondeau “Ma fin est mon commencement” (my end is my beginning) from the fourteenth

century,63 and the Agnus Dei from Guillaume Dufay’s (1397-1474) Missa L’Homme

armé from the fifteenth century.64 The practice is known as cancrizans, or retrograde,

and involves “a succession of notes to be played backwards, either retaining or

61 Loy, 299.

62 It is not surprising that medieval composers would seek interdisciplinary approaches within the
study of the quadrivium (arithmetic, geometry, music – really music theory, and astonomy), especially
since Boethius, and/or Cassidorus (both music theorists) advocated the quadrivium.

63 William Drabkin, "Retrograde", Grove Music Online. Oxford Music Online. Oxford University
Press. http://www.oxfordmusiconline.com/subscriber/article/grove/music/23263 (accessed November 5,
2012).

64 Loy, 300.

 45

abandoning the rhythm of the original.”65 The practice represents a geometric

transformation of melodic pitch material around a vertical axis. If one thinks of a

Euclidian plane, considering the durational values of pitches as being equal – or

retaining the original rhythms, this geometric transformation is considered isometric.66

Figure 3-7: Guillaume Machaut's Ma fin, first 20 measures, tenor.

Examining Machaut’s Ma fin shows that the first 20 measures in the tenor part

(Figure 3-7) are repeated in retrograde the following 20 measures (Figure 3-8).67 The

same is also true for the triplum and the cantus, with the only difference that after the

first 20 measures the triplum part is retrograded in the cantus part and vice versa for the

following 20 measures. The rhythmic values are mirrored identically, thus being

isometric.

65 Drabkin.

66 Vi Hart, "Symmetry and Transformations in the Musical Plane," in Bridges 2009: Mathematics,
Music, Art, Architecture, Culture, ed. Craig S. Kaplan and Reza Sarhangi (Banff: Tarquin Books, 2009),
170.

67 The full score can be viewed in Appendix 1: A.1.

4 53 86 7 1091 2

1716 2018 1912 1311 14 15

 46

Figure 3-8: Guillaume Machaut's Ma fin, following 20 mm. retrograde (tenor).

Retrograde is an isometric procedure that can easily be translated to an

algorithmic procedure. The practice is so common that most programming languages

have a built-in reverse (retrograde, i.e. vertical reflection) function.68 Lisp contains the

built-in function reverse. But when using the reverse function there is no indication on

how this function actually works, or whether it makes use of algorithmic procedure. The

reverse function is a special kind of function in Lisp and is called a macro. Unlike a

Microsoft Word macro, a macro in Lisp is a type of abstraction that extends the Lisp

core language. Macros make Lisp incredibly powerful, since anything that does not exist

in the core language can be added on ad infinitum.69 Macros deflate into actual

functions at runtime that do not have to be reprogrammed. The following example

shows how the reverse function works programmatically, or how the reverse macro

would deflate at runtime (lines 9-13):

1. (defparameter *pitches*
2. '(48 55 48 48 48 55 48 55 57 55 48
3. 50 48 57 55 54 55 48 48 48 r
4. 50 57 50 55 53 52 50 48 52 53
5. 55 48 52 50 48 55 48 50 52 53
6. 55 48 55 53 50 48 50 52 55 54
7. 52 50)

68 MakeMusic’s Finale 2014 has a built-in retrograde tool under “Plug-ins” > “Scoring and

Arranging” > “Canonic Utilities.”

69 In Pd macros are in fact called abstractions.

282722 292321 24 25 26

3534 38 3936 37 4030 32 3331

 47

8. "Holds a pitch sequence.")
9.
10. (defun retrograde (pitches)
11. "Emulates Lisp's reverse function."
12. (if (eql pitches nil) nil
13. (append
14. (last pitches)
15. (retrograde (butlast pitches)))))
16.
17. ; running retrograde function with pitches as argument
18. (retrograde *pitches*)
19.

Example 3-6: Retrograde algorithm.

In the first line the global variable *pitches* is defined, and sequence of

pitches is bound to that variable (lines 2-7). In this case the pitch sequence from

Machaut’s Ma Fin’s tenor has been bound in MIDI numbers, and for the one rest r was

specified. In line 10-15 the recursive function of retrograde is defined, and requires

the pitches as its argument.70 Line 12 shows the condition under which the recursion

stops, i.e. when there are no leftover pitches in the pitch sequence return nil, or the

end of a list. Appending the last pitch to a remaining list that contains everything

except the last pitch is then fed into the retrograde function anew, and creates a

retrograded pitch sequence. Line 18 provides a function call (for REPL use) to the

retrograde function with the *pitches* provided as an argument. The recursion of

a defined set and the automation involved within the recursion makes the retrograde

operation algorithmic in nature.

Cancrizans is only one type of mirroring in music, namely the reflection around a

vertical axis. Another category of mirroring is the principle of melodic inversion, whereby

melodic material is reflected around a horizontal axis. Guido d’Arezzo states, “when a

70 Cope lists a similar retrograde function in Computers and Musical Style. Cope, Computers and
Musical Style, 77.

 48

neume traverses a certain range or contour by leaping down from high notes, another

neume may respond similarly in an opposite direction from low notes, as happens when

we look for our likeness confronting us in a well.”71 This statement can be interpreted in

two ways: 1. Guido is describing contrary motion, and/or 2. Guido is describing

inversion, since the reflection in a well describes a reflection around a horizontal axis.72

Figure 3-9: Gradual Benedicta.73

The musicologist Willi Apel traces melodic inversions to the fifteenth century,

referring to the works of Ciconia and tenors of masses, and motets by Dunstable

(indicated with “subverte lineam” in the tenor of Veni sancte spritus), and Obrecht.74

While these examples are on the cusp of the late Middle Ages and the early

Renaissance, Leo Treitler points to an example (Figure 3-9) from the Notre Dame

school, ca. 1200, using inversion, and a second example (Figure 3-10) from an

Aquitanian manuscript (Saint Marital polyphony) that features alternating patterns of

71 Babb and Palisca, 71.

72 The term in Euclidian transformation is horizontal reflection. Hart, 170.

73 Leo Treitler, "Regarding Meter and Rhythm in the Ars Antiqua," The Musical Quarterly 65, no. 4
(1979): 546.

74 Willi Apel, Harvard Dictionary of Music, Second ed. (Cambridge, Massachusetts: Harvard
University Press 1972), 423. Willi Apel, The Notation of Polyphonic Music 900-1600, Fourth ed.
(Cambridge Massachusets: The Mediaeval Academy of America, 1949), 187.

8

8

 49

inversions and retrograde inversions.75 Treitler’s second example clearly shows that

retrograde inversion also emerged from music compositional practices during the Middle

Ages.76

Figure 3-10: Versus Omnis curet homo.77

These compositional techniques (retrograde, inversion, retrograde-inversion)

generate three different melodies from one initial melodic idea.78 The procedures can be

seen as having been derived from Euclidian transformations. It is not surprising that

these three techniques rose out of the scholarly life during the Middle Ages, since “a

medieval scholar could demonstrate that he had really ‘learned’ or ‘mastered’ the text

when he could recite it backwards, a medieval musician might be admired for applying

75 Treitler, "Regarding Meter and Rhythm in the Ars Antiqua," 546-547.

76 The term in Euclidian transformation is in this case 180º rotation (there can be other rotations
according to different degrees that in the transformation of melodic material are not particularly useful).
Hart, 170.

77 Eng.: “Takes care of all men.” Treitler, "Regarding Meter and Rhythm in the Ars Antiqua," 546.

78 In canons the Euclidian transformation of vertical translation, or transposition are used as well.
Sequences can be considered vertical translations. A horizontal translation is simply repetition in music
according to Hart. Furthermore, Hart states that the vertical and horizontal translation is a transposed
repetition in music. Hart mentions two more Euclidian transformations. The first being the horizontal glide
reflection, or a repeated inversion, and the second being the vertical glide reflection that is a transposed
retrograde. Hart, 170. Thus in Figure 3-9, the third three-note pattern is a horizontal glide reflection. Hart
partially bases her insights on a book article by Wilfrid Hodges, "The Geometry of Music," in Music and
Mathematics: From Pythagoras to Fractals, ed. John Fauvel, Raymond Flood, and Robin Wilson, (New
York: Oxford University Press, 2003).

8

8

 50

inversions and retrograde movement to his tenors.”79 Two additional compositional

practices that were not mentioned are the techniques of diminution and augmentation.

Proportional isorhythmic motets use these two techniques exhaustively, e.g: the

isorhythmic motets written by John Dunstable, and many others.80 Diminution decreases

the durational values of pitch material, and augmentation increases the durational

values of pitch material. By themselves these two techniques do not generate

particularly interesting melodic material, unless they are combined with the three

generative procedures mentioned above that directly transform melodic material. The

previously mentioned generative techniques continue to be of importance ever since the

Middle Ages.

From observing the first two three-note groups from Figure 3-9 in the top part ((f,

e, d), (f, g, a)), and the first two three-note groups in the bottom part ((f, g, a), (f, e, d)), it

becomes clear that the bottom part has been inverted from the top part.81 This inversion

can be expressed algorithmically the following way in Lisp:

1. (defparameter *melody* '(77 76 74 77 79 81)
2. "Sequence of MIDI pitches.")
3.
4. (defparameter *diatonic-pitch-classes*
5. '((0 0 C) (1 2 D) (2 4 E) (3 5 F)
6. (4 7 G) (5 9 A) (6 11 B))
7. "Matrix of diatonic pitches, their pitch class
8. designation, and pitch names.")
9.

79 Anna Maria Busse Berger, Medieval Music and the Art of Memory (Berkeley: University of

California Press, 2005), 7.

80 Brian Trowell, "Proportions in the Music of Dunstable," Proceedings of the Royal Musical
Association 105, (1978-1979).

81 It should be noted that this inversion could also be viewed as simply changing the order of the
three note sets, whereby the first three note set from the top part is simply placed behind the second
three note set of the top part, in order to form the second part (middle staff).

 51

10. (defun contour (melody &optional (invert 1))
11. "Calculates contour of a melody by ascending or
12. descending intervals. Invert intervals with -1."
13. (if (eql (second melody) nil) nil
14. (cons
15. (* (- (second melody) (first melody)) invert)
16. (contour (rest melody) invert))))
17.
18. (defun midi->diatonic (melody &optional (count 0))
19. "Saves number value for octave and converts MIDI
20. to diatonic pitch classes."
21. (if (eql (first melody) nil) nil
22. (if (eql count 0)
23. (cons
24. (list (floor (/ (first *melody*) 12)))
25. (list (midi->diatonic melody (+ count 1))))
26. (cons
27. (first
28. (find
29. (mod (first melody) 12)
30. *diatonic-pitch-classes*
31. :key #'second))
32. (midi->diatonic (rest melody) (+ count 1))))))
33.
34. (defun diatonic->midi (melody &optional (starting-pitch 60))
35. "Converts diatonic pitch classes to MIDI pitches."
36. (if (eql (first melody) nil) nil
37. (cons
38. (+
39. (second
40. (find
41. (first melody)
42. *diatonic-pitch-classes*
43. :key #'first))
44. starting-pitch)
45. (diatonic->midi (rest melody) starting-pitch))))
46.
47. (defun invert-melody (melody contour &optional (count 0))
48. "Inverting a melody."
49. (if (eql (first contour) nil) nil
50. (if (eql count 0)
51. (cons
52. (first melody)
53. (invert-melody melody contour (+ count 1)))
54. (cons
55. (+ (first melody)(first contour))
56. (invert-melody
57. (list (+ (first melody) (first contour)))
58. (rest contour)
59. (+ count 1))))))
60.
61. (defun invert (melody)
62. "Invert a melody - main function."
63. (diatonic->midi
64. (invert-melody
65. (second (midi->diatonic melody))
66. (contour (second (midi->diatonic melody)) -1))
67. (* (first (first (midi->diatonic melody))) 12)))

 52

68.
69. (progn
70. (format t "~%Melody: ~t~t~t~t~t~t~t~t~t~A" *melody*)
71. (format t "~%Inverted Melody: ~A" (invert *melody*)))
72.

Example 3-7: Inversion algorithm (as seen in Figure 3-9).

In line 1 a small melodic fragment is assigned to the variable *melody*

alongside its corresponding documentation string. The MIDI values assigned here

correspond to the pitch sequence f, e, d, f, g, and a, or: (77 76 74 77 79 81). Lines

4-8 define a matrix that translates pitch classes to diatonic pitch classes, and their

corresponding pitch class names, as shown in Table 3-2. Diatonic pitch classes are

established here to stay true to the character of the actual inversion in Figure 3-9,

especially in regards to the distribution of half and whole steps. That means the diatonic

pitch classes correspond to the scale degrees of the major scale. The matrix is utilized

in later functions to translate MIDI values, to pitch class values, to diatonic pitch class

values (or scale degrees), and vice versa.

Table 3-2: Matrix from lines 4-8.

scale degree 0 1 2 3 4 5 6

PC 0 2 4 5 7 9 11

note name c d e f g a b

Lines 10-16 define the contour function to determine the shape of the given

pitch sequence.82 The contour of a melody is established by calculating the intervals

82 The contour function is similar to Cope’s interval-translator function. Cope,

Computers and Musical Style, 79.

 53

used to move from one scale degree to the next, resulting in the following list (-1 -1 2

1 1). The established contour is then inverted, meaning if the first interval moved

upward in stepwise motion, the inverted interval will move downward in stepwise

motion, e.g.: (1 1 -2 -1 -1). Through recursion, the procedure is repeated until the

end of the melodic fragment is reached, and the inverted contour has been established.

The midi-diatonic function in lines 18-32 converts MIDI values to a list of

scale degree values that includes octave information. Dividing the first note of the

melody by 12, and storing the resulting integer value by discarding the resulting float

value stores in the octave in which the melodic fragment that is to be inverted occurred,

or (6). Afterwards, all the pitches of the sequence first are converted to pitch classes

through a mod 12 operation, and second are converted from pitch classes, with help of

the *diatonic-pitch-classes* matrix established in lines 4-8, to scale degrees,

e.g: ((6) (3 2 1 3 4 5)). Lines 34-45 show the diatonic->midi function that

converts scale degree values back to MIDI values, with help of the previously

established octave indicator, and the *diatonic-pitch-classes* matrix.

The following invert-melody function actually inverts the melody by mapping

the inverted contour onto the pitch material (lines 47-59). The starting pitch of the

melody is established first. Thereafter, using the starting pitch and consecutively

resulting pitches from applying the contour values creates the new inverted melody

consisting of scale degrees: (3 4 5 3 2 1). The last function (invert), lines 61-67,

ties all previously mentioned functions together to simply invert a melody specified in

MIDI values, and return the inversion in MIDI values. All melodic values are translated

 54

first to pitch classes, and then to scale degrees. Second, from the melody expressed in

scale degrees an intervallic contour is created and inverted. Third, the inverted

intervallic contour is mapped onto a starting pitch of the existing melody, and the

resulting inverted melody is built in scale degrees. Fourth, the inverted melody is

translated back into appropriate MIDI values: (77 79 81 77 76 74). The final step

occurs within the (progn) function, which creates a program processing order, and

first, prints the melody to the REPL’s listener window, and second, prints the outcome of

the inversion function to the listener window, when running the program or copying and

pasting the program into the listener window of a REPL (Example 3-8).

The inversion algorithm can be used as part of a pattern-matching scheme for a

music-analysis algorithm.83 David Cope used a similar technique to detect melodic

contours during analysis.84

Melody: (77 76 74 77 79 81)
Inverted Melody: (77 79 81 77 76 74)

Example 3-8: Outcome of the inversion algorithm.

The medieval period left a large impact on how to conceive certain compositional

processes as formalizations, and set the foundation for later periods to expand on these

foundations. Whether or not all of these formalizations of music were actually developed

during this time period, or were merely compiled by scholars of the period remains

unclear.

83 The inversion algorithm did not make use of any particular rhythmic scheme, which may lead to

the impression of lack of dimension. However, since the algorithm is free of any rhythmic values it can
detect melodic patterns regardless of diminution, augmentation, or any other rhythmic variations.

84 David Cope, Computer Models of Musical Creativity (Cambridge, MA: MIT Press, 2005), 142.

 55

3.2.3. Renaissance

The next common thread in the narrative of algorithmic composition is soggetto

cavato dale parole – or a subject carved out of words – and was described by the

Renaissance music theorist Gioseffo Zarlino in Le istituzioni armoniche (1558).85 Loy

specifically characterizes the practice as an example of musical acrostics.86 The

example that both Kirchmeyer and Lockwood mention is Josquin’s subject based on the

name of Hercules, the duke of Ferrara.87 Josquin creates the subject by assigning

vowels occurring in the syllables that spell out the full name and title of the duke of

Ferrara to a discrete set of pitches (Table 3-3).88 The vowels of the syllables alliterate

with the vowels in the Latin pitch names. The technique is reminiscent of Guido’s vowel

to pitch assignment technique, in which a search algorithm matches vowel occurrences

85 Kirchmeyer, 18. Lewis Lockwood, "Soggetto Cavato", Grove Music Online. Oxford Music

Online. Oxford University Press. http://www.oxfordmusiconline.com/subscriber/article/grove/music/26100.
Loy, 300. Heinrich Glareanus makes the claim in his Dodekachordon in 1547 that “Josquin had invented
la-sol-fa-re-mi as a soggetto cavato on the promise of his procrastinating patron to take care of his salary,
'Laise faire moy' or 'Lascia fare a me.'” This motive becomes the basis of Josquin’s Missa La sol fa re mi.
Richard J. Agee, "Costanzo Festa's 'Gradus Ad Parnassum'," Early Music History 15, (1996): 12. Bonnie
J. Blackburn, "Masses Based on Popular Songs and Solmization Syllables," in The Josquin Companion,
ed. Richard Sherr, (2001).

86 Loy, 300.

87 Kirchmeyer, 18. Lockwood.

88 Another one of Josquin’s soggetto cavato examples is the fa-mi-fa motive carved out of Ma-ri-
a. Richard Sherr, "'Illibata Dei Virgo Nutrix' and Josquin's Roman Style," Journal of the American
Musicological Society 41, no. 3 (1988): 438. Willem Elders and L. Okken, "Das Symbol in Der Musik Von
Josquin Des Prez," Acta Musicologica 41, no. 3/4 (1969): 170. Cipriano di Rore expanded the soggetto
cavato in his Hercules mass, by using the expanded phrase of Vi-vat foe-lix Her-cu-les se-cun-dus dux
fer-ra-ri-ae quar-tus, resulting in the subsequent melodic material: mi, fa, re, mi, re, ut, re, re, ut, ut, ut, re,
fa, mi, re, fa, ut. Alvin Johnson, "The Masses of Cipriano De Rore," Journal of the American Musicological
Society 6, no. 3 (1953): 231. It becomes clear that Zarlino and de Rore had adapted the soggetto cavato
technique from their teacher Adrian Willaert, who used the technique in order to honor his patron Antoine
Perrenot de Granvelle (1517-1586) by creating a motif out of the nobleman’s motto Du-ra-te or ut-fa-re.
Ignace Bossuyt, "O Socii Durate: A Musical Correspondence from the Time of Philip Ii," Early Music 26,
no. 3 (1998): 441.

 56

to pitches (Example 3-1).

Table 3-4: Josquin's Missa Hercules Dux Ferrariae subject.

re (d) ut89 (c) re (d) ut (c) re (d) fa (f) mi (e) re (d)

Her- cu- les dux Fer- ra- ri- ae

However, in the soggetto cavato method the vowels occurring in solfège syllables

are matched with vowels occurring in words. The method seems slightly more restrictive

in what type of melodies can be generated, since Guido suggested that the order of

vowels could be rotated in order to achieve more varying results. Table 3-4 illustrates

what is possible with soggetto cavato.90

Table 3-5: Soggetto Cavato pitch-vowel assignment.

ut (c) re (d) mi (e) fa (f) sol (g) [la (a)]

u e i a o [a]

The Oxford Dictionary of English defines the word acrostic as (1) “A (usually

short) poem (or other composition) in which the initial letters of the lines, taken in order,

spell a word, phrase, or sentence;” (2) “A (usually short) poem (or other composition) in

which the initial letters of the lines, taken in order, spell a word, phrase, or sentence;”

and (3) “Any of various types of word puzzle in which a word or phrase is formed from

certain letters of the answers to several clues.”91 Therefore, musical acrostics from a

89 Now known as “do.”

90 “La” is parenthesized in square brackets in Table 3-4, since in the majority of examples the
vowel “a” is matched with the “fa” syllable, and not the “la” syllable.

91 "Acrostic, Adj.1 and N.", Oxford English Dictionary. OED Online. Oxford University Press.
http://www.oed.com/view/Entry/1867?rskey=3gSbqk&result=1 (accessed March 12, 2014).

 57

poetic standpoint are really only applicable to Guido’s Ut queant laxis, and it would be

better to categorize the soggetto cavato technique as musical cryptography (Figure

3-11). From that perspective Table 3-4 can be interpreted as a simple substitution

cipher algorithm, in which substituting a letter with a note encrypts text.92

Figure 3-11: Musical acrostics - Ut queant laxis.

3.2.4. Baroque

Algorithms can be rules written on paper, but mechanical devices can also create

automated processes through mechanical algorithms. Salomon de Caus (1576-1626),

who inter alia was a teacher of how to draw perspective, “described an organ in which a

pegged cylinder, turned by a water wheel, activated levers which triggered bellows to

force air through pipes.”93 Running water of rivers in the city of Heidelberg were the

source of propulsion for the water wheel.94 Additionally, de Caus also proposes a

“sound” sculpture that features an automated musical process. “Through art, Salomon

92 Cormen defines the algorithm in which substituting a letter with another letter encrypts text.
Thomas H. Cormen, Algorithms Unlocked (Cambridge, MA: MIT Press, 2013), 139. The algorithm itself is
akin to the pattern-matching algorithm described in Example 3-1.

93 Joel Chadabe, Electric Sound (Upper Saddle River, N. J.: Prentice Hall, 1997), 268.

94 Frances Yates, The Rosicrucian Enlightenment (New York: Routledge, 1999), 11-12.

rabris, ges-MI- to- rumla- xis fi-UT que- ant so- na- reRE-

bi- i re-pol- lu- ti LA- a- tum,tu- o- rum,FA- mu- li veSOL-

 58

de Caus transformed the heat of the sun into music” at sunrise and sunset.95

Furthermore, “de Caus may have been the first music theorist to liken musical sound

propagation to the concentric circles, generated when an object is thrown into standing

water,” thereby describing an early concept of a sound “wave.”96 Incidentally, in the

same treatise (Les raisons des forces mouvantes avec diverses machines), de Caus

describes a recipe on how to construct a just intonation monochord.97

A contemporary of de Caus, Johannes Kepler (1571-1630), also created a

specific just intonation monochord. But more importantly, in his book Harmonices mundi

libri quinque, Johannes Kepler continued the Platonic narrative of Musica universalis, or

“music of the spheres“ in 1619. Kepler’s perception of the music of the spheres “differed

from earlier examples,” by considering that “harmonies are real, but soundless,” that

“they are perceived from the sun, rather than the earth,” that “they are polyphonic, i.e.,

harmonies in the modern sense of the word,” and that “they follow the proportions of just

intonation.”98 Further, Kepler devised a method in which music is “formally derived from

non-human sources.”99 According to Kepler “all the musical intervals of the scale were

95 Katja Grillner, "Human and Divine Perspectives in the Works of Salomon De Caus," in Chora 3:

Intervals in the Philosophy of Architecture, ed. Alberto Perez-Gomez and Stephen Parcell, (Montreal:
McGill-Queens University Press, 1999), 94-95.

96 David Damschroder and David Russell Williams, Music Theory from Zarlino to Schenker: A
Bibliography and Guide, Harmonologia (Hillsdale, New York: Pendragon, 1991), 51.

97 J. Murray Barbour, Tuning and Temperament (Mineola, New York: Dover, 2004), 97.

98 Penelope Gouk, "The Role of Harmonics in the Scientific Revolution," in The Cambridge History
of Western Music Theory, ed. Thomas Christensen, (New York: Cambridge University Press, 2002), 233.

99 Cope, Computers and Musical Style, 6.

 59

expressed in the elliptical motions of the planets as they orbited around the sun.”100 The

calculations that were used in mapping the orbital movements of the planets to pitches,

were not based on actual speeds, but rather “on the minimal and maximal orbital

velocities of each planet as they would appear from the sun.”101

Figure 3-12: Kepler's seven "melodies."

Therefore, “each planet ‘sings’ a range of notes depending on its rate of

acceleration and deceleration.”102 The pitch mappings really are reductions of what

really should be glissandi or portamenti.103 In either case Figure 3-12 shows the seven

resulting “melodies” from this procedure.104 Earth was represented by “endless

repetitions of ‘mi, fa, mi,’” while Saturn was represented by “short and low patterns.”105

According to Cope, Kepler’s results were not necessarily “aesthetically pleasing,” but

100 Gouk, 234.

101 Ibid.

102 Ibid.

103 Gouk explains that the “continuous pitches would rise and fall like a siren.” Ibid. If Kepler were
to have been alive at the beginning of the twentieth century he would have not had any problems mapping
actual glissandi ranges to the rates of acceleration and deceleration of the planetary orbits, but Russolo’s
The Art of Noise will not have been published for another 400 years or so.

104 Johannes Kepler, Harmonices Mundi Libri V (Linz: G. Tampachius, 1619), 207.

105 Cope, Computers and Musical Style, 6.

 60

that the automation of the compositional process should still provoke interest.”106

In 1650 Athanasius Kircher (1602-1680) published Musurgia Universalis. Charles

Brewer provides the following synopsis of book VIII, of Musurgia Universalis, titled

“Wonders” (Musurgiae Mirificae):

Wonders, demonstrates the new craft of ‘Musarithmica,’ by which certainly
anyone at all unskilled in music would be able to attain to a perfect knowledge of
composing in a brief time, and continues the poetic and rhetorical musical
combinations. It adapts the universal ‘Musarithmetic’ explanations to all
languages with new artifice.107

The book is further divided into four subsections (Musurgia combinatoria,

Musurgia rhythmica sive poetica, Musarithmorum melotheticorum oraxin exhibens, De

musurgia mechanica – misnamed Pars V, even though it is only the fourth part).108 The

first part discusses “the combinatorial musical art,” the second part examines “the

rhythmic or poetical musical art,” the third part introduces “the practice of ‘song-building

musical numbers’ (musarithmi melothetici),” and the fourth part is concerned with “the

mechanical musical art or the various transpositions of certain ‘musical-arithmetical

columns.’”109 Knobloch traces Kircher’s discussion on combinatorics to Mersenne’s

Harmonie universelle (1636), by pointing to the congruence of Kircher’s and Mersenne’s

number examples 9 and 22, and Kircher’s explanations of Mersenne’s understanding of

106 Ibid.

107 Charles E. Brewer, The Instrumental Music of Schmeltzer, Biber, Muffat and Their
Contemporaries (Burlington: Ashgate, 2011), 13.

108 Athanasius Kircher, Musurgia Universalis, 2 vols., vol. 2 (Rome: Typis Ludouici Grignani,
1650).

109 Eberhard Knobloch, "The Sounding Algebra: Relations between Combinatorics and Music
from Mersenne to Euler," in Mathematics and Music, ed. Gerard Assayag and Hans G. Feichtinger, (New
York: Springer, 2002), 37.

 61

“permutations, combinations or unordered selections, and arrangements or ordered

selections.”110

Nierhaus elaborates on how the Arca Musarithmica operates (which comes from

the third part):

In Kircher’s ‘Arca Musarithmica,’ four-lined number columns can be combined
with four-voice rhythmic patterns by means of syntagmas. The number columns
represent levels of different modes and are arranged in groups of 2 to 12 units.
These units serve to correctly transfer text passages and represent one syllable
each. Each class of tone pitch symbols of a particular size can be combined with
a class of rhythmic patterns of the same size, finally producing four-voice
movements in the style of the contrapunctus simplex. Because the number of
voices differs in a movement of contrapunctus flores, in this form of syntagma the
voices are only combined with a selection of appropriate values.111

Kircher’s truly revolutionary concept of assigning numbers as pitch classes to

notes predates the compositional and analytical practice of serialism by four

centuries.112

The conceptualization of Arca Musarithmica, which was by no means completed

at the time of writing Musurgia Universalis, and served as one of the progenitors of

Kircher’s later invention the Organum Mathematicum.113 Kircher’s student Gaspar

Schott (1608-1666) described the box in his treatise titled Organum Mathematicum

110 Eberhard Knobloch, "Mathematics and the Divine: Athanasius Kircher," in Mathematics and

the Divine: A Historical Study, ed. Teun Koetsier and Luc Bergmans, (Philadelphia: Elsevier Science,
2004), 336. In turn, Mersenne derived his work from Raimundus Lullus. Siegfried Zielinski, Archäologie
Der Medien: Zur Tiefenzeit Des Technischen Hörens Und Sehens (Berlin: Rowohlt, 2002), 170.

111 Nierhaus, 25.

112 Ibid., 26.

113 Ibid., 26, 29.

 62

(1668).114 It was a physical manifestation of the Arca Musarithmica, and utilized

Napier’s bones (created from ivory), or Rabdologia.115 John Napier (1550-1617)

invented the Rabdologia as a “set of plates that could be organized with respect to one

another to give a multiplication product.”116 It was invented to calculate the Descriptio, or

logarithms and their corresponding number tables.117

The Organum Mathematicum was an extraordinary set of tools that could be

used for a number of different computations, aside from automated music composition.

Sections in Schott’s treatise discuss how to use the syntagmas contained within the box

for Arithmeticus - arithmetic (syntagmas akin to Napier’s bones), Geometricus -

geometry, Fortificatorius - fortifications, Chronologicus - chronology (church holidays),

Horographicus - horography (sundial construction), Astronomicus - astronomy,

Astrologicus - astrology, Stenographicus - cryptography (a cyclic transposition cypher),

and Musicus - music (as described in Arca Musarithmica).118 An existing PERL program

demonstrates how the concepts from Arca Musarithmica can be applied in a virtual

Organum Mathematicum, and thereby clearly exemplifies its algorithmic character.119

114 Gaspar Schott, Organum Mathematicum (Ghent: Sumptibus Johannis Andreae Endteri &

Wolfgangi Jun. Haeredum Excudebat Jobus Hertz, 1668).

115 Eric G. Swedin and David L. Ferro, Computers: The Life Story of a Technology (Baltimore:
Johns Hopkins University Press, 2007), 10.

116 Ibid.

117 Ibid., 9.

118 Schott, xvii-xxxix.

119 Jim Bumgardner, "Kircher’s Mechanical Composer: A Software Implementation," in Bridges
2009: Mathematics, Music, Art, Architecture, Culture, ed. Craig S. Kaplan and Reza Sarhangi (Banff:
Tarquin Books, 2009).

 63

 In 1660, Giovanni Andrea Bontempi (1624-1705), who was assistant

Kapellmeister to Heinrich Schütz at Dresden, publishes a book titled “New Method of

Composing Four Voices, by means of which one thoroughly ignorant of the art of music

can begin to compose.”120 The method involved a wheel with scale degree numbers of

the Mixolydian mode that could produce compositions by rotating a dial in any

direction.121 The innermost dial contained the number series, reading from left to right,

(1 2 3 4 5 6 7 8); the ante-penultimate dial aligned those numbers with (12 11 8 13 12

10 9 8) – scale degree 12, etc.; the penultimate dial contained the numbers (15 13 15

13 14 15 14 12) that were initially aligned with the preceding dial, while the last dial

consisted of the numbers (17 16 19 15 12 15 16 17). Therefore the first four-voice chord

would consist of scale degree (1 12 15 17), or in the F Mixolydian mode (F C A C), and

so forth. These chords could be placed into any order to determine accurate results.122

This “wheel” of fortune is akin to an eight-sided dice.

Wolfgang Caspar Printz (1641-1717) describes melodic and harmonic

permutations in Phrynis Mytilenaeus, oder der Satyrische Componist that are “not

inconsistent with more formal ars combinatorial of the century to come.”123 Printz had

met Athansius Kircher in Rome, and the encounter impacted Printz’s theoretical

120 Cope, The Algorithmic Composer, 6. Joel Lester, "Composition Made Easy: Bontempi's Nova
Methodus of 1660," Theoria, no. 7 (1993): 87-102. The Latin title of the treatise is “Nova quatuor vocibus
compendi methodus, qua musicae artis plane nescius ad compositionem accedete potest.” Damschroder
and Williams, 35. Furthermore, according to Damschroder and Williams “Bontempi’s instructions
anticipate the classic formulation by Fux a few decades later and produce similarly conservative results.”

121 Cope, The Algorithmic Composer, 6.

122 Ibid.

123 David Cope, Experiments in Musical Intelligence, Computer Music and Digital Audio Series,
vol. 12 (Madison, WI: A-R Editions, 1996), 2.

 64

writing.124 Generally, the Phrynis discusses “theoretical issues, ranging from intervals

and cadences to variation techniques, figured bass, tuning and temperament, rhythm,

and counterpoint.”125 “Printz arrives at one thousand possible combinations” in his

description of the salti composti (four-note combination of simple leaps).126 According to

Cope the treatise “demonstrates its author’s interest in the extensive combinatorial

possibilities of the variety of melodic lines above a given bass.”127

In addition, musical acrostics further continue, the famous B-A-C-H motive comes

to mind, as it was used in Fuga XV, The Art of The Fugue (BWV 1080).128 Acrostics by

no means were particularly new, but their emergence as musical cryptograms starts

appearing around the time of Josquin (see Table 3-3: Josquin's Missa Hercules Dux

Ferrariae subject.129 Examples found from Josquin to Schütz would add “visual meaning

to written scores.”130 In prose, acrostics had been used as cryptographic messages

124 George J. Buelow, "Printz, Wolfgang Caspar", Grove Music Online. Oxford Music Online.

Oxford University Press. http://www.oxfordmusiconline.com/subscriber/article/grove/music/22370
(accessed March 19, 2014).

125 Damschroder and Williams, 240.

126 Dietrich Bartel, Musica Poetica: Musical-Rhetorical Figures in German Baroque Music
(Lincoln, NE: University of Nebraska Press, 1997), 121.

127 Cope, Experiments in Musical Intelligence, 2. Cope gets most of this information from Leonard
Ratner. Leonard Ratner, "Ars Combinatoria Chance and Choice in Eighteenth-Century Music," in Studies
in Eighteenth Century Music Essays Presented to Karl Geiringer on the Occasion of His 70th Birthday,
ed. H. C. Robbins, (New York: Oxford University Press, 1970).

128 Simoni and Dannenberg, 10.

129 Cope states that music cryptography, or acrostics, was a “way of composing automatically –
even though the rigor of automata is not seriously approached.” Cope, Computers and Musical Style, 6.

130 Eric Sams, "Cryptography, Musical", Grove Music Online. Oxford Music Online. Oxford
University Press. http://www.oxfordmusiconline.com/subscriber/article/grove/music/06915 (accessed April
7, 2014).

 65

since antiquity. Bach makes use of text-based acrostics in the Musical Offering (BWV

1079) as an inscription before the first page of music. The inscription reads: Regis Iussu

Cantion Et Reliqua Canonica Arte Resoluta (“At the Kings’ Command, the Song and the

Remainder Resolved with Canonic Art.”)131 The early Bach historian Johann Nikolaus

Forkel (1749-1818) points to the same acrostic and provides the translation as it

appears in Hofstadter’s Gödel, Escher, Bach.132 However, the Bach scholar Christoph

Wolff points out that the R-I-C-E-R-C-A-R was glued on top of the aforementioned page,

after the volume had already been printed (Wolff, however, disagrees with Spitta and

David that the acrostic was created as an afterthought).133 Bach’s practice was not just

limited to his own name. In fact, Sams speculates that “Bach showed further ingenuity in

his seven-part canon over a ground of F-A-B-E, headed ‘FABERepetatur’ - possibly a

suitably cryptic allusion to” the eighteenth century author J. C. Faber, who had written a

book titled “Neu-erfundene obligate Composition” in which a cypher matrix was used to

encrypt the name “Ludovicus.”134

Furthermore, Bach also was fond of riddle canons. The sole purpose of the riddle

canon was for the user to figure out how the composition worked by applying Bach’s

131 Douglas R. Hofstadter, Gödel, Escher, Bach: An Eternal Golden Braid, 20th Anniversary
Edition ed. (New York: Random House, 1999), 7. Martin Geck translates the Latin into English in the
ensuing manner, “The piece performed on the King’s command, along with further examples of the art of
the canon.” Martin Geck, Johann Sebastian Bach: Life and Work, trans., John Hargraves (San Diego,
California: Harcourt, 2006), 240.

132 Johann Nikolaus Forkel, "Forkel's Biography of Bach," in The New Bach Reader, ed. Hans T.
David, Arthur Mendel, and Christoph Wolff, (New York: W. W. Norton, 1998), 465.

133 Christoph Wolff, Bach: Essays on His Life and Music (Cambridge, Massachusetts: Harvard
University Press, 1994), 353, 420.

134 Sams. Incidentally, BWV 1078 is a riddle canon. Christoph Wolff, Johann Sebastian Bach: The
Learned Musician (New York: W. W. Norton & Company, 2001), 337.

 66

algorithms. This is exemplified in a 1974 discovery titled “Verschiedene Canones über

die ersten acht Fundamental-Noten vorheriger Arie von J. S. Bach (various canons

based on the first eight fundamental notes of the previous aria by J. S. Bach, BWV

1087),” which was a “single handwritten leaflet containing fourteen different canons

based on the ground of Bach’s Goldberg Variations (BWV 988).”135 According to Essl,

“Bach supplies a highly compressed code, but without the algorithm that expands the

rudimentary notation into something resembling a score.”136 Each one of the 14 canons

features an instruction, and some type of iteration of the eight-note subject (see Bach’s

manuscript on page 383 in Appendix A – Scores). Bach’s instructions from the

manuscript are as follows:

 Canon simplex 1.
 All' roverscio 2.
 Beede vorigen Canones zugleich, motu recto e contrario 3.
 Motu contrario e recto 4.
 Canon duplex à 4 5.
 Canon simplex über besagtes Fundament à 3 6.
 Idem à 3 7.
 Canon simplex à 3, il soggetto in Alto 8.
 Canon in unisono post semifusam à 3 9.
 Alio modo, per syncopationes et per ligaturas à 2 10.
 Canon duplex übers Fundament à 5 11.
 Canon duplex über besagte Fundamental-Noten à 5 12.
 Canon triplex à 6 13.
 Canon à 4 per augmentationem et Diminutionem 14.

BWV 1087’s solutions are found “through combining the various subjects in

135 Essl, 109. Also known by the title of 14 Canons. Walter Blankenburg explains that finding the

14 canons in 1975 was one of the greatest finds in decades. Walter Blankenburg, "Die Bachforschung
Seit Etwa 1965. Ergebnisse, Probleme, Aufgaben. Teil 3," Acta Musicologica 55, no. 1 (1983): 7. Bach
himself entered these 14 canons “into his personal copy of Clavier-Übung IV.” Wolff, Johann Sebastian
Bach: The Learned Musician, 378. The Clavier-Übung IV is also commonly known by the Goldberg
Variations.

136 Essl, 109.

 67

different forms such as retrograde, inversion and the retrograde of the inversion, partly

with changing temporal compression or augmentation.”137 It is clear from examining the

list of the 14 descriptions that they are “grouped, by canonic techniques of increasing

complexity, 4–1–4–1–4, a striking combination of 14 and 41 that will not be lost on

students of Bach numerology.”138 The canons consist of three groups: (1) four simple

canons consisting only of thematic material, (2) six canons that combine the subject

with free counterpoint, and (3) four canons in which the idea of progressive contrapuntal

complexity unfolds with strict logic.139

The “highly developed contrapuntal forms such as the canon and fugue” were in

widespread use during the baroque period.140 Bach’s Die Kunst der Fuge, presents a

“pedagogical tool for the study of counterpoint that systematically documents the

procedure of fugal and canonic composition.141 Simoni and Dannenberg find that “the

canon is a highly procedural contrapuntal form,” in which an introductory melody, or dux

137 Ibid. Essl further explains, “Reinhard Böß was able to discover all possible solutions – 269

movements providing seventy minutes of astonishing music.” Reinhard Böß, Verschiedene
Canones...Von J. S. Bach (Bwv1087) (Munich: edition text + kritik, 1996). Through Böß explorations it is
clear that in fact Bach does provide an algorithm in the strict Knuthian sense.

138 Richard Abram, "14 Canons (Bwv 1087); Concerto in F Major (F 10); Four Little Duets (Wq
115); Sonata in G Major (Op. 15, No. 5) by Johann Sebastian Bach; Wilhelm Friedemann Bach; Carl
Philipp Emanuel Bach; Johann Christian Bach; Rolf Junghanns; Bradford Tracey," Early Music 8, no. 4
(1980): 572-573. The Bach numerology referred to here is derived by adding the indices of the alphabet
(a = 1, b = 2, c = 3, h = 8, or 2 + 1 + 3 + 8 = 14) of Bach’s last name, and the indices of the alphabet by
spelling “jsbach.”

139 Blankenburg, "Die Bachforschung Seit Etwa 1965. Ergebnisse, Probleme, Aufgaben. Teil 3,"
7. These three sections still conform to the 4–(1–4–1)–4 principle, but with less numerological baggage.

140 Simoni and Dannenberg, 8. Besides contrapuntal practice, it should be noted that Cope
considers the practice of figured bass also as being algorithmic. David Cope, Virtual Music: Computer
Synthesis of Musical Style (Cambridge, MA: MIT Press, 2001), 1-2.

141 Simoni and Dannenberg, 9.

 68

– leader – subject, is followed by another melody, or comes – companion – answer.142 A

specified temporal distance specifies when the comes is to follow. Indicating a

transposition (Example 3-9), inversion (Example 3-7), diminution (Example 3-10),

augmentation (Example 3-10), or any other type contrapuntal writing technique from the

Middle Ages or the Renaissance, can vary the companion further.143 The following code

example shows transposition.

1. (defparameter *chord* '(0 4 7))
2.
3. (defun transpose (notes level)
4. (mapcar (lambda (x) (+ x level)) notes))
5.
6. (transpose *chord* '3)
7.

Example 3-9: Transposition.

Transposition is trivial with lisp. In line 1 a note sequence is specified as a major

arpeggio containing the pitch class collection '(0 4 7) (it could also be a chord) as a

global variable.144 Lines 3-4 show an implementation of a higher-level mapcar function

in conjunction with a lambda function, as a transpose function.145 A transposition level

is added to each note member of a sequence. A physical recursion is not required here

since the higher-order mapcar function already takes care of the required recursion

automatically.146 In line 6 the transpose function is then called with the parameters of

142 Ibid. David Ledbetter, Bach's "Well-Tempered Clavier" (New Haven: Yale University Press,

2002), 75.

143 Simoni and Dannenberg, 9.

144 The pitch sequence here is just a short hand, since durational values have been omitted for
clarity.

145 A lambda function is an un-named, or anonymous function.

146 A higher-order function can take another function as its argument.

 69

the note sequence and is transposed by a minor third. The outcome of this operation is:

(3 7 10).

1. (defparameter *durations* '(4 4 2 8 8 4 2))
2.
3. (defun aug-dim (notes length)
4. (mapcar (lambda (x) (* x length)) notes))
5.
6. (aug-dim *durations* '1/2)
7.

Example 3-10: Augmentation and diminution.

The augmentation and the diminution algorithms are the same, and are not very

different from the transposition algorithm, except that to get to the desired result values

are multiplied rather than added. Line 1 defines a sequence of pitches in terms of their

durational values (pitch classes have been omitted for clarity). The number 4 represents

a quarter note, the number 2 represents a half note, and the number 8 represents an

eighth note. Line 3 shows the definition of the aug-dim function. The function requires

two values, the duration of the note (notes), and the new length to which the note

value will be augmented. Again, utilizing a combination of the mapcar and lambda

function, the existing note duration value sequence will be multiplied by the new desired

durational value recursively. Line 6 shows a call to the aug-dim function on the

durations parameter augmenting the durational values of the note sequence to twice

as long by a factor of ½. The resulting new durational sequence then reads: (2 2 1 4

4 2 1). If a diminution were required a call to the aug-dim function would include the

durations, and multiply these by a factor of 2. The procedure would then yield the

following durational values sequence: (8 8 4 16 16 8 4). As was the case with

transposition, it is clear that diminution and augmentation are also trivial tasks for lisp

 70

via the higher-order mapcar and lambda functions.

The Baroque period also saw formalizations in form of treatises of contrapuntal

practice.147 Without question Johann Joseph Fux’s (1660-1741) Gradus ad Parnassum

(1725) was one of the most important of these treatises, and the ideas of species

counterpoint are still being taught in Renaissance counterpoint classes to this day. Cope

explains that Fux created an “algorithmic-like process by describing many of the basic

contrapuntal techniques of tonal music.”148 Cope paraphrases Fux’s procedures in the

following four rules: (1) “From one perfect consonance to another perfect consonance

one must proceed in contrary or oblique motion;” (2) “From a perfect consonance to an

imperfect consonance one may proceed in any of the three motions;” (3) “From an

imperfect consonance to a perfect consonance one must proceed in contrary or oblique

motion;” and (4) “From one imperfect consonance to another imperfect consonance one

may proceed in any of the three motions.”149 Cope furthermore explains, “present-day

theory books dealing with the common-practice period incorporate versions of these

rules in their approach to analysis and imitative composition.”150

Another algorithmic music practice that did not involve composers and music

theorists became formalized during the baroque period. The practice – change-ringing –

evolved in England, and spread throughout the English-speaking world. The most

147 Formalizations of counterpoint have been seen in other treatise before the Baroque period as

well, but Fux’s ideas take on a special role in Cope’s work.

148 Cope, The Algorithmic Composer, 6. Cope revises these rules later in order to incorporate
them into a machine learning program, called Gradus. Cope, Computer Models of Musical Creativity, 183.

149 Cope, The Algorithmic Composer, 6.

150 Ibid., 7.

 71

famous example of change-ringing are the Westminster Quarters, also referred to as the

Westminster Chimes, or the Cambridge Chimes. While on the continent most church

towers had four to five bells, the churches in England started to equip their church

towers with more than five bells.151 While “it is possible to choose intervals between

their pitches so that, even if two or more of them happen to sound at the same time,

they produce a harmonious chord,” the same task is more difficult with the inclusion of

heptatonic/diatonic scale degrees, especially considering ”the timing of strokes of the

different bells, which are each rung at their own natural speeds.”152 Therefore, the

problem arises that bells can be rung only once in a successive row, without

repetition.153 The English bell ringers solved the challenge, one hundred years before

the emergence of mathematical ‘group theory,’ and the practices were formalized in

Fabian Stedman’s (1640-1713) Tintinnalogia: or the art of change ringing (1668), and

Campanologia: or, the art of ringing improved (1677).154

Many different methods for change ringing have been devised and are

appropriately catalogued in various Campanologias (late Latin campana = bell; and

Greek –λογία) that have been published over the course of three centuries. These

151 Daniel Roaf and Arthur White, "Ringing the Changes: Bells and Mathematics," in Music and
Mathematics: From Pythagoras to Fractals, ed. John Fauvel, Raymond Flood, and Robin Wilson, (New
York: Oxford University Press, 2010), 114.

152 Ibid.

153 Ibid., 113.

154 Ibid., 113, 118. According to Daniel Harrison, “Campanologia can fairly be said to be the first
work of in which group theory was applied to a musical situation.” Daniel Harrison, "Tolling Time", Music
Theory Online. Society of Music Theory.
http://www.mtosmt.org/issues/mto.00.6.4/mto.00.6.4.harrison_essay.html (accessed March 23, 2014).
Tintinnalogia, will be revisited later in connection to Arvo Pärt’s Tintinnabulation technique, as explained
by Paul Hillier. Paul Hillier, Arvo Pärt (New York, New York: Oxford University Press, 1997), 18-19.

 72

Campanologias show the permutations that can be achieved from starting with three

bells all the way to ten bells, and name give the permutations names.155 There are six

possible permutations with three bells (3 x 2 x 1), 24 permutations with four bells (4 x 3

x 2 x 1), 40,320 permutations with eight bells, and 3,628,800 with ten bells.156 In either

case numbers are assigned to the bells, whereby the highest bell, also known as the

tenor, receives the number one, and the each lower bell receives a successively lower

number.157 Each change begins with the bells played one time in a descending order. A

row contains the number of bells involved, each permutation of the row can only be

played once, and “no bell should stay in place for more than two successive rows.”158

The change ringing method is currently known as the combinatorial Steinhaus-Johnson-

Trotter algorithm.159 The algorithm can generate 24 permutations from a row containing

the numbers 1, 2, 3, and 4:160

1234 2143 2413 4231 4321 3412 3142 1324
1342 3124 3214 2341 2431 4213 4123 1432
1423 4132 4312 3421 3241 2314 2134 1234

Example 3-11 shows how to programmatically generate all 24 permutations of

155 Fabian Stedman, Campanologia Improved: Or, the Art of Ringing Made Easy, Fifth ed.
(London: L. Hawes, W. Clarke, and R. Collins, and S. Crowder, 1766). William Shipway, The
Campanologia: Or, Universal Instructor in the Art or Ringing (London: Sherwood, Neely, and Jones,
1816).

156 Wilfrid G. Wilson and Steve Coleman, "Change Ringing", Grove Music Online. Oxford Music
Online. Oxford University Press. (accessed March 23, 2014).

157 Roaf and White, 115.

158 Ibid., 118.

159 Steven S. Skiena, The Algorithm Design Manual, 2nd ed. (London: Springer, 2008), 451.
Richard Bird, Pearls of Functional Algorithm Design (New York: Cambridge University Press, 2010), 251.

160 This particular arrangement of rows is called the Plain Bob Minimus. Roaf and White, 123.

 73

the number sequence 0, 3, 7, and T (10), also know as a minor 7th chord.

1. (defun permutations (function sequence)
2. "List all permutations of a number sequence."
3. (labels ((permutate (n)
4. (if (eq n 0)
5. (funcall function sequence)
6. (dotimes (i n (permutate (1- n)))
7. (permutate (1- n))
8. (rotatef (aref sequence n)
9. (aref sequence (if (oddp n) i 0)))))))
10. (permutate (1- (length sequence)))))
11.
12. ; call permutations
13. (permutations #'pprint "037T")
14.

Example 3-11: Steinhaus-Johnson-Trotter permutations algorithm in Common Lisp.

In line 1 the function permutations is defined, which takes two arguments, (1)

a function itself, in this case the print function pprint, and (2) the number sequence to

be permuted. Within the permutations function a local recursive permutate function

is established with the labels function (lines 3-10), which takes the sequence to be

permuted as an argument. If no permutation possibilities generated from the sequence

are possible, or n = 0, then call the pprint function, and print out all possibilities that

were generated with the number sequence (line 4-5). However, if more permutations

are possible, loop through a recursive call to permutate via dotimes, and count the

permutations (lines 6-7). Each permutation sequence counted then needs to be rotated

through rotatef, by comparing the array index (aref), or the position of the sequence

with an array index of 0 (lines 8-9), meaning that if 0 is reached a number from the a

sequence becomes immobile and another number of a sequence can be rotated. In line

10, the local permutate function is initiated and repeated if needed. Running the script

with (permutations #'pprint "037T") in line 13 at the REPL results in the

following permutations of the PCC {0, 3, 7, T}:

 74

"037T"
"307T"
"703T"
"073T"
"370T"
"730T"
"T307"
"3T07"
"0T37"
"T037"
"30T7"
"03T7"
"07T3"
"70T3"
"T073"
"0T73"
"7T03"
"T703"
"T730"
"7T30"
"3T70"
"T370"
"73T0"
"37T0"

Example 3-12: The 24 permutations of PCC {0, 3, 7, T}.

3.2.5. Classical Period

Ars combinatoria, “the art of combining or dealing with permutations and

combinations,” was given significant attention during the eighteenth century.161 Leonard

Ratner summarizes eighteenth century obsession the following way:162

1. Ars combinatoria was an important part of eighteenth century music
composition.

2. Ars combinatoria could be applied to melody, harmony, rhythm, phrase
structure, counterpoint, and large scale forms.

161 Angela B. Shiflet, "Musical Notes," The College Mathematics Journal 19, no. 4 (1988): 345.

162 Leonard Ratner, "Ars Combinatoria, Chance and Choice in Eighteenth-Century Music," in
Studies in Eighteenth-Century Music; a Tribute to Karl Geiringer on His Seventieth Birthday, ed. Karl
Geiringer, H. C. Robbins Landon, and Roger E. Chapeman, (New York: Oxford University Press, 1970),
361.

 75

3. Eighteenth century musical materials were adaptable through ars combinatoria,
because of their “simple,” clear, and symmetrical layouts, in which musical
materials could be joined, shifted and substituted in modular fashion.

4. Ars combinatoria is essential to the eighteenth century Zeitgeist.

As a music theorist or a compositional theorist, Joseph Riepel (1709-1782)

investigates and “applies permutations to musical notes in series of three and four.”163

Riepel begins his discussion on melodic permutations with the two note set of {C5, D5},

and shows the two possible combinations of C5->D5, and D5->C5.164 In his next

example Riepel illustrates the possible permutations of the {C5, D5, E5} set, by

demonstrating the six following possible combinations: (1) C5->D5->E5, (2) C5->E5-

>D5, (3) D5->E5->C5, (4) D5->C5->E5, (5) E5->C5->D5, and (6) E5->D5->C5. In the

ensuing example, Riepel presents permutations that combine the rhythmic values of

quarter notes, eighth notes and a set of a four notes {C5, D5, E5, F5}.165 Riepel

indicates 24 possible combinations, but according to Ratner 144 melodic-rhythmic

variations are actually possible.166 It’s not hard to imagine all the permutations on staff

paper, but what holds true is that Riepel applies principles of change ringing that can

also be expressed with the Steinhaus-Johnson-Trotter algorithm (Example 3-12).167

Another musical manifestation of ars combinatoria is found in the Musikalisches

163 Ibid., 346.

164 Joseph Riepel, "Grundregeln Zur Tonordnung," in Anfangsgründe Zur Musicalischen
Setzkunst, (Ulm: Christian Ulrich Wagner, 1755), 27.

165 Ibid., 27-28.

166 Ratner, "Ars Combinatoria, Chance and Choice in Eighteenth-Century Music," 348-349.

167 Ratner further mentions a treatise by Christian Gottlob Ziegler titled “Anleitung zur
musikalischen Composition” (1739) that predates Riepels ideas, and uses a C major chord, or
{E4,G4,C5}, and another treatise by Francesco Galeazzi that draws upon Riepel’s ideas titled “Elementi
teorico-pratici di musica,” (1791-6) in which Galeazzi uses a three note example {C5,D5,E5}. Ibid., 346.

 76

Würfelspiel or musical dice game, and it is typically listed in the historical algorithmic

composition narrative.168 Between 1757 and 1813 more than 20 such games “were

published in Europe, some, in several editions and languages.”169 Johann Kirnberger

(1721-1783) writes one of the first compositions utilizing musical dice titled Der allezeit

fertige Polonaisen- und Menuettencomponist (1757).170 Shiflet explains, “Dr. Charles

Burney, a contemporary, said of Kirnberger, ‘in his late writings, he appears to be more

ambitious of the character of an algebraist, than of a musician.’”171 Kirnberger’s piece

would “serve as a model for many of the succeeding musical dice games.”172 The

composition consists of: (1) an introduction, in which Kirnberger explains how to

generate the music (pp. 2-6); (2) two tables indicating a matrix of measures aligned with

numbers generated through dice rolls (with the options for either one die – numbers 1-6

– or a pair of dice – numbers 2-12) for the first (6 rolls), a second part (8 rolls), and a da

capo part that starts back on the first page with the 4th roll of a polonaise (pp. 7-8); (3)

and two tables (this time written in French) indicating matrices of measures that

correspond to numbers generated through one die thrown (1-6) for the first (minuet) and

168 Leoni, 63. Simoni and Dannenberg, 10. Mary Simoni, "Algorithmic Composition: A Gentle

Introduction to Music Composition Using Common Lisp and Common Music", MPublishing, University of
Michigan Library http://hdl.handle.net/2027/spo.bbv9810.0001.001 (accessed January 31, 2014).

169 Stephen A. Hedges, "Dice Music in the Eighteenth Century," Music & Letters 59, no. 2 (1978):
180. Ratner, "Ars Combinatoria, Chance and Choice in Eighteenth-Century Music," 343.

170 Cope, Experiments in Musical Intelligence, 2. A ready to use implementation of Kirnberger’s
musical dice game can be found here: http://muwiinfa.geschichte.uni-mainz.de:5050/kirnberger_de.html.

171 Shiflet, "Musical Notes," 346. Moreover, Kirnberger “collaborated with a mathematics
professor in Berlin, Johann Georg Sulzer, in writing of the relationship between music and mathematics in
the latter's Theory of Polite Arts.” Ibid.

172 Hedges, "Dice Music in the Eighteenth Century," 180.

 77

second part (trio) of a minuet (pp. 9-10). Pages I-XXIX then consist of the combinable

measures 1-154 for: (1) the polonaises (pp. I - XVI), (2) the combinable measures 1-96

for the minuet (pp. XVII - XXI), (3) and the combinable measures 1-96 for the trio (pp.

XXII - XXIX).173

Both parts of the polonaise are in the key of D major; the minuet is in D major;

while the trio is in F major. Each roll of the die or dice produces 1 measure, so that the

first section of the polonaise consists of 6 measures, the second of 8 measures, and the

da capo section of 3 measures. The minuet is then constructed of 8 measures in the

first section and 8 measures in the second section. Additionally, Kirnberger gives the

option to play these pieces with a piano alone, a violin duet, or a smaller ensemble

combining any of these three instruments. Furthermore, for the minuet and trio, the first

and second part can be generated through different dice rolls, meaning for example that

the first two violins can have two different parts with two die rolls for the first measure.

The German music theorist and critic Friederich Wilhelm Marpurg (1718-1795)

published a journal, or periodical from 1754-1762/1778 titled Historisch-Kritische

Beyträge zur Aufnahme der Musik, and in volume 3, part 2 Carl Philipp Emanuel Bach

authored a 14-page article titled Einfall, einen doppelten Contrapunct in der Octave von

sechs Tacten zu machen, ohne die Regeln davon zu wissen (1757).174 Instead of using

173 Johann Philipp Kirnberger, Der Allezeit Fertige Polonaisen- Und Menuettencomponist (Berlin:

George Ludewig Winter, 1757). Incidentally, a somewhat negative review of Kirnberger’s Der allzeit
fertige Polonoisen- und Menuettencomponist is found in the same volume on pp. 135-154, written by
Anonymous, in which the author recommends to read Riepel’s Grundlegung zur Tonordnung.

174 Carl Philipp Emanuel Bach, "Einfall, Einen Doppelten Contrapunct in Der Octave Von Sechs
Tacten Zu Machen, Ohne Die Regeln Davon Zu Wissen," in Historisch-Kritische Beyträge Zur Aufnahme
Der Musik, ed. Friederich Wilhelm Marpurg, (Berlin: G. A. Lange, 1757), 167-181.

 78

dice C. P. E. Bach suggests to imagining six random numbers between 1 and 9,

whereby numbers can be repeated, which “then represent entry points into the six

respective tables, each representing one measure of music for one of the voices.”175

When the first note “is found, one continues to select successive ninth members of the

table until an ‘X,’ signaling a barline, is found.”176 According to Cope, “six complete

measures of music are produced,” eventually.177 More importantly though, “Bach’s

method stands as a precursor of the micro augmented transition network (MATN), one

of the cornerstones of EMI and SARA.”178

The musical dice games of the classical period are numerous due to the general

understanding of ars combinatoria.179 Pierre Hoegi’s Tabular System (1763) was

“completely random, allowing the player to choose a number from 8 to 48 for each of the

two eight-bar reprises.”180 The system “was designed to compose a minuet and trio.”181

E. F. de Lange’s Le Toton Harmonique ou Nouveau Jeu de Hazard, and the

anonymously authored Ludus Melothedicus ou Le Jeu de Dez Harmonique (176?) of

francophone origin, used a nine sided table top instead of dice for chance operations.182

175 Cope, Experiments in Musical Intelligence, 3.

176 Ibid.

177 Ibid.

178 Ibid., 7.

179 Ratner, "Ars Combinatoria, Chance and Choice in Eighteenth-Century Music."

180 Ibid., 344.

181 Hedges, "Dice Music in the Eighteenth Century," 182.

182 Ratner, "Ars Combinatoria, Chance and Choice in Eighteenth-Century Music," 344.

 79

Maximilian Stadler’s (1748-1833) Table Pour Composer des Menuets et de Trios a

l’infinite; avec deux Dez a Jouer (1780), and Franz Joseph Haydn’s (1732-1809) Gioco

Filarmonico, o sia maniera facile per comporre un infinito numero di minuettie trio anche

senza sapere il contrapunto (1793), feature identical music, but the work allegedly

attributed to Haydn is re-scored for two violins and bass.183

Another famous dice game, attributed to Mozart, although its authenticity is

somewhat in dispute, is known by its catalogue number C K. Anh. 294d (516f) and can

be found in series X of the Neue Mozart Gesamtausgabe, or its title Musikalisches

Würfelspiel.184 One of the available scores consists of: (1) a cover page, followed with

instructions in German, French, English, and Italian (p. 1); (2) two tables 176 measures

(p. 2), two tables with 12 x 8 matrices (for the two parts of the waltz – the German terms

are Walzer or Schleifer – the matrices will produce), in which the rows represent the

numbers of measures to be chosen according to what number is being rolled with two

dice, and columns labeled A-H, determining the order; and (3) a four page score

consisting of 176 measures (pp. 3-7).185 Since there are eight columns in each table, the

waltz this procedure generates consists of an eight measure A part that can be

183 Ibid., 362. Hedges, "Dice Music in the Eighteenth Century," 182.

184 Cope, Experiments in Musical Intelligence, 7. Cope calls it a “particularly good example.” Cope
doesn’t cite his source when he claims that the piece is attributed to Mozart, but that its authenticity had
not been proven. But is clear that the information came from a discussion of the subject in Hedges’ article.
Hedges, "Dice Music in the Eighteenth Century," 182-183. A Schott edition print can be found in Machine
Models of Music. Stephan M. Schwanauer and David A. Levitt, eds., Machine Models of Music
(Cambridge, MA: MIT Press, 1993), 533-538.

185 Wolfgang Amadeus Mozart, Musikalisches Würfelspiel (Bonn: N. Simrock, 1793), 1-7.An
online version of this game that produces MIDI files lives here: http://sunsite.univie.ac.at/Mozart/dice/.

 80

repeated, and an 8 measure B part that can be repeated.186

 After Mozart, there are additional writings on the practice of musical dice game,

namely Antonio Calegari’s (1757-1828) Gioco pitagorico (1801), and Giovanni Catrufo’s

(1771-1820) Bareme musical (1811).187 According to Hedges (and Ratner), “all of these

treatises were manifestations of the ‘Age of Reason’.”188 However, it could be

speculated that the practice of musical dice came from J. S. Bach himself, since two of

his most famous students, namely Kirnberger, and C. P. E. Bach, wrote about the

practice, and wrote compositions utilizing the format. The musical dice game is an

application of knowledge gained from the ars combinatoria to music.

The classical period also encompasses the beginning of the industrial revolution

and along with it the development of steam powered machinery. Therefore automatic

processes are used to graft automation to music machines. The German inventor

Johann Nepomuk Maelzel (1772-1838), famous for having invented the metronome in

1815, started to devote his life “to teaching music and to constructing various

mechanical devices, including a chronometer, and an automatic instrument of organ

pipes imitating flutes and trumpets, and drums, cymbals and a triangle struck by

hammers, which played music by Haydn, Mozart and Crescentini.”189 In 1804, Maelzel

186 Kirnberger, Stadler, Mozart, and Haydn are also mentioned in the discourses of algorithmic

composition with Karlheinz Essl, Gareth Loy, Gerhard Nierhaus, and Curtis Roads. Essl, 109. Loy, 302-
305. Loy, 295-297. Nierhaus, 36-38. Roads, 823.

187 Hedges, "Dice Music in the Eighteenth Century," 184.

188 Ibid.

189 Alexander Wheelock Thayer and Dixie Harvey, "Maelzel, Johann Nepomuk", Grove Music
Online. Oxford Music Online. Oxford University Press.
http://www.oxfordmusiconline.com/subscriber/article/grove/music/17414 (accessed April 7, 2014).

 81

invented the Panharmonicon, which is an Orchestrion type of instrument.190 Maelzel’s

“instrument was designed to play orchestral music, and various accounts describe it as

capable of imitating the sounds of the french horn, clarinet, trumpet, oboe, bassoon,

German flute, flageolet, drum, cymbal and triangle”191 The instrument could play

(through an automated and presumably mechanically programmed process) “popular

marches and overtures, as well as pastorales, rondos and similar pieces,” as well as

music by Haydn, Mozart, Cherubini, and other composers.192 In fact, “Beethoven’s

‘Battle Symphony’ (Wellingtons Sieg, 1813),” was “originally written for Maelzel’s

instrument and later transcribed for orchestra.”193

Another automated instrument of the late classical early romantic period was the

Apollonicon, which was build in 1817, and “could be played by up to five organists at

once, each from an individual keyboard, or it could be played automatically using pinned

wooden barrels.”194 Additionally, Diederich Nikolaus Winkel (1773-1826) developed the

190 Barbara Owen and Arthur W. J. G. Ord-Hume, "Orchestrion", Grove Music Online. Oxford

Music Online. Oxford University Press.
http://www.oxfordmusiconline.com/subscriber/article/grove/music/20409 (accessed April 7, 2014).
According to Owen and Ord-Hume the Orchestrion was “a complex mechanical instrument played by
pinned barrels or perforated cards or paper rolls,” and were “intended only for indoor use, and for the
performance of classical music and dances from the orchestral repertory.” Barbara Owen and Arthur W.
J. G. Ord-Hume, "Panharmonicon", Grove Music Online. Oxford Music Online. Oxford Unversity Press.
http://www.oxfordmusiconline.com/subscriber/article/grove/music/20808 (accessed April 7, 2014).

191 Owen and Ord-Hume, "Panharmonicon".

192 Ibid.

193 Ibid.

194 Arthur W. J. G. Ord-Hume, "Apollonicon", Grove Music Online. Oxford Music Online. Oxford
University Press. http://www.oxfordmusiconline.com/subscriber/article/grove/music/01093 (accessed April
7, 2014).

 82

Componium in 1821.195 The instrument was made of “wooden and metal organ pipes, a

triangle and a drum, all activated by two pinned wooden barrels.”196 Furthermore, “it also

includes a device for automatically sequencing two-bar units of music from each barrel

in turn in order to produce endless variations on a single theme.”197 The two wooden

barrels of the Componium had two specific functions: (1) the “first barrel encodes

several variations of short musical works,” and (2) the “second barrel, in conjunction

with a complicated gearing apparatus, determines which of the variations will be played

from measure to measure, providing a large enumerative set of possible

compositions.”198 Furthermore, the Kaleidacousticon, which was advertised by The

Euterpiad (Boston, MA) in 1822-1823, was “a set of cards by means of which upwards

of 214 million waltzes might be composed.”199

3.2.6. Romantic Period

“One can scarcely imagine a Romantic composer constructing dice games, as

Kirnberger, Haydn and Mozart did. For composers of the seventeenth and eighteenth

centuries, the ars combinatoria was a way of thinking about melodic manipulation and

195 Arthur W. J. G. Ord-Hume, "Componium", Grove Music Online. Oxford Music Online. Oxford

University Press. http://www.oxfordmusiconline.com/subscriber/article/grove/music/06211 (accessed April
7, 2014). Loy, 297.

196 Ord-Hume, "Componium".

197 Ibid.

198 Loy, 297.

199 Percy A. Scholes, "Composition Systems and Mechanisms," in The Oxford Companion to
Music, ed. John Owen Ward, (London: Oxford University Press, 1995), 226.

 83

invention.”200 Leonard B. Meyer’s statement largely juxtaposes the tradition of the

Classical composers to that of the practice of the Romantic composers. But there are

still certain elements during the Romantic period that carry transfer knowledge forward

from other eras. Additionally, outside of music, algorithmic thought made great strides

forward, especially in regard to the development of machines.

Inversion, retrograde, and retrograde inversions are still used in musical practice,

and so is imitative counterpoint. Moreover, the practice of musical cryptography

continues. Louis Spohr (1784-1859) found a way to encrypt his name into a motivic idea

by utilizing E-flat, which is Es in German, and connecting it with a B, or H in German, by

with a portamento edge, which he abbreviated with “po.”201 The motive ends with a rest,

which as “old-style crotchet looks like ‘r’).”202 Maximilian Stadler, who was involved in

the musical dice movement in the eighteenth century as mentioned earlier, and the

theorist and composer Simon Sechter (1788-1867) both composed fugues on a motivic

idea derived from Schubert’s name, when Schubert died.203 The Irish composer John

Field (1782-1837) encoded two lighthearted motives dedicated to a Mme Cramer as {B,

200 Leonard B. Meyer, Style and Music: Theory, History, and Ideology (Chicago: University of

Chicago Press, 1989), 193.

201 Sams.In mathematics an “edge” connects two nodes, the nodes here being E-flat, and B.
Sams further explains that the idea of using the German note Es as a substitute for the letter ‘S’ was
already thought of by Friederich Fesca (1789-1826), in one of his string quartets through the use of the
following set: {F, E, Eb, C, A}.

202 Ibid.

203 Ibid. Sechter actually assigned Schubert the motive as the conclusion to a lesson. The motive
reads (all based on quarter notes): {Eb4, C5, B4, Bb4, E4}, with a quarter rest between the B the Bb (the
corresponding sequence of letters would read {S,c,hu,b,ert}. Schubert did not finish the assigned fugue,
but Sechter did, “under the imprint of Diabelli as Fuge in C Moll für Orgel oder das Piano-Forte.” Alfred
Mann, "Schubert's Lesson with Sechter," 19th-Century Music 6, no. 2 (1982): 164-165.

 84

E, E, F}, and {C, A, B, B, A, G, E}.204

According to Sams, one of “the greatest and most prolific exponent” of using

musical ciphers was Schumann.205 The following list shows the extent of Schumann’s

use of musical ciphers:206

 {Eb, C, B, A} - Schumann’s name. 1.
 {A, Eb, C, B} - Ernestine von Fricken’s home town, friend. 2.

a. {A, Eb, B, C} - Anagram.
b. A and Eb - can be encoded as either {A, Eb} or just Ab.

 {A, Bb, E, G, G} – Meta Abegg – imaginary friend.207 3.
 {G, A, D, E} - Nils Gade (1817-1890), Danish Composer. 4.
 {F, A, E} - Frei, aber einsam, free, but lonely. 5.
 {A, C, H} - German for: alas, oh, no kidding, etc. 6.
 {A, D, E} - German for: farewell. 7.
 {Bb, E, D, A} - Pet name for Clara Wieck (Schumann). 8.
 {Bb, E, Eb, E, D, B} - closest approximation to his friend’s name Bezeth. 9.

 {E, B, E} - German for marriage. 10.
 L {A, Eb, Eb, D, A, Es, F, A, D, E, F, A, Eb, Eb, D, A Eb, A, E, C, B, D, E} - 11.
lass das Fade, fass das Echte – leave the boring, grasp the real.

Johannes Brahms (1833-1897) also made use of the practice: (1) {Bb, A, B, Eb}

for Brahms, (2) {F, A, F} - frei, aber froh, free, but content, (3) {A, G, A, B, E, A, D, E} -

for Agathe Ade, “Farewell Agathe,” “a valediction to Agathe von Siebold,” (4) {A, Eb} -

Adele Strauss’ initials, and (5) {G#, E, A} - Gisela von Armin, through a combination of

solfège syllables and German note names.208 Other nineteenth century composers that

use cryptography are: (1) Bordodin, who uses {Bb, A, F} (B-la-F) for a string quartet

204 Sams.

205 Ibid.

206 (Unless otherwise noted) ibid. Keep in mind that in German H == B, and Es == Eb, etc.

207 Eric Blom, Some Great Composers (New York: Oxford University Press, 1961), 84.

208 Sams. Eric Sams, "Brahms and His Musical Love Letters," The Musical Times 112, no. 1538
(1971): 329.

 85

written for Mitrofan Petrvich Belyayev, (2) Tchaikovsky, who encrypted the name

Desiree as {D, Eb, G#, D, E} after his friend Désirée Artôt, (3) Glazunov encrypted his

own nick name Sacha as {Eb, A, C, B, A}, (4) César Cui encoded wife’s maiden name

Bamberg as {B, A, B, E, G}, (5) Smetana used his own monogram {B, Eb} and

encrypted Froejeda’s name as {F, E, D, A}, (6) Elgar encoded the name of his students

the Gedge sisters as {G, E, D, G, E} in a work for violin and piano, as well as, and (7)

Granville Bantock encrypted his wife’s initials {B, F, Bb} in his Helena Variations.209

Algorithmic composition lore seemingly never seems to omit Ada Lovelace, and

Charles Babage. Ada Lovelace reacts to Charles Babage’s calculating machine in the

following manner:

Supposing, for instance, that the fundamental relations of pitched sound in the
sigs of harmony and of musical composition were susceptible of such expression
and adaptations, the engine might compose elaborate and scientific pieces of
music of any degree of complexity or extent.210

Thus Lovelace prophetically predicts computer-aided composition by a little more

than 100 years. A logical continuation of the musical dice, or more precisely the

Kaleidacousticon, was the Quadrille Melodist, which was invented, or composed, by J.

Clinton, Professor at the Royal Academy of Music in London England.211 This system,

“by means of a set of cards, enabled a pianist at a quadrille party to keep the evening’s

pleasure by means of a modest provision of 428,000,000 quadrilles.”212 Additionally, in

209 Sams, "Cryptography, Musical".

210 Cope, Computers and Musical Style, 3.

211 Scholes, 226. "Front Matter," The Musical Times and Singing Class Circular 12, no. 266
(1865): 24.

212 Scholes, 226.

 86

1874, Elisha Gray creates a “musical telegraph,” which was a “single-octave keyboard

device” that “produced arbitrary music during telegraph communications as a by-product

of Morse code letter representations.”213

3.3. Algorithmic Practice in the Twentieth Century

The twentieth century saw many developments in the development of algorithmic

structures to generate musical materials. The most important ones are serialism,

including the twelve-tone procedure, integral serialism, aleatory, and the development of

CAC after WWII.

Other techniques of noteworthy mention that will not be discussed are The

Schillinger System of Musical Composition, a method for musical composition

developed by the Ukrainian-American composer Joseph Schillinger that “reduced

melody, harmony and especially rhythm to geometric phase relationships.”214 Joseph

Schillinger students included “George Gershwin, Oscar Levant, Leith Stevens, Lyn

Murray, Paul Lavalle, Nathan Van Cleave, and other prominent composers and

arrangers for radio, television, and film.”215 Schillinger was active during the 1930s and

1940s in the United States.216 The algorithms that Schillinger developed could be used

213 Cope, Computers and Musical Style, 3-4.

214 James N. Burk and Wayne J. Schneider, "Schillinger, Joseph", Grove Music Online. Oxford
Music Online. Oxford University Press
http://www.oxfordmusiconline.com/subscriber/article/grove/music/24863 (accessed September 18, 2014).

215 J. Murray Barbour, "The Schillinger System of Musical Composition," Notes 3, no. 3 (1946):
274.

216 Burk and Schneider.

 87

“for generating or transforming melodies, rhythms and musical forms: techniques that

can be considered as tools for artistic imagination.”217

Arvo Pärt’s tintinnabuli technique, developed in the mid 1970s, sets forth

“mechanisms for processing diatonic (or polymodal) material, that in their essence

function similarly to the serial technique of dodecaphony.”218

In tintinnabuli music, the formula could be defined as a minimized numerical
program that incorporates the algorithm of development, but at the same time
contains the summary of the musical work's pitch structure in its variety.219

Christopher Ariza and Michael Cuthbert’s phasing.py script from the music21

library clearly demonstrates that tintinnabulation is an algorithmic process, and

produces a score named Intervallo.220

3.3.1. Serialism

Perhaps one of the most significant algorithmic musical practices emerged in the

early part of the twentieth century, namely serialism. Serialism developed in part from

the “atonal,” or “pantonal” practices of various composers of the early twentieth century.

The desire of these composers was to devise a compositional method that would

attempt to remove pitch centricity from compositions. Most chronologies will mention the

second Viennese school composers (Arnold Schoenberg, Anton Webern, and Alban

217 Essl, 111.

218 Elena Tokun, "Formal Algorithms of Tintinnabuli in Arvo Pärt's Music", Arvo Pärt Centre
http://vana.arvopart.ee/en/Selected-texts/formal-algorithms-of-tintinnabuli-in-arvo-paerts-music/Page-1
(accessed September 18, 2014).

219 Ibid.

220 Cuthbert.

 88

Berg) in association with the 12-tone technique, one type of serialism. However,

Mathias Josef Hauer developed a compositional system named the “‘law of the 12

notes,’ which required that all 12 notes be sounded before any is repeated,” in the

summer of 1919.221 Hauer’s technique involved creating “tropes” consisting of 12 pitch

classes that were “divided into discrete, mutually exclusive segments,” and “the order of

segments within a 12-note set and the order of pitch classes within each segment are

not pre-compositionally defined.”222 Paul Lansky further explains, “The only tropes that

Hauer investigated systematically are those that divide the pitch classes into two

hexachords.”223

In either case Schoenberg’s method – 12-note serialism – became the more

dominant compositional technique. According to Schoenbergian sensibility then, “the

series is an ordering of the 12 notes of the equal-tempered chromatic scale (i.e. the 12

pitch classes) so that each appears once.”224 The series “can exist at 12 transpositional

221 Monika Lichtenfeld, "Hauer, Josef Matthias", Grove Music Online. Oxford Music Online. Oxford

University Press. http://www.oxfordmusiconline.com/subscriber/article/grove/music/12544 (accessed
September 17, 2014).Additionally, Lichtenfeld makes the argument that Hauer did indeed develop the
technique before Schoenberg by explaining, “The compositional outworking of the ‘law’ was evident in the
suitably titled keyboard piece Nomos op.19, and was first articulated theoretically in Vom Wesen der
Musikalischen, published in 1920.” Ibid. Another composer (and painter) that predates even Hauer was
Yefim Golïshev, who “purportedly” wrote a five-movement String-Trio, which “is printed in an original form
of notation and…involves various 12-tone complexes; (Zwölftondauer-Komplexe)” in 1914, even though
the composition was not published until 1925 in Berlin. Detlef Gojowy and Andrey Yur'evich Kolesnikov,
"Golïshev, Yefim", Grove Music Online. Oxford Music Online. Oxford University Press.
http://www.oxfordmusiconline.com/subscriber/article/grove/music/11405 (accessed September 17, 2014).

222 Paul Lansky et al., "Twelve-Note Composition", Grove Music Online. Oxford Music Online.
Oxford University Press. http://www.oxfordmusiconline.com/subscriber/article/grove/music/44582
(accessed September 17, 2014).

223 Ibid.

224 Paul Griffiths, "Serialism", Grove Music Online. Oxford Music Online. Oxford University Press.
http://www.oxfordmusiconline.com/subscriber/article/grove/music/25459 (accessed September 17, 2014).

 89

levels, all of which Schoenberg considered to be forms of the same series.”225

Schoenberg “also included the inversion, the retrograde and the retrograde inversion at

each transpositional level in the complex, so that the series may be used in any of 48

forms.”226 The creation of a twelve tone row in which not notes are repeated is

algorithmic (also known as the Fisher-Yates-Shuffle algorithm, Example 3-13), and the

generation of the 48 forms, i.e. the matrix (Example 3-15), is algorithmic.

1. (defparameter *pcc*
2. '(0 1 2 3 4 5 6 7 8 9 T E))
3.
4. (defparameter *rs* (make-random-state t)
5. "Create proper random numbers.")
6.
7. (defun fisher-yates-shuffle (pcc random-state)
8. "Create a random tone row."
9. (loop for i from (length pcc) downto 2
10. do (rotatef (elt pcc (random i random-state))
11. (elt pcc (1- i))))
12. pcc)
13.
14. ; calling the function
15. (fisher-yates-shuffle *pcc* *rs*)
16.

Example 3-13: Creating a random tone row from a PCC.

In line 1 the *pcc* global variable is declared and assigned 12 pitches

numbered 0-11 (any number of pitches can really be assigned, and they do not have to

be in any type of order). Line 4 shows how to create a more random state, based on the

UNIX timestamp, because all computationally created random functions are actually

pseudo random. The *rs* parameter holds a random state seed.

Lines 7-12 show the fisher-yates-shuffle function, which takes a pcc as

its argument. The loop macro is utilized to determine the length of the pcc, randomly

225 Ibid.

226 Ibid.

 90

pick a number from the pcc, rotate the pcc of the remaining pitches, and pick a new

number that has not yet been used from the pcc (lines 9-11). The process repeats until

the length of the pcc is reached, and the new “shuffled” pcc is returned out side of the

loop (line 12). The (fisher-yates-shuffle *pcc*) function call is provided in line

15 to view the result at the REPL, and calling the function six different times results in

six different 12-tone series (Example 3-14).227

(2 5 9 0 E 6 T 8 3 7 4 1)
?
(0 9 E 2 4 6 T 8 1 5 7 3)
?
(2 5 3 7 1 4 E 9 8 6 T 0)
?
(5 T 0 4 1 7 9 E 6 8 2 3)
?
(1 0 3 E 7 5 2 T 6 8 4 9)
?
(9 6 3 E 2 8 T 1 7 5 4 0)

Example 3-14: Six 12-tone series generated with the Fisher-Yates algorithm.

The following example shows how the Fisher-Yates algorithm can be integrated

into generating Schoenberg’s 48 forms, also known as the matrix.

1. (defun fisher-yates-shuffle (pcc)
2. "Create a random tone row."
3. (loop for i from (length pcc) downto 2
4. do (rotatef (elt pcc (random i (make-random-state t)))
5. (elt pcc (1- i))))
6. pcc)
7.
8. (defun prime ()
9. "Generates a prime."
10. (fisher-yates-shuffle (loop for i from 0 to 11 collect i)))
11.
12. (defun retrograde (row)
13. "Creates a retrograde."
14. (reverse (copy-seq row)))
15.
16. (defun inversion (row rl)
17. "Creates an inversion."
18. (if (eql row nil) nil
19. (cons

227 The REPL separates statements with question marks.

 91

20. (mod (- rl (car row)) 12)
21. (inversion (cdr row) rl))))
22.
23. (defun ri (row rl)
24. "Creates a retrograde inversion."
25. (retrograde (inversion row rl)))
26.
27. (defun inversion-position (row rl inversion &optional (count 0))
28. "Finding the position of the inversion."
29. (if (eql row nil) nil
30. (if (eql (car row) inversion) count
31. (inversion-position (cdr row) rl inversion (+ count 1)))))
32.
33. (defun transpositions (inversion)
34. "Creates the transpositions necessary to generate the matrix."
35. (labels ((levels (inv)
36. (if (eql inv nil) nil
37. (cons
38. (if (eql (second inv) nil) nil
39. (- (second inv) (car inv)))
40. (levels (cdr inv))))))
41. (cons 0 (remove 'nil (levels inversion)))))
42.
43. (defun build-matrix-row (row trans)
44. "Builds one matrix row."
45. (if (eql row nil) nil
46. (cons
47. (mod (+ (car row) trans) 12)
48. (build-matrix-row (cdr row) trans))))
49.
50. (defun build-matrix (row trans)
51. "Compiles matrix."
52. (if (eql trans nil) nil
53. (cons
54. (build-matrix-row row (car trans))
55. (build-matrix (build-matrix-row row (car trans)) (cdr trans)))))
56.
57. (defun generate-matrix ()
58. "Creates a matrix."
59. (let* ((row (prime))
60. (rl (length row)))
61. (progn
62. (format t "~%--")
63. (format t "~%Analysis")
64. (format t "~%--")
65. (format t "~%Length: ~A" rl)
66. (format t "~%P-~A: ~8T~A" (car row) row)
67. (format t "~%R-~A: ~8T~A"
68. (car (retrograde row))
69. (retrograde row))
70. (format t "~%I-~A: ~8T~A"
71. (car (inversion row rl))
72. (inversion row rl))
73. (format t "~%RI-~A: ~8T~A"
74. (car (ri row rl))
75. (ri row rl))
76. (format t "~%The inversion is @ position ~A of prime."
77. (inversion-position row rl (car (inversion row rl))))

 92

78. (format t "~%Transpositions for generating matrix:~%~A"
79. (transpositions (inversion row rl)))
80. (format t "~%--")
81. (format t "~%The Matrix")
82. (format t "~%--")
83. (format t "~{~%~A~}"
84. (build-matrix row (transpositions (inversion row rl))))
85. (format t "~%--"))))
86.
87. (generate-matrix)
88.

Example 3-15: Generating Schoenberg's 48 forms.

Lines 1-6 of the script shown in Example 3-15 re-use the fisher-yates-

shuffle function introduced in Example 3-13. In lines 8-10 the prime function, which

does not need a supplied argument, randomly creates a new tone row from the

numbers 0-11, which are programmatically enumerated via a for loop macro and

provided to the fisher-yates-shuffle algorithm function. The following

retrograde function (lines 12-14) was also previously introduced, but this time rather

than creating a recursion the built-in Common Lisp reverse function is used. Before

the reverse function can be used the argument row is copied via the copy-seq

function, since the reverse function has the adverse effect of destroying the original

row (even though this example strictly adheres to the functional programming paradigm

and therefore the individual instance of the retrograde function will already prevent

the original row from being destroyed).

Lines 16-21 show the recursive inversion function. The inversion function

needs to receive the row and the row length (rl) as its arguments. The first note (car)

from the row is subtracted from the rl, and then mod twelve(d), which results in an

inverted pitch, i.e. PC 3 inverts to PC 9 if the rl is 12 (line 20). The process is repeated,

until all pitches of the row have been appropriately inverted by passing the remaining

 93

(cdr) pitches from the row back to the top of the inversion function (line 21). The ri

(retrograde-inversion) function (lines 23-25) needs to be supplied with a row and a row

length as arguments, and uses the reverse function with a call to the previously

discussed inversion function as an argument (line 25).

Lines 27-31 show the inversion-position function that tries to figure out at

what position of the prime the inversion, which stacks downward rather than left to

right, is located. The inversion-position function needs to be supplied with a row,

the row length, and the first member of the inverted row. The count variable keeps

track of how many recursions have occurred. A pattern matching call via two nested

if/else statements (lines 29-30) is at the heart of this recursion. The first if/else

statement checks whether or not the end of the row has been reached (line 29). If the

end of the row has been reached the recursion ends, if the end of the row has not been

reached the recursion is passed on to the next level if/else statement. The next

if/else statement (line 30) checks whether or not the first note of the row is equal to

the first note of the inversion. If so, the count reveals the position or index of where

the inversion row begins within the prime row. However, if no matching number is found

the inversion-position function returns back to the top with the remaining

members of the row, the row length, the first member of the inversion row, and the

number 1 added to the current count.

The transpositions function determines what successive steps are located in

between the notes of the inversion (lines 33-41). Because the inversion stacks

vertically downward, these steps will be used in calculating the successive prime rows,

 94

which will be used to unfold the matrix at a later step. The result of the recursive

transpositions function has to be altered, since it counts through all twelve

members of an inversion; yet there are only eleven steps, which results in a nil value.

The nil value has to be removed, and a 0 value has to be prepended, so that the

original prime row can be displayed in the matrix (line 41). That means that the

recursion has to be accomplished with a local function within the transpositions

function, which can be established via the labels function (line 35). Two nested

if/else, or conditional statements are used within the levels local function. The first

conditional statement checks whether there are any more inversional row members, and

ends the recursion if there are not (line 36). The second conditional statement checks

whether or not a second consecutive contains a value, before a first value is subtracted

from it (line 38). If it is true, then a recursive call to the local levels function with the

remaining members of the inversions row supplied as an argument is passed back to

the top of the levels decision tree (line 40).

The build-matrix-row function (lines 43-48) constructs individual

consecutive prime rows of the matrix by using a row and a transposition level that was

previously found with the transpositions function as arguments. The function is recursive

as well. The if/else conditional in line 45 checks whether there are any row members

that need to be transposed left; if not the recursion ends. Conversely, if the conditional

evaluates true then a list is appended by adding the current pitch of the row to the

established transposition level, and in turn is mod twelve(d) (line 47). The remaining

members of the row are passed back into the build-matrix-row function along with

 95

the transpositional level, and the process begins anew (line 48).

The build-matrix-row function is a subroutine for the build-matrix

function (lines 50-55), and needs a row and a series of transposition levels as its

arguments. The build-matrix function steps through the different transposition levels

that were found with the transpositions function with its terminating conditional

statement (line 52). The matrix is assembled by completing a call to the build-

matrix-row function with the row as the first argument, and the first available

transpositional level as the second argument (line 54). The resulting prime row is then

passed back to the build-matrix function along with the remaining transpositional

levels until the recursion terminates (line 55).

All the previous functions are needed to create a matrix with some basic

analytical data. The generate-matrix function (lines 57-85) pulls all of these

functions together and creates a text output at the REPL. Two local variables are

established in lines 59-60 via the let* function, (1) the row variable holds the results of

a call to the prime function, and (2) the rl variable holds the length of the just

generated row (which is the reason why the let* function was used to declare the

local variables – rather than the let function – because a local variable declared within

a let* function is immediately available to be used in a declaration of another local

variable). The progn function, like the trigger object in Pd or Max, processes function

calls in a specific order (lines 62-85). The statements contained within the progn

function create text output to the REPL via the format function. The text output is

divided into two section, (1) the analysis section, and (2) the matrix section. The

 96

analysis section lists the length of the generated tone row (line 65), the prime of the tone

row (line 66), the retrograde form (line 67-69) of the tone row, the inversional form of the

tone row (lines 70-72), the retrograde-inversional form of the tone row (line 73-75), the

position of where the inversion occurs within the prime row (lines 76-77), and the

transpositional levels that will be used to generate the matrix (lines 78-79). The matrix

section displays the resulting matrix by utilizing the build-matrix function with the

appropriately supplied arguments (line 84). The whole output of the script can be called

by executing the (generate-matrix) function in line 87. The resulting output is

shown in Example 3-16.

--
Analysis
--
Length: 12
P-2: (2 5 9 0 11 6 10 8 3 7 4 1)
R-1: (1 4 7 3 8 10 6 11 0 9 5 2)
I-10: (10 7 3 0 1 6 2 4 9 5 8 11)
RI-11: (11 8 5 9 4 2 6 1 0 3 7 10)
The inversion is @ position 6 of prime.
Transpositions for generating matrix:
(0 -3 -4 -3 1 5 -4 2 5 -4 3 3)
--
The Matrix
--
(2 5 9 0 11 6 10 8 3 7 4 1)
(11 2 6 9 8 3 7 5 0 4 1 10)
(7 10 2 5 4 11 3 1 8 0 9 6)
(4 7 11 2 1 8 0 10 5 9 6 3)
(5 8 0 3 2 9 1 11 6 10 7 4)
(10 1 5 8 7 2 6 4 11 3 0 9)
(6 9 1 4 3 10 2 0 7 11 8 5)
(8 11 3 6 5 0 4 2 9 1 10 7)
(1 4 8 11 10 5 9 7 2 6 3 0)
(9 0 4 7 6 1 5 3 10 2 11 8)
(0 3 7 10 9 4 8 6 1 5 2 11)
(3 6 10 1 0 7 11 9 4 8 5 2)
--

Example 3-16: Outcome of Example 3-15.

Serialism was not only restricted to include exactly twelve notes. Some

composers like Stravinsky experimented with pitch based serialism that included less

 97

than twelve notes, like his Cantata from 1952.228 Other composers like Boulez

experimented with serialism based on other tuning systems, one for example uses

quartertones.229 The algorithmic examples above can be applied to these procedures as

well. The algorithms are designed in a way that any number of pitches within PCCs can

be applied (the only thing that needs to be changed are the mod operations).

Serialism has also been applied to rhythmic procedures. Berg and Webern began

using the technique in the 1940s.230 Boulez continued the tradition in the 1950s, by

applying serialist type procedures developed by Messiaen, Berg, and Webern.231 Again

relatively simple adjustments can be made to apply serial procedures to rhythms with

the algorithms built, by applying matrices for rhythmic assignments to pitch matrices.

Furthermore, in the 1950s Boulez, Nono, and Stockhausen, among others, started to

apply serialist techniques to any aspect of sound, like dynamics, tempos, timbres

(instrumentation), articulations, etc.232 All of these techniques can be combined with the

algorithms presented in this section as well.

The application of serialist techniques to all aspects of a musical composition,

whereby the composition, and structure of a piece was extremely organized, made

compositions increasingly perceivable as being unpredictable, or happening by

228 Griffiths. Robert P. Morgan, Twentieth-Century Music (New York: W. W. Norton & Company,

1991), 355.

229 Griffiths.

230 Ibid.

231 Ibid.

232 Morgan, 342. Griffiths.

 98

“chance.”

3.3.2. Aleatory

The word “Aleatory” comes from the Latin word for die, or alea. An immediate

connection to eighteenth century dice music can be drawn. However, “these games

usually left only one aspect to guided chance: the ordering of bars supplied with the

scheme, for instance, or the melody to be placed over a given rhythmic-harmonic

pattern.”233 Opinions on what constitutes to the indeterminate process differ. For

example, Paul Griffiths considers three techniques as being part of the aleatory

technique, (1) “the use of random procedures in the generation of fixed compositions,”

(2) “the allowance of choice to the performer(s) among formal options stipulated by the

composer,” and (3) “methods of notation which reduce the composer’s control over the

sounds in a composition.”234 David Cope lists five techniques:235

 The use of graphic or other indeterminate notations 1.
 Music composed indeterminately but notated traditionally 2.
 Performer indeterminacy (related to improvisation) 3.
 Composer determinacy of events ordered randomly (mobiles) 4.
 Composer determinacy of generalized parameters with actual material 5.

chosen randomly

From a twentieth century perspective the technique had its origin in the practice

of American composers Charles Ives, and Henry Cowell.236 John Cage, however, is

233 Griffiths.

234 Paul Griffiths, "Aleatory", Grove Music Online. Oxford Music Online. Oxford University Press.
http://www.oxfordmusiconline.com/subscriber/article/grove/music/00509 (accessed September 18, 2014).

235 Cope, Techniques of the Contemporary Composer, 162.

236 Morgan, 359.

 99

most associated with the technique, and began using chance operations frequently in

the early 1950s (along with Morton Feldman). European composers like Stockhausen,

and Boulez, began using the technique in the late 1950s. Additionally, Xenakis “used a

computer in producing music modelled on stochastic processes, where events on the

smallest scale are indeterminate though the shape of the whole is defined” beginning in

the late 1950s as well.237 With the procedure Xenakis introduced randomness as a

necessity.238

From an algorithmic point of view, Griffith’s “use of random procedures in the

generation of fixed compositions” is relevant in this discussion. A basic number

generator can be used to simulate consecutive dice operations. In the serialism section,

one algorithm that creates a degree of randomness had already been introduced: the

Fisher-Yates-Shuffle. One could almost venture to say that all CAC uses certain

degrees of randomness in the generation of pitch material, be it through simple random

number generators, to probabilistic (“stochastic”) methods, to neural networks that learn

certain procedures, and then are able to devise new compositions.

3.3.3. Emergence of CAC after WW II

After WW II, computers started to be available at major research centers at a

handful of universities in the U.S. Even though most systems would take up entire

rooms, researchers did not shy away of trying to use the computer as a tool in aiding the

237 Griffiths, "Aleatory".

238 Ibid.

 100

compositional process. One of those machines was the ILLIAC computer at the

University of Illinois, Urbana-Champaign.239 In 1955 Lejaren Hiller and Leonard

Isaacson started to program the ILLIAC computer to generate music.240 The result of

this collaboration was the Illiac Suite for String Quartet, and all four movements were

completed by November 1956.241

Each movement of the suite was the result of one experiment.242 The first

experiment dealt with the generation of cantus firmi, where the first part (Presto)

demonstrated five monophonic cantus firmi, the second part (Andante) demonstrated a

two-part cantus firmus, and the third and last part (Allegro) demonstrated a four-part

cantus firmus setting.243 The second experiment featured “four-part counterpoint; from

random white-note music to strict counterpoint with rules added successively,” and

consisted of one long section (Adagio, ma non troppo lento), followed by a CODA.244

The third experiment was a rondo of sorts and consisted of six parts: (1) A – Allegro

239 Simoni and Dannenberg, 13. ILLIAC stands for Illinois Automatic Computer. James Bohn,

"Illiac I", University of Illinois Urbana-Champaign http://ems.music.uiuc.edu/history/illiac.html (accessed
September 18, 2013).

240 Bohn.

241 Lejaren A. Hiller and Leonard M. Isaacson, Experimental Music (New York: McGraw Hill Book
Company, Inc., 1959), 7. The first three movements were completed in July 1956. According the
Experimental Music Studios page at UIUC, “Hiller also used the ILLIAC I as a means of editing scores
that were typed with a music-typewriter called the "Musicwriter.” Bohn. The Illiac Suite in the historic
algorithmic composition narrative is often considered to be the first computer-generated composition.
However, Christopher Ariza points out in a recent article that David Caplin and Dietrich Prinz, had actually
preceded Hiller and Isaacson’s work, by four years (1950/1). Christopher Ariza, "Two Pioneering Projects
from the Early History of Computer-Aided Algorithmic Composition," Computer Music Journal 35, no. 3
(2011): 40.

242 Hiller and Isaacson, 7.

243 Ibid., 153.

244 Ibid., 155.

 101

vivace – “basic rhythm, dynamics, and instrumentation code,” (2) B – Adagio – “random

chromatic music,” (3) A’ – Allegro vivace – “modified rhythm, dynamics, and

instrumentation code plus random chromatic music,” (4) B’ – Adagio – “controlled

chromatic music,” (5) A’’ – Allegro vivace – “revised rhythm, dynamics, and

instrumentation code plus random chromatic music,” (6) CODA – alternating

Adagio/Allegro vivace – subdivided into three parts featuring (a) an “interval row,” (b) a

“tone row,” and (c) a “modified tone row.” 245 The fourth experiment dealt with basic

machine learning techniques by which music rules data was entered into a table, which

in turn was used to activate differently ordered Markov chains.246 The experiment

consisted of five different sections: (1) “alterations of harmonic function transition

possibilities,” (2) “zeroth-order Markov chain music,” (3) “first-order Markov chain

music,” (4) “separation of strong and weak beats,” and (5) the CODA, which presented a

“ith-order Markov chain music; modulation and simple closed structure.”247

Another algorithmic composition that appeared around 1956 was song called

“Push Button Bertha,” and was composed on a DATATRON computer by Martin Klein,

and Douglas Bolito.248 Xenakis used a computer to complete stochastic probability

calculations with the “FORTRAN programming language on the IBM 7090.”249 Pierre

245 Ibid.

246 This particular machine learning technique will be revisited in Chapter 6 of this dissertation.

247 Hiller and Isaacson, 155.

248 David Cope, New Directions in Music, 7th ed. (Prospect Heights, Ill.: Waveland Press, 2001),
160-161.

249 Ibid., 161. Music composed with the stochastic method was Metastasis (1954), Pithoprakta
(1956), and Achoripsis (1957). Ibid.

 102

Barbaud started working “with random permutational methods applied to traditional

harmonies and twelve-tone processes,” in 1960.250 Around “1962, Xenakis began to use

the computer to assist in the calculations for the compositions Amorsima-Morsima and

Strategie, Jeu pour deux orchestres.”251

“Hiller and Robert Baker developed Musicomp, the first computer-assisted

composition environment,” in 1963.252 MUSICOMP stands for “MUsic Simulator

Interpreter for COMPositional Procedures,” and many compositions have been written

with the aid of MUSICOMP: Robert Baker’s CSX-1 Study, Baker and Hiller’s Computer

Cantata (1963), Herbert Brün’s Sonoriferous Loops, Brün’s Nonsequitur VI (1961),

Cage and Hiller’s HPSCHD (1969), etc.253 In 1964-1967 Gottfried Michael Koenig

created Project 1, a system that composed music “by applying seven selection

principles to a database of five musical event parameters: instrument, rhythm, harmony,

register, and dynamics.”254

The GROOVE system by Max Mathews and Rosler continued the CAC tradition

into the 1970s.255 In the mid 1970s Barry Truax developed the POD (Poisson

250 Ibid.

251 Simoni and Dannenberg, 13.

252 Nierhaus, 63.

253 Cope, New Directions in Music, 161.

254 Roads, 839. Peter Manning, Electronic and Computer Music (New York: Oxford University
Press, 2004), 203. Koenig developed Project 2 from 1968-70. Ibid.

255 Nierhaus, 63. The graphical representation system of music is closely related to Schillinger’s
System of Musical Composition. Loy, 311. GROOVE stands for “Generated Real-time Ouput Operations
on Voltage-controlled Equipment.” Manning, 207.

 103

Distribution) programs.256 During the 1980s the environments used for CAC were: Midi

Lisp, Patch Work, Bol Processor.257 Lansky’s Travesty program uses a deterministic

algorithm, where “the composer takes an existing work of music, extracts arbitrary

phrase from it, and relinks them together according to some set of rules.”258

In the early 1990s Common Music, Symbolic Composer, and Open Music started

to emerge.259 While these environments were specifically created for CAC, other

environments, namely ones that also were able to actually synthesize sound, can also

be used. These included the MusicN family by Mathews (1960s), Barry Vercoe’s

Csound (1980s), and Schottstaedt’s Common Lisp Music (1990s).260 Current tools that

can be used for CAC purposes, and have sound capabilities, are PWGL, PureData (Pd),

MaxMSP, SuperCollider, OpenMusic (continued), ChucK, Nyquist, Grace, and others.

3.3.4. Brief AI History (and Music)

Since CAC has dealt with algorithms since its inception, it is not surprising that

artificial intelligence research infused the field from the beginning as well. Early work in

AI was completed by McCulloch and Pitts, who based this work in, (1) “knowledge of the

basic physiology and function of neurons in the brain,” (2) “formal analysis of

256 Roads, 840.

257 Nierhaus, 63.

258 Loy, 312.

259 Nierhaus, 63.

260 Ibid., 64.

 104

proportional logic,” and (3) “Turing’s theory of computation.”261 Another one of the early

pioneers in AI was Donald Hebb, after whom “Hebbian learning” is named, which was “a

simple updating rule for modifying the connection strengths between neurons.”262 Alan

Turing’s contributions to the field should also be mentioned, especially his 1950s article

“Computing Machinery and Intelligence,” in which he laid the foundation for “the Turing

Test, machine learning, genetic algorithms, and reinforcement learning.”263

According to Russell and Norvig the actual birth of AI research started with a call

for participation in a wokshop at Darmouth College in the summer of 1956, made by

John McCarthy, Marvin Minsky, Claude Shannon, and Nathaniel Rochester, to gather

“U.S. researchers interested in automata theory, neural nets, and the study of

intelligence.”264 McCarthy would move on to develop Lisp in 1958 at MIT, “which was

the dominant AI programming language for the next 30 years.”265 Minsky developed a

project named “microworlds,” in which limited problems would have to be solved, such

as closed-form calculus integration problems, geometric analogy problems, or algebra

story problems.266 Further, Newell and Simon developed the “physical symbol

hypothesis” (an outgrowth of the “General Problem Solver” designed “to imitate human

problem-solving protocols”), which states “that any system (human or machine)

261 Stuart J. Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, 3rd ed. (Upper
Saddle River: Prentice Hall, 2010), 16.

262 Ibid.

263 Ibid., 17. A. M. Turing, "Computing Machinery and Intelligence," Mind 59, no. 236 (1950).

264 Russell and Norvig, 17.

265 Ibid.

266 Ibid.

 105

exhibiting intelligence must operate by manipulating stat structures composed of

symbols.”267

Other branches of AI research would not necessarily be concerned with “problem

solving” tasks, like Friedberg’s “experiments in machine evolution (now called genetic

algorithms).”268 The purpose of these algorithms was “that by making an appropriate

series of small mutations to a machine-code program, once can generate a program

with good performance for any particular test.”269 However, creating “general-purpose

search mechanisms trying to string together elementary reasoning steps to find

complete solutions,” became known as being a “weak method,” “because…they do not

scale up to a large or difficult problem.”270 The realization led to the development of

“expert systems,” where the expertise of a system is “derived from large numbers of

special-purpose rules.”271 A system called “frames” was developed by Minsky in 1975,

which assembled “facts about particular object and event types and arranging the types

267 Ibid., 18. Laske discusses general problem-solving heuristics. Otto E. Laske, "In Search of a

Generative Grammar in Music," in Machine Models of Music, ed. Stephan M. Schwanauer and David A.
Levitt, (Cambridge, MA: MIT Press, 1993).

268 Russell and Norvig, 21. Nierhaus lists an extensive bibliography of composers experimenting
with genetic algorithms in compositions. Nierhaus, 184-186.

269 Russell and Norvig, 21.

270 Ibid., 22.

271 Ibid., 23. David Cope states, “one subprogram of EMI is an expert system that employs pattern
recognition to create recombinant music.” David Cope, "Recombinant Music: Using the Computer to
Explore Musical Style," Computer 27, no. 7 (1991): 22. Curtis Roads also categorizes EMI as an expert
system. Roads, 903. Roads also mentions P. Beyl’s Oscar, “an interactive composing environment,” and
Garton’s Elthar program. Ibid. In another instance Kemal Ebcioğlu has developed an expert system called
CHORAL, designed “for harmonization and Schenkerian analysis of chorales in the style of J. S. Bach.”
Kemal Ebcioğlu, "An Expert System for Harmonizing Four-Part Chorales," Computer Music Journal 12,
no. 3 (1988): 43.

 106

into a large taxonomic hierarchy analogous to biological taxonomy.”272

In 1969 Bryson and Ho developed the back-propagation learning algorithm that

was re-invented in the mid-1980s, also known as “the return of neural networks.”273 A

back-propagation algorithm takes on the task of “supervised learning in which errors are

propagated back through the network (from the outputs to the inputs), changing the

connection weights as they go.”274 This type of algorithm, dealing with neural networks,

is part of the “connectionist models of intelligent systems.”275 Research in the neural

network area is still ongoing and current as of present writing. Additionally, HMMs, have

attained a high degree of versatility, since (1) “they are based on rigorous mathematical

272 Russell and Norvig, 24. Minsky discusses frames in Music, Mind, and Meaning. Marvin

Minsky, "Music, Mind, and Meaning," Computer Music Journal 5, no. 3 (1981). John Rahn further
discusses the application of “frames” in On Some Computational Models of Music Theory. John Rahn,
"On Some Computational Models of Music Theory," Computer Music Journal 4, no. 2 (1980).

273 Russell and Norvig, 24. Toiviainen discusses back-propagation in connection with symbolic AI
and connectionism. Robert Rowe discusses back-propagation within an interactive music system. Petri
Toiviainen, "Symbolic Ai Versus Connectionism in Music Research," in Readings in Artificial Intelligence,
ed. Eduardo R. Miranda, (Amsterdam: Harwood Academic Publishers, 2000), 54. There are four articles
written about back-propagation in neural networks in Musical Networks. Robert Rowe, "Interactive Music
Systems in Ensemble Performance," in Readings in Artificial Intelligence, ed. Eduardo R. Miranda,
(Amsterdam: Harwood Academic Publishers, 2000), 147. Ian Taylor and Mike Greenhough, "Modelling
Pitch Perception with Adaptive Resonance Theory Artificial Neural Networks," in Musical Networks:
Parallel Distributed Perception and Performance, ed. Niall Griffiths and Peter M. Todd, (Cambridge, MA:
MIT Press, 1999), 3-22. Edward W. Large and John F. Kolen, "Resonance and the Perception of Musical
Meter," in Musical Networks: Parallel Distributed Perception and Performance, ed. Niall Griffiths and Peter
M. Todd, (Cambridge, MA: MIT Press, 1999), 65-96. Michael C. Mozer, "Neural Network Music
Composition by Prediction: Exploring the Benefits of Psychoacoustic Constraints and Mutli-Scale
Processing," in Musical Networks: Parallel Distributed Perception and Performance, ed. Niall Griffiths and
Peter M. Todd, (Cambridge, MA: MIT Press, 1999), 227-260. Edward W. Large, Caroline Palmer, and
Jordan B. Pollack, "Reduced Memory Representations for Music," in Musical Networks: Parallel
Distributed Perception and Performance, ed. Niall Griffiths and Peter M. Todd, (Cambridge, MA: MIT
Press, 1999), 279-312.

274 Rowe, Machine Musicianship, 96.

275 Russell and Norvig, 24.

 107

theory,” and (2) “they are generated by a process of training a large corpus of…data.”276

Consequently, HMMs and neural nets gave way to data mining.277

Furthermore, the “Bayesian network formalism was invented to allow efficient

representation of, and rigorous reasoning with uncertain knowledge.”278 Intelligent

agents have become synonymous with web technologies that end with the “-bot” suffix,

including “search engines, recommender systems, and Web site aggregators.”279 The

availability of very voluminous data sets has forced researchers to re-evaluate the roles

of what algorithms to apply, and focus on the actual data.280 Large data sets are also

known as corpora. These corpora can then be bootstrapped to learn new patterns with

the help of only few definitions.281 Therefore, if corpora are assembled appropriately,

learning algorithms can extrapolate new analyses, new data, new rules that would have

been overlooked otherwise.

276 Ibid., 25. A bibliography of HMMs and their application to music is listed here: Nierhaus, 82. An

overview of HMMs: Geraint A. Wiggins, Marcus T. Pearce, and Daniel Müllensiefen, "Computational
Modeling of Music Cognition and Musical Creativity," in Computer Music, ed. Roger T. Dean, (New York:
Oxford University Press, 2009), 383-420.

277 Russell and Norvig, 26. Li, Ogihara, and Tzanetakis have published a book on data mining in
connection with music. Tao Li, Mitsunori Ogihara, and George Tzanetakis, eds., Music Data Mining (New
York: CRC Press, 2012).

278 Russell and Norvig, 26. David Temperley extensively writes about Bayesian network
applications to music. David Temperley, "A Bayesian Approach to Key-Finding," in Second International
Conference, ICMAI, ed. Christina Anagnostopoulou, Miguel Ferrand, and Alan Smaill (Edinburgh,
Scotland, UK: Springer, 2002). David Temperley, The Cognition of Basic Musical Structures (Cambridge,
MA: MIT Press, 2004). David Temperley, Music and Probability (Cambridge, MA: MIT Press, 2007).

279 Russell and Norvig, 26-27.

280 Ibid., 27.

281 Ibid., 27-28. Two issues of Music Perception have been dedicated to big data style corpus
studies (table of contents are listed here). "Table of Contents," Music Perception: An Interdisciplinary
Journal 31, no. 1 (2013): ii. "Table of Contents," Music Perception: An Interdisciplinary Journal 31, no. 3
(2014): ii.

 108

CHAPTER 4

DAVID COPE

4.1. On David Cope

The American educator, instrument maker, composer, and writer David Howell

Cope was born on May 17, 1941 in San Francisco, California.1 Cope studied piano and

cello in his youth.2 He received a Bachelor of Music degree in 1963 from Arizona State

University, where he studied composition with Grant Fletcher.3 David Cope completed

his Master of Music degree at the University of Southern California in 1965, where he

studied with Halsey Stevens, George Perle, and Ingolf Dahl.4 Furthermore, Cope began

doctoral studies at University of Southern California around 1966, where Arthur Knight

was one of his advisers.5

Cope began his career as a college instructor in 1966, by working at Pittsburg

State University in Kansas.6 His next appointment was at California Lutheran University

1 Dale Cockrell and Hugh Davies, "Cope, David Howell", Grove Music Online. Oxford Music

Online. Oxford University Press.
http://www.oxfordmusiconline.com/subscriber/article/grove/music/L2232381 (accessed March 11, 2014).

2 David Cope, "Biography", University of California, Santa Cruz
http://artsites.ucsc.edu/faculty/cope/biography.htm (accessed April 11, 2014). According to Cope’s
autobiography, he studied composition with Dahl, at the same time as “Michael Tilson Thomas, current
conductor of the San Francisco Symphony Orchestra.” Ibid.

3 Dale Cockrell, "Cope, David", Grove Music Online. Oxford Music Online. Oxford University
Press. http://www.oxfordmusiconline.com/subscriber/article/grove/music/42662 (accessed April 11, 2014).
Cope did not complete his doctoral studies at USC. Ibid.

4 David Cope, Tinman: A Life Explored (Bloomington, IN: iUniverse, Inc., 2008), 141.

5 Ibid., 185.

6 All following colleges and universities are going to be listed by their most current names. Cope
lists the date of his job at Pittsburg State University at 1967.

 109

in Thousand Oaks, CA from 1968-1969. In 1969, Cope taught for one year at Prairie

View A & M University, a historically black university located in Prairie View, Texas.7

From 1970 to 1973, he held a position at the Cleveland Institute of Music.8 Cope

remained in Ohio for another four years, by teaching at Miami University in Oxford from

1973-1977.9 In 1977, David Cope was appointed to the University of California in Santa

Cruz, where he remained until his retirement in 2006.10

Currently, Cope is the “Dickerson Emeriti Professor at the University of California

at Santa Cruz,” “where he teaches theory and composition.”11 Additionally, Cope also is

“Honorary Professor of Computer Science at Xiamen University (China).”12 Further, he

“teaches regularly in the annual Workshop in Algorithmic Computer Music (WACM) held

in June-July at UC Santa Cruz.”13

As a physical instrument maker, Cope “has constructed several percussion

instruments for use in his own compositions.”14 Cope’s composition The Way (1981) “is

based on Navajo Indian rituals, and is written in a system of just intonation having 33

7 Cope, Tinman: A Life Explored, 134.

8 Cockrell. Cope, Tinman: A Life Explored, 171-172.

9 Cope, Tinman: A Life Explored, 200-201. Cockrell.

10 Cope, Tinman: A Life Explored, 202, 209, 211, 213, 219. Cockrell.

11 Cope, Tinman: A Life Explored, 134, 227, 237.

12 Cockrell.

13 Cope, Tinman: A Life Explored, 237, 277, 341, 391, 435.

14 Cope, "Biography". Being an instrument builder and composer is an American tradition of sorts,
begun for one by Harry Partch. The practice manifests itself in computer music, when one considers a
computer, or a computer program as a musical instrument.

 110

notes to the octave.”15 The instruments constructed for The Way include: (1) aluminum

bells, (2) a large drum, (3) transversely blown tubes, and (4) musical glasses.16

Additional parts are based on instruments that utilize “interacting systems of vibration

and resonance,” namely the Logsprinoka, which is constructed like a “nail violin, and

long springs stretched over bridges, which are attached to a 2-metre log drum.”17

Furthermore, some “instruments, some with only one note, were made from Navajo

prayer stones and other materials obtained from Canyon de Chelley in Arizona.”18 The

New Grove describes Cope’s music as incorporating “musical structures and

compositional methods, from the traditional to the avant-garde.”19 Furthermore, Cope’s

music incorporates contemporary unconventional playing techniques, prepared

instruments, invented instruments, microtonal scales (including a “33-note system of

just-intonation”), atonality, and polyrhythms.20

4.1.1. Composition Projects on Smithsonian Folkways

The LP record Navajo Dedications from 1976 features four works from Cope’s

period, namely (1) Vortex, (2) Rituals, (3) Parallax, and (4) Teec Nos Pos.21 The liner

15 Ibid.

16 Ibid.

17 Cockrell.

18 Ibid.

19 Ibid.

20 Ibid.

21 David Cope, Navajo Dedications, Bill Albin et al., Folkways Records FTS 33869, LP, 1976.

 111

notes give a little bit more detailed information on how some of Cope’s music is

structured.22 For example, in Vortex, a composition for large chamber ensemble, “a

single motive (1/2 step repeated evenly in 64th note motion) ties the work together

through a variety of guises (timbre and rhythmic variations).”23 There are four sections

“from which each of the transitions spring” in the composition.24 Further, the “flute and

trombone act in contrapuntal conversation within the 4-framed single movement while

the 3 percussion and piano help outline the continuous development.”25 Hidden

meanings are encrypted through syllables that do not belong to the Navajo language.26

Rituals is written for cello, wind chimes, bass drum, and voice. The piece is to be

performed by a singular performer, and focuses on the Navajo creation myth.27 In

Parallax, a piano incorporating extended technique possibilities is being used. As the

title suggests, the piece aims to “view an object from a variety of directions obtaining

different results or reactions.”28 The object is PC C#, and a set of variations are based

on PCC {C#, D#, E} which serve to view “the subject from slightly different angles

22 Jon Marshall, liner notes to Navajo Dedications, David Cope, Folkways Records FTS 33869,

LP, 1976. Perhaps Cope is hinting at the Navajo Code Talkers, a special unit of the U. S. military during
WW II in the Pacific theatre.

23 Ibid.

24 Ibid.

25 Ibid.

26 Ibid.

27 Ibid.

28 Ibid.

 112

achieving vividly different melodic and harmonic ideas.”29 The piano is interspersed with

whispers of seven Navajo words that together do not form a cohesive statement. PC C#

can be interpreted as a representation of “Nahokah – dinneh” or “People of the first

earth,” since special emphasis is given to how Navajo refer to themselves.30 Teec Nos

Pos, is the only electronic music composition on the album, but like the opening Vortex

is structured around four sections.31

Another one of Cope’s albums from the 1970s is called Visions (1979), and

features the five-movement composition Threshold and Visions for large chamber

orchestra, and Glassworks for two pianos and computer generated tape, both of which

were written in 1978.32 In Threshold and Visions, materials “concentrate on the ever

flowing expansion and contraction of motivic modules gravitating toward a variety of

central pitches.”33 The tape portion of Glassworks “was composed from June to August

1978 at the Artificial Intelligence Laboratory at Stanford University, Palo Alto, California

using a PDP 10 computer and the Samson Digital Synthesizer.”34 Cope gives further

insight into the compositional process at SAIL:

29 Ibid.

30 Ibid.

31 Ibid.

32 David Cope, Visions, David Cope, Ken Durling, and Santa Cruz Chamber Symphony, Folkways
Records FTS 33452, LP, 1979.Here “large” chamber orchestra means: Flute, Oboe, Clarinet, Bassoon,
Harp, two percussionists, two horns, trumpet, two trombones, piano, organ, and a string section
consisting of violins violas, cellos, and basses.

33 Ibid.

34 Ibid. Conveniently this information is omitted from the EMI “creation myth.” It is very clear that
Cope already has some type of programming experience, before embarking on his EMI journey.

 113

The tape has been produced entirely by digital procedures and a digital-to-analog
converter (DAC) and no analog synthesizer-produced sounds were used. All
splicing was accomplished by computer program changes and not by more
traditional means of actually cutting the tape directly. The software design used is
that developed primarily by John Chowning and Leland Smith at Stanford.
Timbres employed were developed around two substantially different techniques
available in the SCORE program at Stanford: FM techniques (CHOWNING
MODULATION) wherein timbres are created by frequency modulation varying
either or both program and carrier waveforms; or Fourier Synthesis techniques
wherein each timbre is constructed from scratch by adding each overtone
separately, controlling frequency (often chosen from the inharmonic spectrum
with frequencies varying in thousands of cycles from the harmonic norm),
envelope structure and timing and existence (i.e., overtones were often left out of
the spectrum). A third type of timbre production, frequency, spatial relations
(dynamics) and rhythm were controlled through very different means.35

Cope’s fascination with the all-digital process of sound creation is very clear. He

further continues:

A complex tone (timbre #3) can be defined in reference to GLASSWORKS as a
continuous pitch constructed of hundreds (sometimes) thousands of tiny pitches
produced in a narrow frequency band. As an example, one must imagine 200 to
500 separate sound events per second being produced within the frequency
range of 439 HZ and 442 HZ (or 3 cycles difference) with each sound event
having say .001 to .009 seconds duration, its own timbre and overtone structure,
its own envelope and its own pitch identity (pitch being selected to the thousands
of a cycle; i.e., pitch 1 with a frequency of 441.036, pitch 2, a frequency of
439.879, etc.). The result of playing these small sounds over a continuous period
of time is the illusion of a single identifiable pitch with a very unique timbre.36

What follows is a print-out of required input data (computer code that shows the

creation of two instruments in which a 33 just intonation division of the octave is

created) and its corresponding output data, including proto MIDI pitch start, and duration

35 Ibid. Additionally this snippet is an excellent insight into how FM synthesis was being

constructed at Stanford, before FM synthesis became part of the Yamaha FM family of synthesizers.

36 Ibid.

 114

values with the harmonic makeup of each synthesized sound.37 Furthermore, Cope

explains the need of having to create an automated process (he calls it a “stochastic

procedure”) in order to calculate the immense amount of data that needs to be created

in order to create just small bits of organized sounds.38 However, what is more important

is that in these liner notes Cope creates a blueprint of what his future work during his is

centered on, the procedural organization of pitched materials through automated

processes.

4.1.2. Compositions

The previously examined examples are just a sample of music written by David

Cope in the 1970s. Table 4-1 lists Cope’s compositional output in more detail.39

Table 4-1: David Cope works.

Title Details Year Category

Piano Sonata No. 1 "Youth" Piano, 15’ 1960 PTC
Piano Sonata No. 2 Piano, 12’ 1969 PTC
Piano Sonata No. 3 Piano, 13’ 1970 PTC
Piano Sonata No. 4 Piano, 19’ 1971 PTC

Variations
Solo piano and wind ensemble
(picc, 2 fl, 2 ob, eng hn, 2 cl, bs
cl, 2 bs, contra bs, 4 hn, 2 tpt, 3
trb, tuba, 3 st bass, 3 perc), 12’

1965 PTC

37 The input example and the output example have been included in Appendix B Code Examples

as B.1. Glassworks Input Code, and as B.2. Glassworks Output Code

38 Cope, "Visions."

39 David Cope, "Works", University of California, Santa Cruz
http://artsites.ucsc.edu/faculty/cope/works.htm (accessed April 19, 2014).

 115

Title Details Year Category
Three Pieces for Bassoon Basson, 6’ 1966 PTC
Three Pieces for Clarinet Clarinet, ?’ 1966 PTC

Contrasts Orchestra (2,2,2,2 4,2,3 perc,
str), 7’ 1966 PTC

Three Pieces for Trombone Trombone, 6’ 1966 PTC
String Quartet No. 1 String quartet, 22’ 1960 PTC

String Quartet No. 2 String quartet, 25’ 1964 PTC
String Quartet No. 3 String quartet, 24’ 1969 PTC
String Quartet No. 4 String quartet, 24’ 1970 PTC
String Quartet No. 5 String quartet, 24’ 1974 PTC
String Quartet No. 6 String quartet, 24’ 1984 PTC
Iceberg Meadow Prepared piano, 9’ 1968 PTC
B.T.R.B. Solo bass trombone, 20’ 1971 PTC
Spirals Tuba and prepared tape, 8’ 1972 PTC
Ashes Soprano and percussion, 8’ 1972 PTC
Margins Tpt, vc, perc, 2 pf, 12’ 1972 PTC, ACY
Streams Orchestra, 13’ 1973 PTC
Extensions Trumpet and prepared tape, 8’ 1973 PTC

Indices Oboe and piano, 8’ 1973 PTC

Vectors Baritone, electronics and
ensemble (3 perc, fl, trb), 20’ 1976 PTC

Vortex Chamber ensemble (Fl, trb, pf,
and 3 perc.), 16’ 1976 PTC

Concerto for Piano and
Orchestra

Piano and orchestra (1,1,1,1,cb
2,1,2 hp, org, perc, str), 29’ 1980 PTC

Viola Concerto Viola and orchestra, 29’ 2009 PTC
Symphony No. 1 "The
Phoenix."

Orchestra (fl, ob, cl, bs, hn, tpt,
trb, harp, perc, pf, str), 39’ 1960 PTC

Symphony No. 2
"Reconciliation"

Orchestra (fl, ob, cl, bs, hn, tpt,
trb, harp, perc, pf, str), 41’ 1961 PTC

Symphony No. 3 Orchestra (fl, ob, cl, bs, hn, tpt,
trb, harp, perc, pf, str), 46’ 1962 PTC

Symphony No. 4 Orchestra (fl, ob, cl, bs, hn, tpt, 1963 PTC

 116

Title Details Year Category
trb, harp, perc, pf, str), 44’

Symphony No. 5 Orchestra (fl, ob, cl, bs, hn, tpt,
trb, harp, perc, pf, str), 44’ 1999 PTC

Symphony No. 6 Orchestra (fl, ob, cl, bs, hn, tpt,
trb, harp, perc, pf, str), 43’ 2002 PTC

Symphony No. 7 Orchestra (fl, ob, cl, bs, hn, tpt,
trb, harp, perc, pf, str), 39’ 2003 PTC

Symphony No. 8 Orchestra (fl, ob, cl, bs, hn, tpt,
trb, harp, perc, pf, str), 34’ 2004 PTC

homage RFK String orchestra (str, perc.), 7’ 2000 PTC
Symphony No. 9 "Martin
Luther King, Jr."

Orchestra (fl, ob, cl, bs, hn, tpt,
trb, harp, perc, pf, str), 43’ 2005 PTC

Violin Concerto Violin and orchestra, 29’ 2012 PTC
Cello Concerto Cello and orchestra, 26’ 1979 PTC

Afterlife
Orchestra (2, 2, 2, 2, 4, 2, 3 hp,
perc, str) and soloist (on original
instruments), 29’

1982 PTC

Into the Celestial Spaces Choir (SSAA, chamber
ensemble), 14’ 2005 PTC

Children of Darkness Chamber ensemble, 14’ 2009 PTC

Piano Variations Piano solo, 53’ 2009 PTC
Ballet Antigone Orchestra, 48’ 2009 PTC
Octet for Strings String octet, 36’ 2009 PTC

Koosharem Chamber ensemble (cl, cb, perc
and pf), 12’ 1973 NC

Triplum Piano and flute, 13’ 1973 NC, ACY
Requiem for Bosque
Redondo

Brass choir (4, 4, 4) and perc (3),
12’ 1981 NC, ACY

Arena Violoncello and tape, 8’ 1974 NC
Parallax Piano solo, 14’ 1974 NC
Re-Birth Concert Band, 16’ 1975 NC
Rituals Cello solo, 6’ 1976 NC

Threshold and Visions Orchestra (1, 1, 1, 1, 2, 1, 2, 2
perc, hp, org, pf, strings), 32’ 1977 NC

Cradle Falling Opera, soprano solo and
chamber orchestra (1, 1, 1, 1 hn, 1985 NC, ACY

 117

Title Details Year Category
trb, 2 perc, 2 pf, harp, 1, 1, 2, 1),
60’

Songs from the Navajo Soprano and chamber ensemble
(cl, va, vc, hp, perc., pf,), 13’ 1995 NC

I remember Him Korean gayageum, wind chimes,
drum, 12’ 2005 NC

Asymmetries Korean gayageum, 12’ 2006 NC

Choir of Memory SATB, orchestra, poems by
Gerald Vizenor, 52’ 2008 NC

Spires Computer-generated tape (2005
version), 5’ 1956 ACY

Three 2-Part Inventions Piano solo, 1960 1960 ACY
Three Pieces Clarinet, 6’ 1965 ACY
Five Pieces Flute, bassoon and violin, 7’ 1965 ACY
Towers Mixed ensemble, 15’ 1968 ACY
Birds Live electronic music, 12’ 1968 ACY

1,000 works (with Emmy) Various40 1981-
2003 ACY

5,000 works (with Emmy)
1500 symphonies, 1000 string
qts, 1000 piano sonatas, 1500
assorted works

1992 ACY

Horizons Orchestra (2, 2, 2, 2, 2, 1, 2 hp,
pf, 2 perc., str.), 12’ 1994 ACY

Organ Concerto Organ and orchestra (2, 2, 2, 2,
4, 2, 3 hp., perc., str.), 28’ 2000 ACY

Endangered Species Chamber ensemble, 15’ 2004 ACY
From Darkness, Light (with
Emily Howell) Two pianos, 22’ 2004 ACY

5,000 chorales (with Emmy) 5000 works in Bach’s chorale
style 2005 ACY

Shadow Worlds (with Emily
Howell) Three disklaviers, 18’ 2005 ACY

Land of Stone (with Emily
Howell) Chamber ensemble, 15’ 2007 ACY

40 Cope provides a more detailed list of Emmy’s music that appears in the section on Emmy.

David Cope, "Music of Experiments in Musical Intelligence", University of California, Santa Cruz
http://artsites.ucsc.edu/faculty/cope/emi.htm (accessed September 22, 2014).

 118

Title Details Year Category
Silver Blood (with Emily
Howell) Chamber ensemble, 10’ 2007 ACY
SpaceTime (with Emily
Howell)

Computer generated acoustic
music, 13’ 2011 ACY

Breathless (with Emily
Howell)

Chamber ensemble, percussion,
9’ 2012 ACY

From the Willows Keep (with
Emily Howell) Chamber ensemble, electronic 2012 ACY
Coming Home (with Emily
Howell)

Computer generated acoustic
musi, 13’c 2012 ACY

Prescience (with Alena) Chamber ensemble, 8’ 2012 ACY
Transcendence Chamber ensemble, 15’ 2012 ACY

4.1.3. Writings

During the 1970s, Cope also started to gain significant recognition as a writer on

composition pedagogy: (1) New Directions in Music (1974, and currently in its 7th

edition) – a volume that explores music composed since the late 1940s to 2001 (date of

the 7th edition), including an overview of the following practices, and their corresponding

composers: tonality, atonality and serialism, texturalism, timbralism and tuning,

indeterminacy, experimentalism, electroacoustic music, algorithmic composition,

minimalism, and integration of these aspects of new music composition; (2) New Music

Notation (1976) – a volume focusing on the notational aspects of new music; and (3)

New Music Composition (1977) – a pedagogical text covering the following topics:

harmonic progression and chromaticism, twelve tone processes, melodic direction,

pointillism and Klangfarbenmelodie, polytonality, interval exploration, cluster techniques,

microtones, percussion and prepared piano, rhythm and meter, indeterminacy,

multimedia, musique concrète, new traditional instrument resources, synthesizer

 119

techniques, new instruments, further extensions, total organization, computer

techniques, texture, modulations, notation, minimalization, bio music, and de-

categorization.41 In an article published in 1977 (which is not included on David Cope’s

website), Cope explains how to listen to electronic music in the Music Educators

Journal. Cope wrote this article while teaching at Miami University in Oxford, OH.42 In

addition, David Cope has written numerous composition reviews and book reviews.

Starting in the 1980s, Cope starts publishing books that not only cover pedagogical

composition topics, but also outcomes of his research into computer aided composition.

The books, book chapters, and journal articles covering these topics will be covered in

the following two sections (4.2 Emmy, 4.3 Emily Howell, and 4.4 Cope’s Algorithmic

Analyses). The following table shows books written by David Cope that are not

concerned about CAC, but may be composition pedagogy texts, music fundamentals

texts, poetry, novels, and other items.43

Table 4-2: Miscellaneous writings.

Book Title Book Type Year
Techniques of the Contemporary Composer44 Composition Pedagogy 1997

41 Cope, "Works". Cope, New Directions in Music. David Cope, New Music Notation (Dubuque,

IA: Kendall/Hunt Pub. Co., 1976). David Cope, New Music Composition (New York: Schirmer Books,
1977).

42 David Cope, "The Mechanics of Listening to Electronic Music," Music Educators Journal 64, no.
2 (1977).

43 The year column in the table lists the year of publication according to David Cope web site.
David Cope, "Bibliography", University of California, Santa Cruz
http://artsites.ucsc.edu/faculty/cope/bibliography.htm (accessed April 11, 2014).

44 Cope, Techniques of the Contemporary Composer.

 120

Book Title Book Type Year
Tinman: A Life Explored45 Autobiography, Part 1 of 3 2008
Comes the Fiery Night46 (Generative) Poetry 2011
A Musicianship Primer47 Music Fundamentals 2012
Taking Sides48 Games 2012
Tinman Too: A Life Explored49 Autobiography, Part 2 of 3 2012
ars ingenero50 Generative Art 2012

The Death of Karlin Mulrey51 Novel 2012
Not by Death Alone52 Novel 2012
Death by Proxy53 Novel 2012
Mind Over Death54 Novel 2012

45 Cope, Tinman: A Life Explored. “D. H. Cope” denotes fiction/poetry writings by Cope.

46 D. H. Cope, Comes the Fiery Night (Charleston, SC: CreateSpace Independent Publishing
Platform, 2011).

47 David Cope, A Musicianship Primer (Charleston, SC: CreateSpace Independent Publishing
Platform, 2012).

48 David Cope, Taking Sides (Charleston, SC: CreateSpace Independent Publishing Platform,
2012).

49 David Cope, Tinman Too: A Life Explored (Bloomington, IN: iUniverse, 2012).

50 David Cope, Ars Ingenero (Charleston, SC: CreateSpace Independent Publishing Platform,
2012).

51 D. H. Cope, The Death of Karlin Mulrey (Charleston, SC: CreateSpace Independent Publishing
Platform, 2013).

52 D. H. Cope, Not by Death Alone: A Will Francis Mystery, Book 1, 5 vols., vol. 1 (Charleston,
SC: CreateSpace Independent Publishing Platform, 2012).

53 D. H. Cope, Death by Proxy, 5 vols., vol. 2 (Charleston, SC: CreateSpace Independent
Publishing Platform, 2013).

54 D. H. Cope, Mind over Death, 5 vols., vol. 3 (Charleston, SC: CreateSpace Independent
Publishing Platform, 2013).

 121

Book Title Book Type Year
Of Blood and Tears55 Short Stories 2012
My Gun is Loaded56 Short Stories 2012
Tinman Tre: A Life Explored57 Autobiography, Part 3 of 3 2013

In the late 1970s, early 1980s Cope started to develop his first sets of CAC

software tools, which will be hereto referred to as the EMI/Emmy period. It is important

to understand that the Emmy period encompasses not just one piece of software, but an

entire family of software tools that Cope constantly improves and revises. Cope’s lore of

how he got involved in CAC has been told numerous times: he suffered from

composer’s block.58

4.2. Emmy

EMI forces us to look at great works of art and wonder where
they came from and how deep they really are…Nothing I've
seen in artificial intelligence has done this so well.

Douglass Hofstadter

55 D. H. Cope, Of Blood and Tears (Charleston, SC: CreateSpace Independent Publishing

Platform, 2014).

56 D. H. Cope, My Gun Is Loaded (Charleston, SC: CreateSpace Independent Publishing
Platform, 2012).

57 David Cope, Tinman Tre: A Life Explored (Bloomington, IN: iUniverse, 2013).

58 Interestingly, during the classical period, when treatises would discuss generative music
creation techniques via combinatorics, “composer’s block” was being used as a reason to utilize
generative techniques. For example, Leonard Ratner in connection to Galeazzi states that the use of such
techniques “applies only to those who cannot invent their own.” Ratner, "Ars Combinatoria, Chance and
Choice in Eighteenth-Century Music," 348-349.

 122

4.2.1. Expert System

Emmy’s (EMI) name is clearly Cope’s nod to Hiller and Isaacson, since the first

four movements of the Illiac Suite were called “experiments.” The first articles that Cope

publishes on Emmy appear in 1987. In “An Expert System for Computer-Assisted Music

Composition,” Cope lays out what he is trying to accomplish with his project

“Experiments in Musical Intelligence.”59 An “expert-system” can be defined as a

“computer system or program, which incorporates one or more techniques of artificial

intelligence to perform a family of activities that traditionally would have to be performed

by a skilled or knowledgeable human.”60 Expert-systems had been in use by AI

researcher since 1969, and started with the DENDRAL system at Stanford University.61

Cope’s expert-system was at first “an analysis tool for generating extensive lists

of motivic patterns” that “quickly grew into an imitative projector of possible next

intervals of given phrases.”62 The sets of functions “allowed for style dictionaries and

syntax rule applications.”63 The system was developed around Cope’s own biases,

59 David Cope, "An Expert System for Computer-Assisted Composition," Computer Music Journal

11, no. 4 (1987).

60 Steven L. Tanimoto, The Elements of Artificial Intelligence Using Common Lisp (New York:
Computer Science Press, 1990), 491. Peter Norvig devotes an entire chapter on expert-systems, and
explains how an expert system by citing the MYCIN medical system that was developed by Edward
Shortliffe in 1974 to aid in medical diagnosis. Peter Norvig, Paradigms of Artificial Intelligence
Programming: Case Studies in Common Lisp (San Francisco: Morgan Kaufmann Publishers, 1992), 530-
563.

61 Russell and Norvig, 22-23.

62 Cope, "An Expert System for Computer-Assisted Composition," 30.

63 Ibid. Style dictionaries to Cope comprise “basic dictionaries,” or databases, “of J. S. Bach,
Ludwig van Beethoven, Johannes Brahms, and Béla Bartók,” which at this point were “run at separate
times.” Ibid., 37.

 123

which “included projections of linguistic parse like networks for phrase structures,

intensely rigorous motive replications, and a proclivity for analyzing music by intervals

rather than pitch.”64 Cope uses the set of programs as “antagonists,” everything is

focused on “compositional process,” and all output is translated “into music notation

rather than digital synthesis.”65 At the end of the article Cope provides an appendix that

features several Emmy functions written in Common Lisp.66 One of these functions has

been translated to modern Common Lisp in Example 4-1.67

1. (defun inversion (base number-list)
2. "Inverts a list of interval movements."
3. (mapcar (lambda (x) (+ (- base x))) number-list))
4.
5. ; (inversion 12 '(2 3 1 -1 -2 -3))
6. ; => (10 9 11 13 14 15)
7.

Example 4-1: Cope's intervallic inversion function in current Common Lisp.

The inversion function takes a base, and a number-list, i.e. a list of

intervals as arguments. In line 3 these arguments are passed to a mapcar function that

maps the anonymous lambda function, which inverts each interval, across the list of

intervals. In line 5 the inversion function is called with 12 and the list '(2 3 1 -1 -

2 -3) as arguments (in the CMJ article Cope actually only provides the list as an

argument, which inevitably would throw an error at the REPL, since none of the

arguments are &optional). The resulting list is (10 9 11 13 14 15), line 6.

64 Ibid., 30.

65 Ibid.

66 Ibid., 39-46.

67 This function is one of the less complex functions in the appendix of the article and has been
included here, because it does not require any other functions or subroutines (functions utilized by other
function) to work.

 124

4.2.2. Recombinant Music and Signatures

Four years later (1991) Cope publishes the article “Recombinant Music.”68 Cope

had expanded his expert-system to include pattern recognition, and the ability “to create

recombinant music – music written in the styles of various composers by means of a

contextual recombination of elements in the music of those composer.”69 Furthermore,

Cope starts to add the “Musikalisches Würfelspiel” to his narrative, by explaining one of

EMI’s subprograms “performs much the same task as the musical dice games on music

that was not written to be disassembled, reorganized, and reassembled.”70

The disassembly occurs according to “signatures” – music structures idiomatic to

a composer, by which the style of the composer can be recognized.71 The “signatures”

act as patterns that are utilized by a pattern-matching program. The patterns are

reduced to their intervallic qualities (as already described in Cope’s 1987 CMJ article),

with rests marked as ‘0,’ and can easily matched according to their intervallic patterns.72

More patterns are matched, “by allowing…any interval to be off by just one half step in

either direction,” in order “to remain within a diatonic framework when sequencing.”73

Before recombining music, Cope pursues a hierarchical analysis. The analysis

68 David Cope, "Recombinant Music: Using the Computer to Explore Musical Style," Computer 27,

no. 7 (1991).

69 Ibid., 22.

70 Ibid.

71 Ibid., 24.

72 Ibid., 24-25.

73 Ibid., 25.

 125

includes “musical groupings, including signatures, for hierarchical function.”74 Chord

functions are analyzed, but also textural elements such as melody, “rising

melodies…can be followed by falling ones for balance,” and accompaniments, “which

otherwise would be a pastiche of various motives, can be made rhythmically consistent

so that they flow regularly with the melodic line.”75 The results of the analyses are stored

in lexicons, or databases, where they are “randomly mixed,” and “access to each

lexicon is…controlled by the functional succession of one of the original works.”76

4.2.3. Augmented Transition Networks and SPEAC

Cope describes how the recombination of musical elements “can be enhanced by

using augmented transition networks (ATNs).”77 AI researchers to aid in natural

language processing used ATNs, and “a transition network is like a context-free

grammar,” while “augmentation is a way of manipulating features and semantic

values.”78 Cope further explains, “ATNs are programs designed to produce logical

sentences from sentence bits and pieces that have been stored according to sentence

function.”79 The recombination is organized in EMI through an ATN, (1) by utilizing a “set

of functions from the analysis,” (2) applying these functions “by gathering applicable

74 Ibid.

75 Ibid., 26.

76 Ibid.

77 Ibid.

78 Norvig, 711-712.

79 Cope, "Recombinant Music: Using the Computer to Explore Musical Style," 26.

 126

groupings of music…stored previously,” and (3) making transitions smoother by, for

example, applying stepwise motion to melodies that previously had stepwise motion

characteristics.80

“Recombinant Music” does not show any code examples, but Cope illustrates the

outlined techniques with music examples, and it is clear that the articles serve as a

teaser for his book Computers and Musical Style, that was publishes in 1991 as well. 81

Computers and Musical Style is considered to be the first one in the “trilogy” of books

written by Cope on Emmy.82 In his book Cope provides background information on

automated music composition, a definition of what he considers musical style – “the

identifiable characteristics of a composer’s music which are recognizably similar from

one work to another,”83 a Lisp programming tutorial, his style replication programs,

musical outcomes from his programs (listed in Table 4-3 and marked with CMS), and

how he uses Emmy as CAC tool.

From an analytical perspective Cope provides his views on how analysis can be

used to help in identifying a style. Cope sets forth several analytical techniques: (1)

parsing – a technique in language study, where a sentence (S) is broken down into

smaller elements, such as “a noun phrase (NP) and a verb phrase (VP),” which in turn

are broken down “into an article (Ar) plus a noun (N),” and “an adverb (Ad) plus a verb

80 Ibid.

81 Cope, Computers and Musical Style.

82 The “trilogy” reference may seem out of place, however, the last book of the trilogy The
Algorithmic Composer features an index for all books within the trilogy. Cope, The Algorithmic Composer,
287-301.

83 Cope, Computers and Musical Style, 30.

 127

(V)” respectively;84 (2) tonal functions; (3) SPEAC – ideas derived from Schenkerian

analysis;85 (4) hierarchical analysis – as in Schenkerian ideas of the foreground,

middleground, and background;86 (5) form – movements to different tonal centers in

accordance to previously described parsing rules;87 (6) melody – mostly stepwise

motion, “compensation of skips by smaller motions in the opposite direction,” and one

ore more notes agreeing with implied harmony;88 (7) texture and counterpoint – how

many voices, contrapuntal procedures, ostinati.89 To recombine the music Cope

discusses, (1) generating hierarchies, and (2) ATNs. 90

After the publication of CMS, Cope writes Computer Modeling of Musical

84 Cope connects to sentence parsing, by parsing a major scale, where PC C assumes the role of

S, the PCs C, F, and G become tonic, dominant and subdominant as NP and VP, and further breakdown
happens from tonic to submediant and mediant, subdominant to simply subdominant, and dominant to
supertonic and subtonic, all as Ar, N, Ad, and V respectively. Ibid., 31-32.

85 S stands for statement, “as is;” P stands for preparation, and E stands for extension, which can
both be used to preface or lengthen S; A stands for antecedent, causing “a significant implication and
require resolution;” C stands for consequent, the resolution of an antecedent. Ibid., 34-37. The following
rules of succession apply to SPEAC: S => P, E, A; P => S, A, C; E => S, P, A, C; A => E, C; C => S, P, E,
A. Ibid., 37.

86 Ibid., 37-38.

87 Ibid., 38-41.

88 Ibid., 41-48.

89 Ibid., 48-50.

90 Ibid., 51-67. Cope provides a small ATN generator program that illustrates how an ATN works,
by combining sentence elements from two database tables (one for syntax, and another for meaning) into
new sentences. Ibid., 83-88. The example actually did not function as printed in the book, since the
choose-one function was omitted and the anonymous lambda function was prepended with a quote.
However, a corrected and updated version of the program (programmed from the bottom-up in order for
the program to instantly run once “execute all” has been specified from Clozure CL) is included in
Appendix B.4. p. 341, and one of its outcomes proclaim: (THAT CONCERTO BY HAYDN WAS HARD TO
PLAY AND ALSO PROFOUND AND LYRICAL).

 128

Intelligence in EMI in 1992.91 Cope describes his algorithm that simulates musical

thinking and is constructed with a “reflexive pattern-matcher combined with an

augmented transition network ATN.”92 Cope expands his pattern-matcher by combining

it “with measuring tools such as…statistical analysis to adjust variable settings,”

because “statistical analysis can refine style analysis for permanent recognition and

replication of that style.”93

In 1992, Cope also makes two contributions to edited books, (1) “A Computer

Model of Music Composition,”94 and (2) “On the Algorithmic Representation of Musical

Style.”95 In the latter book section Cope discusses his parsing technique in EMI from a

linguistic perspective through the use of ATNs, and the necessity to refine these

ATNs.96 In the former book section Cope outlines “the possibilities of computer

composition,” lists “examples of computer composition,” and discusses “the usefulness

of computers composing music.”97 As the machine model Cope outlines his specific

process: (1) “use real music in a given style,” (2) “make examples compatible,” (3)

91 David Cope, "Computer Modeling of Musical Intelligence in Emi," Computer Music Journal 16,

no. 2 (1992): 69-83.

92 Ibid., 69.

93 Ibid., 83.

94 David Cope, "A Computer Model of Music Composition," in Machine Models of Music, ed.
Stephan M. Schwanauer and David A. Levitt, (Cambridge, MA: MIT Press, 1992).

95 David Cope, "On Algorithmic Representation of Musical Style," in Understanding Music with Ai:
Perspectives on Music Cognition, ed. Mira Balaban, Kemal Ebcioğlu, and Otto E. Laske, (Cambridge, MA:
AAAI Press/MIT Press, 1992).

96 Ibid., 354-363.

97 Cope, "A Computer Model of Music Composition," 403.

 129

“pattern match for signatures,” (4) analyze the rules of the music, (5) “fix signatures in

an empty form,” (6) “recompose using rules analysis,” and (7) “ensure proper

performance.”98 He lists examples of music discussed in Computers and Musical Style.

Further, Cope explains how computer composed music can benefit, (1) composers – by

exploring their own musical style, or signature, (2) music theorists – by exploring

different styles and signatures in addition to pitch, function, rhythm, dynamics, texture,

orchestration, and form, and (3) performers – by performing computer composed music

and testing style emulation.99

4.2.4. SARA

Part two of Cope’s trilogy arrives in 1996 in form of the book titled Experiments in

Musical Intelligence.100 SARA (Simple Analytic Recombinancy Algorithm) is the central

topic of this book.101 Cope expands on several previously discussed facets of his

system and provides background information that includes his approaches to analysis,

his approaches to pattern matching, and more information on ATNs. For example,

pattern-matching does not only include the matching of interval strings to one another

anymore, but includes a whole family of functions within SARA that now also weighs the

98 Ibid., 404-407.

99 Ibid., 421-424.

100 Cope, Experiments in Musical Intelligence. The 1996 version of the book had been out of print,
but has recently been re-released with updated code. David Cope, Experiments in Musical Intelligence,
2nd ed., Computer Music and Digital Audio Series, vol. 12 (Madison, WI: A-R Editions, 2014).

101 Cope calls SARA “a more or less bulletproof version of Emmy.” Cope, Tinman Too: A Life
Explored, 300, 477.

 130

occurrence of intervals statistically, or creates Schenker plots (or perhaps symbolic

representations of Schenker plots would be more accurate), or ranks matches. ATNs

are differentiated between FSTNs (finite-state transition networks),102 and RTNs

(recursive transition networks). Generally, Cope describes the different components of

EMI: (1) analysis component – databases, techniques, program;103 (2) pattern-matching

– signature theory, techniques, program;104 (3) object system – object orientation,

classes, slots, methods, program; (4) ATN – Lisp, music, program. Additionally, Cope

describes how he combines all of these components into an application-level program,

complete with interface, variations, and sample output.

In 1997, Cope presents a paper at International Computer Music Conference in

San Francisco, CA called the “Composer’s Underscoring environment,” which is later

published in CMJ.105 The CUE software is an end-user product for composers that Cope

designed by which the user did not need to program any Common Lisp.106 The

102 The FSTN is an “abstract representation” of a “type of automaton or transition network,

consisting merely of a set of states (nodes) connected by directional arcs with actions or conditions
attached.” A Dictionary of Grammatical Terms in Linguistics, s.v. "Finite-State Automaton."

103 Cope describes how he stores music data into his database. Each musical event is stored in
the following format: (0 72 1000 1 100). Cope explains each one of the five items stored as event: (1) on-
time, or when the event starts (the event above starts at the onset of a series of events – starting events
are indicated in milliseconds); (2) MIDI pitch; (3) duration in milliseconds, whereby 1000 milliseconds
represent a quarter note and all other note values are derived thereof, e.g.: half note = 2000ms, eight note
= 500ms; (4) a MIDI channel number (1-16); (5) dynamic level – or how loud a note is ranging from 0-127,
0 being silence, and 127 being as loud as possible. Cope, Experiments in Musical Intelligence, 57-59.

104 Recursive transition networks are applied to nonfinite language processing where directional
“arcs may move between self-contained subnetworks.” Ibid., 43.

105 David Cope, "The Composer's Underscoring Environment: Cue," Computer Music Journal 21,
no. 3 (1997): 20-37.

106 Ibid., 37. Cope indicated that he would supply the CUE software as part of his book The
Algorithmic Composer. Cope mentions again in the 1999 article “One approach to musical intelligence”
that the CUE software would be included on the CD-ROM with the book The Algorithmic Composer, but

 131

presumably GUI based software features “notational, sequencer, and analytical

tools.”107 The code to develop the software is in part based on EMI.108 However,

“although CUE utilizes” the “same basic compositional algorithm, it does not possess

some of EMI’s more intricate ATN algorithms, or” the “sophisticated…SPEAC system of

analysis.”109 Cope sets forth some pitch statistical analytical tools like pitch distribution

or scale tests, pitch entrance rates, texture plots, pitch/duration scatter plots, and MIDI

channel distributions.110

4.2.5. Earmarks and Proto-Alice (CUE)

CUE also uses the pattern-matching technique from earlier systems. 111 The

system still uses Cope’s concept of signatures for pattern-matching procedures, but

Cope also adds a new concept that he calls earmarks. Cope’s earmarks are more

generalized concepts, as in (1) anticipatory indications of certain structural events, or (2)

coherence and unity of one movement to another, or (3) they “have significant impact on

the analysis of structure beyond thematic repetition and variation.”112 Additionally Cope

clarifies, “earmarks are discovered by pattern matching a single work…and eliminating

the book’s CD-ROM does not include the CUE software. David Cope, "One Approach to Musical
Intelligence," Intelligent Systems and their Applications, IEEE 14, no. 3 (1999): 25.

107 Cope, "The Composer's Underscoring Environment: Cue," 20.

108 Ibid., 21.

109 Ibid., 23.

110 Ibid., 27.

111 Ibid., 26.

112 Ibid.

 132

all of the more numerous patterns relevant to thematic development.”113 The “earmarks

occur once in a movement or work, and appear as lone survivors after all other matched

patterns have been discarded.”114

Cope further expands on his idea of signatures and earmarks in his 1998 article

titled “Signatures and Earmarks: Computer Recognition of Musical Patterns.”115 Here,

Cope defines a musical signature as “a term for motives common to two or more works

of a given composer.”116 Thus, “signatures can tell us what period of music history a

work comes from,” and who the “probable composer” of a given work might be.117 Cope

enumerates that earmarks, (1) “mark specific structural locations,” (2) indicate “what

movement of a work we are hearing,” (3) “foreshadow particularly important structural

events,” and (4) “contribute to our expectations of when a movement or work could

climax or end.”118

By this point (1999), David Cope had received considerable amounts of criticism

of his music and decided to confront the issues philosophically in his article “Facing the

Music: Perspectives on Machine-Composed Music.”119 Cope experienced how listeners

113 Ibid., 28.

114 Ibid.

115 David Cope, "Signatures and Earmarks: Computer Recognition of Patterns in Music," in
Melodic Similarity: Concepts, Procedures, and Applications, ed. Walter B. Hewlett and Eleanor Selfridge-
Field, (Cambridge, MA: MIT Press, 1998), 129-138.

116 Ibid., 130.

117 Ibid.

118 Ibid., 134.

119 David Cope, "Facing the Music: Perspectives on Machine-Composed Music," Leonardo Music
Journal 9, (1999): 79-87.

 133

started to actually redefine terminology so that they could “face the music.”120 He lists an

example of trying to market music produced by Emmy.121 Contemporary music circles

were not willing to market Emmy’s music, because it sounds too “classical.” Classical

music distributers were not willing to take on the music, even though it may have

sounded “classical,” because its creation date didn’t fall within the era of classical

music. All while computer music specialists denied that the music was computer music

at all, because it did not sound like computer music. Cope goes on to discuss that some

had argued that the music has only been successful due to performance by humans,

and that human perception is trapped within anthropocentrism. Further criticism

revolves around that the music does not particularly signify anything, and that it lacks

some sort of “romantic notion” of soul.122 Cope concludes that ultimately he remains to

be the composer, or artist, since he is the one that defines how to code Emmy, and that

listeners “should no longer have to need to intellectually camouflage their ears but revel

in facing the music.”123

4.2.6. Association Nets, ALICE, and the End of Emmy

The final installment of the trilogy of Emmy appears in 2000 as The Algorithmic

Composer.124 As with the other books Cope provides the reader with ample background

120 Ibid., 79.

121 Ibid., 79-80.

122 Ibid., 81.

123 Ibid., 83.

124 Cope, The Algorithmic Composer.

 134

information on algorithmic composition as a field. Further, Cope explains the importance

of Markov chains, randomness and recognition, association nets, and something he

calls “BackTalk” in his fundamentals chapter.125 The next chapter discusses different

types of inference, tonal and PCS, but also how to derive rules along with a code

example and musical examples. In the chapter Cope discusses creativity, and his

approach to creativity, while he discusses structure and coherence in the ensuing

chapter, particularly with respect to signatures and pattern-matching, hierarchical

pattern recognition, unifications, structural analysis, earmarks, and a review of SPEAC.

Rather than introducing the expected CUE software, Cope then introduces the ALICE

software, and its operation.

The ALICE program is based on the aforementioned principles in one unified

software environment. Cope explains that ALICE is “a program that composes music in

a user’s style whenever needed while composing,”126 meaning that a composer can

input his/her music and continue that music in his/her style.127 Input to the program can

be accomplished by loading MIDI files, or by simply entering music representations

directly.128 The input can be saved into the database mechanism of the program. The

analytical tools include “statistical graphs; pattern matching variables and results;

mappings of SPEAC, texture, and rules; and lattice-type tree structure representations

125 BackTalk can be seen as a predecessor of ALICE (since it is incorporated into the ALICE

environment), and consequently Apprentice in CMMC.

126 Cope, Tinman Too: A Life Explored, 477.

127 Ibid., 300.

128 Cope, The Algorithmic Composer, 208.

 135

of user-chosen works.”129 The compositional process may involve all previously

mentioned techniques combined, with the addition of being able to generate notation,

and Cope provides pointers at evaluating the output generated by ALICE. In his quest to

find ever more “intelligent” systems, Cope starts to move away from systems in which

he defines rules that serve as proxies of compositional practice of historical style period

rules, and begins to develop systems that can derive the rules themselves from music

input.

Cope’s trilogy really does not end until 2001, when his coda, a book titled Virtual

Music: Computer Synthesis of Musical Style, is published.130 Cope divides the book into

three distinct sections: (1) fundamentals – a history, a philosophical discussion with

Douglas Hofstadter, composing style specific music, part-writing rules, recombinancy,

variations, texture, pattern-matching (signatures and earmarks), structure and form; (2)

process and output – databases and database format, database selection, analytical

data, importance of pattern-matching; and (3) commentary by music scholar on topics

as far ranging as “Composition, Combinatorics, and Simulation: A Historical and

Philosophical Inquiry” by Eleanor Selfridge-Field, “Experiments in Musical Intelligence

and Bach” by Bernard Greenberg, “Dear Emmy: A Counterpoint Teacher’s Thoughts on

the Experiments in Musical Intelligence Program’s Two-Part Inventions” by Steve

Larson, “Who Cares if It Listens? An Essay on Creativity, Expectations, and

Computational Modeling of Listening to Music” by Jonathan Berger, “Collision Detection,

129 Ibid., 214.

130 Cope, Virtual Music: Computer Synthesis of Musical Style.

 136

Muselot, and Scribble: Some Reflections on Creativity” by Daniel Dennett, “A Few

Standard Questions and Answers” by Douglas Hofstadter, all followed with a response

by David Cope.

Emmy’s career produced a large corpus of music, which has been recorded, and

has been published as sheet music (Table 4-3). But as the ephemerality of computer

generated art moved mercilessly forward in time, and obsolescence eventually won, “on

a late evening in mid-September of 2013, the last usable version of Experiments in

Musical Intelligence died on the machine that died with it.”131 Perhaps, Cope’s wishes

become reality; all that remains are Emmy’s compositions, and what “caused” the

compositions becomes irrelevant.

Table 4-3: Published music of Emmy.132

Title Details Year, Book
After Albinoni, Adagio Strings, 3’ 1981-2003
After Bach, J. S., Brandenburg
Concerto Orchestra, 21’ 1981-2003

After Bach, J. S., Cantata Strings, choir, solos, 25’ 1981-2003
After Bach, J. S., Chorales
(371) SATB, 960’ 1981-2003

After Bach, J. S., Cello Suite Cello solo, 20’ 1981-2003
After Bach, J. S., Lute Suite133 Lute, 8’ 1981-2003
After Bach, J. S., Inventions
(15) Piano solo, 30’ 1988, CMS

131 Cope, Tinman Tre: A Life Explored, 508.

132 Compiled from CMMC and Cope’s web site. Cope, Computer Models of Musical Creativity,
385-389. Cope, "Music of Experiments in Musical Intelligence".

133 Also referred to as “Guitar Suite.” Cope, "Music of Experiments in Musical Intelligence".

 137

Title Details Year, Book
After Bach, J. S., Keyboard
Concerto Keyboard and orchestra, 21’ 1981-2003
After Bach, J. S., Well-
Programmed Clavier Keyboard, 240’ 1981-2003, CMS
After Bach, C. P. E., Flute
Sonata Piano and flute, 16’ 1981-2003, CMS

After Bartók, Kosmos Piano, 1’ 1981-2003, CMS
After Bartók, Bulgarian Dance Piano, 1’ 30’’ 1981-2003
After Beethoven, Bagatelle Piano, 4’ 1981-2003
After Beethoven, Sonata Piano, 10’ 1981-2003, EMI
After Beethoven, Symphony 10 Orchestra, 60’ 1981-2003
After Brahms, Intermezzo Piano, 3’ 1981-2003, CMS
After Brahms, Rhapsody Piano, 2’ 40’’ 1981-2003
After Chopin, Mazurkas (56) Piano, 240’ 1987, CMS, AC
After Chopin, Nocturne Piano, 3’ 1981-2003
After Chopin, Variations Piano, 10’ 1981-2003
After Cope, Horizons Orchestra, 10’ 1981-2003
After Cope, Vacuum Genesis Piano, 4’ 1981-2003
After Cope, Preludes and
Fugues (48)134 Piano, 180’ 1981-2003

After Debussy, Le Prelude Piano, 4’ 1981-2003
After Experiments in Musical
Intelligence, Inventions (48) Piano, 120’ 1981-2003
After Experiments in Musical
Intelligence, L'Histoire du
Musique

Orchestra and soloists, 24’ 1981-2003

After Experiments in Musical
Intelligence, World Anthem Voice and piano, 3’ 1981-2003
After Experiments in Musical
Intelligence, The Ugly Duckling Orchestra, 22’ 1981-2003
After Experiments in Musical
Intelligence, 48 Inventions135 Piano, 120’ 1981-2003

134 CMMC only lists 24. Cope, Computer Models of Musical Creativity, 385.

 138

Title Details Year, Book
After Gershwin, Prelude Piano, 2’ 40’’ 1981-2003, CMS
After Joplin, Rags (2) Piano, 7’ 10’’ 1988, CMS, EMI
After Mahler, Adagio Strings, 8’ 1981-2003
After Mahler, Four Songs Soprano and ensemble, 28’ 1981-2003
After Mahler, Lieder von Leben
und Tod Orchestra and soloist, 25’ 1981-2003

After Mahler, Mahler (opera)136 Orchestra, choir, soloists,
240’ 1981-2003

After Mahler, Mahler (opera)
short version

Orchestra, choir, soloists,
120’ 1981-2003

After Mahler, Symphony of
Songs Orchestra, 30’ 1981-2003

After Mahler, Suite for Winds Wind ensemble, 40’ 30” 1981-2003
After Mahler, The Mahler
Canticles

Choir and wind ensemble,
14’ 1981-2003

After Mahler, Three Songs Tenor and piano, 12’ 1981-2003
After Mahler, Three Duets Piano, alto, tenor, choir, 20’ 1981-2003
After Mendelssohn, Song
Without Words Piano, 3’ 1981-2003

After Messiaen, Debut du
Temps Chamber orchestra, 4’ 1981-2003

After Messiaen, l'eternite Organ, 4’ 1981-2003
After Messiaen, l'eternite String orchestra, 4’ 1981-2003
After Mozart, Concerto Piano and orchestra, 29’ 1981-2003
After Mozart, Mozart in Bali Piano and orchestra. 10’ 1981-2003, CMS
After Mozart, Mozart (opera)137 Orchestra, soloists, 180’ 1981-2003
After Mozart, Mozart (opera,
short version) Orchestra, soloists, 120’ 1981-2003

135 Listed in CMMC, not listed on web site - indicating a non-published status. Ibid. Cope, "Music

of Experiments in Musical Intelligence".

136 CMMC indicates the title of the opera being “Mahler.” Cope, Computer Models of Musical
Creativity, 385.

137 CMMC lists ”Mozart” as title. Ibid., 386.

 139

Title Details Year, Book
After Mozart, Sonatas (3) Piano, 31’ 1988, CMS
After Mozart, Quartet String quartet, 19’ 1981-2003

After Mozart, Rondo Capriccio Violoncello and orchestra,
15’ 1981-2003

After Mozart, Symphony Orchestra, 27’ 1981-2003
After Palestrina, Mass Chorus, 16’ 1981-2003, CMS

After Prokofiev, Sonata 10 Piano, 12’ 1981-2003, CMS, EMI
After Rachmaninoff, Concerto Piano and orchestra, 48’ 1981-2003
After Rachmaninoff, Suite Piano, 8’ 1981-2003, EMI
After Scarlatti, Sonata Piano, 2’ 30’’ 1981-2003
After Schoenberg, Ein Kleines
Stück138 Piano, 2 1981-2003
After Schumann, Schumann
(opera) Orchestra and soloists, 180’ 1981-2003
After Schumann, Schumann
(opera short version) Orchestra and soloists, 120’ 1981-2003

After Scriabin, Poeme Piano, 3’ 1981-2003
After Vivaldi, Signs of the
Zodiac Strings and soloists, 56’ 1981-2003

After Vivaldi, Violin Concerto Strings and violin, 12’ 1981-2003
After Vivaldi, Cello Concerto Strings and cello, 13’ 1981-2003
After Vivaldi, Violin/Cello
Concerto Strings, violin and cello, 12’ 1981-2003

After Vivaldi, 2 Violin Concerto Strings and 2 violins, 11’ 1981-2003
After Webern, Drome Piano, 1’ 1981-2003
After Bach, Puccini, Mozart, R.
Strauss, Schubert, Five
Songs139

Voice and piano, 14’ 1981-2003

After Bach/Barber, Prokofiev,
Stravinsky, Dedications Orchestra, 22’ 1981-2003

138 Both CMMC and Cope’s site list the title of the piece as “Eine kleine Stücke,” which is

grammatically incorrect in German. Ibid. Cope, "Music of Experiments in Musical Intelligence".

139 CMMC provides the title “Five Songs.” Cope, Computer Models of Musical Creativity, 386.

 140

Title Details Year, Book
After Grieg, Liszt, Strauss,
Mussorgsky, Ravel,
Rearrangements140

Two pianos, 16’ 1981-2003

After Broadway, Five Songs141 Voice and Piano, 7’ 1981-2003
After Bach/Barber, Prokofiev,
Stravinsky, Suite for 2
pianos142

Two pianos, 20’ 1981-2003

After Bach, Barber,
Adagietto143 Orchestra 1981-2003

4.3. Emily Howell

4.3.1. Intersystem Period - Between Emmy and Emily

In 2002, Cope was still working with Emmy, but its ALICE incarnation. In

“Computer Analysis and Composition using Atonal Voice-Leading Techniques” Cope

discusses ALICE’s strategies for analyzing voice-leading procedures, and explains that

voice-leading analyses are as important for “atonal” procedures, as it is for “tonal”

procedures.144 Cope shows “a method for analyzing, reducing, and representing voice-

140 CMMC lists “Rearrangements” as the title. Ibid.

141 Listed in CMMC, but not Cope’s site. Ibid. Cope, "Music of Experiments in Musical
Intelligence".

142 Listed in CMMC, but not Cope’s site. Cope, Computer Models of Musical Creativity, 386.
Cope, "Music of Experiments in Musical Intelligence".

143 Not listed in CMMC, not listed on Cope’s site, but published by Spectrum Press. Cope, "Music
of Experiments in Musical Intelligence". David Cope, Adagietto after Bach Barber: For String Orchestra
(Los Angeles CA: Spectrum Press, 1995).

144 David Cope, "Computer Analysis and Composition Using Atonal Voice-Leading Techniques,"
Perspectives of New Music 40, no. 1 (2002): 121.

 141

leading.”145 He proceeds to discuss groupings in forms of three segmentations

applicable to voice-leading procedures, (1) “segmentation by metrical spans,” (2)

“segmentation by voice,” and “segmentation by rests.”146 Further, Cope also describes

how to add simple vertical beat segmentations, and how to connect one PCC to another

with voice-leading matrices.147

With the acquisition of the rules derived from the voice-leading analyses, Cope

demonstrates how to compose with the acquired rules.148 Subsequently, Cope shows

how to manipulate learned voice-leading procedures through permutations, e.g.: (0 1 0 -

2) => (-2 0 0 1); (0 1 -4 -2 3 1 -2 4) and (3 1 4 -4 -2 0 1 -2) can be reduced through re-

rodering.149 Another form of reduction suggested, is the removal of redundancies from

(1 0 2 1 4 0 2) and (4 0 1 2) => (0 1 2 4).150 Cope suggests several additional

processes, and concludes that voice-leading analysis in atonal music reveals hidden

order, and that voice-leading analysis “should be an adjunct, and not the exception, to

the analysis of melody, harmony, and all other dimensions of music.”151

145 Ibid., 122.

146 Ibid., 123.

147 Ibid., 125.

148 Ibid., 126-129.

149 The numbers in the parentheses indicated the movement steps/leap in between notes. Ibid.,
130.

150 Ibid. The procedure suggested by Cope is easily recreated in Common Lisp due to its built-in
functions of remove-duplicates and sort. Thus a call of (sort (remove-duplicates '(1 0 2
1 4 0 2)) #'<) at the REPL results in (0 1 2 4). Perhaps its Common Lisp as language that
influenced Cope’s thought process here.

151 Ibid., 144.

 142

While the aforementioned article still leaned more or less on Emmy, Cope’s

following article in 2003 titled “Computer Analysis of Musical Allusions” leans further into

Emily, especially since musical allusions, and the Sorcerer program become topics in

CMMC.152 Cope categorizes musical allusions into five groups: (1) quotations - “exact

note and/or rhythm duplication;” (2) paraphrases - “different pitches but similar intervals

paired with rhythmic freedom;” (3) likenesses - “different pitches, intervals, and rhythms”

that “have some underlying similarities such as overall likeness of directions or interval

size,” etc.; (4) frameworks - “incorporation of interpolated notes so that potential

similarity surfaces only after these notes are removed during analysis;” and (5)

commonalities - “patterns which, by virtue of their simplicity–scales, triad outlines, and

so on–appear everywhere.”153

Cope finds that the semantic and referential analysis of musical allusions leads to

a greater understanding of music.154 Sorcerer is Cope’s answer to Huron’s Humdrum

toolkit, except that according to Cope with Sorcerer sub-pattern searches do not have to

be reinitiated.155 Therefore, Sorcerer is a tool to enable corpus analysis with the

gradation described within Cope’s five definitions of musical allusion. These gradations

are represented in Sorcerer as different types of pattern-matching algorithms. The

corpora, or database selection of music “for a particular target work is critical to

152 David Cope, "Computer Analysis of Musical Allusions," Computer Music Journal 27, no. 1

(2003): 11-28.

153 Ibid., 11-17.

154 Ibid., 28.

155 Ibid., 17. Sorcerer also becomes part of the software provided with CMMC described in the
chapter “Allusions.” Cope, Computer Models of Musical Creativity, 126-176.

 143

producing useful results.”156 The depth of a chosen corpus is only limited by the

processing power of a computing system, but Cope illuminates, “a few judiciously

chosen phrases can be as effective in producing useful results as a series of poorly

chosen complete works,” and that the corpus used in the article only consisted “of thirty

or less well-chosen phrase.”157

In 2004 Cope publishes “A Musical Learning Algorithm” in CMJ.158 The article

discusses how a machine learning algorithm named Gradus (in honor of Fux’s 1725

species counterpoint treatise) can learn how to write species counterpoint “using a given

fixed voice called a cantus firmus.”159 Gradus “learns” by retracing its steps from

encountered impasses, then “catalogs the conditions that led to these” impasses “as

rules,” and consequently “avoids these conditions on subsequent runs with the same

cantus firmus, until backtracking is no longer necessary.”160 The nature of the

contrapuntal machine learning process is algorithmic. The article re-appears as part of

the “Learning, Inference, and Analogy” chapter in CMMC, but Cope alludes to how an

extended version of the program, and the backtracking process contributed to the

creation of the WPC.161

156 Cope, "Computer Analysis of Musical Allusions," 19.

157 Ibid.

158 David Cope, "A Musical Learning Algorithm," Computer Music Journal 28, no. 3 (2004): 12-27.

159 Ibid., 12.

160 Ibid.

161 Cope, Computer Models of Musical Creativity, 177-219. Cope, "A Musical Learning Algorithm,"
24-25.

 144

4.3.2. The Sorcerer’s Apprentice

After having worked on EMI for 20 years, David Cope decided to shelve the

program in 2003,162 and began developing new composition software named Emily

Howell.163 The beginnings of Emily can already be seen in Cope’s program BackTalk,

and ALICE, described in The Algorithmic Composer.164 The new program “uses Emmy’s

output to create music in new styles.”165 Emily integrates “a basic process of analysis”

as well.166 However, “Emily produces music in new styles rather than remaining faithful

to a particular style.”167 The program is build around an association network. CMMC

discusses how Emily Howell works, and provides a software example called Apprentice,

on which it is based.168

Cope publishes CMMC in 2005, and the title of the book represents a nod to

Margaret Boden’s eponymous articles “Computer Models of Creativity.”169 As with

162 David Cope, "The Well-Programmed Clavier: Style in Computer Music Composition," XRDS

19, no. 4 (2013): 17.

163 Cope, Tinman Too: A Life Explored, 475. Emily Howell is at the heart of the “integrated model
of musical creativity” in CMMC. Cope, "Computer Analysis of Musical Allusions," 269-375.

164 Cope, The Algorithmic Composer, 58-65, 94.

165 Cope, Tinman Too: A Life Explored, 475. Cope specifies, Emily uses a “well-selected” corpus,
or database, of Emmy’s output. Cope, "The Well-Programmed Clavier: Style in Computer Music
Composition," 20.

166 Cope, "The Well-Programmed Clavier: Style in Computer Music Composition," 20.

167 Ibid.

168 (Personal email correspondence with David Cope, May 14, 2013).

169 Cope, Computer Models of Musical Creativity. Margaret A. Boden, "Computer Models of
Creativity," in Handbook of Creativity, ed. Robert J. Sternberg, (New York: Cambridge University Press,
1999), 351-372. Margaret A. Boden, "State of the Art: Computer Models of Creativity," The Psychologist
13, no. 2 (2000): 72-76.

 145

previous books by Cope, the author provides the reader with background information

and principles that include his definitions, a background, and current models of musical

creativity.170 The second sections of the books discusses experimental models of

musical creativity, and include: (1) recombinance – previously discussed in the Emmy

trilogy; (2) allusion – previously partially discussed in the article "Computer Analysis of

Musical Allusions;”171 (3) learning, inference, and analogy – previously discussed in part

in the article “A Musical Learning Algorithm”;172 (4) form and structure – revisiting

SPEAC analysis from Emmy trilogy; and (5) influence – use of databases to hybridize

styles.173 In the third section of CMMC, Cope presents an “integrated model of musical

creativity,” in which he describes, (1) association, (2) musical association, (3)

integration, and (4) aesthetics.174

In the association chapter of CMMC, Cope discusses how he defines

“association networks.”175 The networks “are initially empty databases in which the

user’s input is placed, and in which all discrete entries of that input are connected to all

other discrete entries.”176 Further, the “network consists of inputs, outputs, and

170 Cope, Computer Models of Musical Creativity, 1-84.

171 Cope, "Computer Analysis of Musical Allusions," 11-28.

172 Cope, "A Musical Learning Algorithm," 12-27.

173 Cope, Computer Models of Musical Creativity, 85-267.

174 “Association networks” can be considered “a model of unsupervised learning.” Ibid., 269-375.

175 Roger B. Dannenberg, "Book Review," Artificial Intelligence 170, no. 10 (2006): 1219-1220.

176 Cope, Computer Models of Musical Creativity, 274.

 146

universally connected nodes that store…information and analysis.”177 Unlike artificial

neural networks (ANNs), “association networks do not have hidden units” that make

“decisions” on mathematical outcomes.178 Neural networks also do not “compare output

with input values.”179 Additionally, “neural networks typically chain backwards,” also

known as “back propagation.”180 The advantage, or perhaps disadvantage, of an

association network over an ANN is that “one can always…figure out why the network

solved a particular problem in the manner in which it did.”181

The association network is build around information stored in nodes. The nodes

are connected to each other by edges. The degree of “connectedness” is determined by

weights of the edges to their associated nodes. While new information is provided to the

association network, the weights of the connecting edges are in constant flux. The

weighting of the edges can furthermore be manipulated by giving the network positive

and negative reinforcements to network produced outcomes. The more information is

provided the stronger the association network becomes. The information provided to the

association network can be in any language, or it can be musical, or even mathematical.

According to Cope, “over time, what began as output gibberish slowly becomes logical,”

and eventually Emily’s output will more often be surprising, rather then be predictable.182

177 Cope, "The Well-Programmed Clavier: Style in Computer Music Composition," 20.

178 Ibid.

179 Cope, Computer Models of Musical Creativity, 274.

180 Ibid.

181 Cope, "The Well-Programmed Clavier: Style in Computer Music Composition," 20.

182 Ibid.

 147

Cope’s association network is similar to the “semantic network,” which “originated

in psychology,” in many respects.183 According to Russell and Norvig, “semantic

networks provide graphical aids for visualizing a knowledge base and efficient

algorithms for inferring properties of an object on the basis of its category

membership.”184 In Common Lisp a semantic net can be constructed through the use of

an association list. Example 4-2 shows a corrected version of the wikipedia example.185

1. (defparameter *database*
2. '((canary (is-a bird)
3. (color yellow)
4. (size small))
5. (penguin (is-a bird)
6. (movement swim))
7. (bird (is-a vertebrate)
8. (has-part wings)
9. (reproduction egg-laying)))
10. "Contains a database of creatures")
11.
12. ; (assoc 'canary *database*)
13. ; => (CANARY (IS-A BIRD) (COLOR YELLOW) (SIZE SMALL))
14.

Example 4-2: A simple semantic network in Common Lisp.

Boden further explains, “a semantic net consists of nodes and links,” whereby

“the nodes stand for specific ideas, while the” edges “represent various types of mental

connection.”186 This becomes of importance to Cope, because “the structure of the

183 Margaret A. Boden, The Creative Mind: Myths and Mechanisms, 2nd ed. (New York:

Routledge, 2005), 107.

184 Russell and Norvig, 453-454.

185 "Semantic Network", Wikipedia http://en.wikipedia.org/wiki/Semantic_network (accessed
September 30, 2014). The defparameter function defines a parameter called *database* in line 1 (in
the wikipedia article an earmuff-ed function was declared). The *database* contains an association list
(lines 2-10). Line 12 shows how the *database* can be accessed with the assoc function, and canary
being the key, while line 13 shows the result of that query (also not appropriately described in the
wikipedia article).

186 Boden, The Creative Mind: Myths and Mechanisms, 108.

 148

semantic net may enable ‘spontaneous’ inferences to be made by means of pre-existing

links.”187 However, in Cope’s understanding, “semantic networks do not typically weigh

relationships as association networks do.”188 Furthermore, Cope’s association networks

have their origin in NLP, “a subset of computational linguistics.”189

In Apprentice a word becomes a node.190 All words entered create different

nodes, and all the nodes are interconnected by edges. Every node is connected with

every node, and the edge to that node is weighed according to training, or occurrence.

All questions and answers exchanged between Apprentice and the user are

shown in Example 4-3. The nodes and their corresponding weighed edges generated by

Apprentice look like Example 4-4. A similar conversation can be held in German, which

Cope also shows in CMMC, but the outcome is not as smooth as Cope’s example

seems to portray, and a lot more practice, or training of the network would be

required.191 Example 4-5 shows the conversation in German, and Example 4-6 shows

the nodes with their corresponding weighed edges.

187 Ibid.

188 Cope, Computer Models of Musical Creativity, 274. According to Wiggins, Cope’s “association
networks” are in fact “semantic networks,” especially in regards to “Latent Semantic Analysis,” in which
weighted edges “are used to represent associations strengths.” Geraint A. Wiggins, "Computer Models of
Musical Creativity: A Review of Computer Models of Musical Creativity by David Cope," Literary and
Linguistic Computing 23, no. 1 (2008): 113. A “Latent Semantic Analysis” can be achieved through “latent
semantic indexing.” Russell and Norvig, 883.

189 Cope, Computer Models of Musical Creativity, 274-275.

190 The Apprentice software can still be run on legacy equipment. In this case an Apple PowerPC,
running OSX 10.4.11 (tiger), with Macintosh Common Lisp 5.1b1 (which can be acquire at
https://code.google.com/p/mcl/) was used. However, a few tweaks had to be applied to the init.lisp script
that involved the directory structure. Even with these few tweaks, only the NLP functions of Apprentice
worked, and all the MIDI function caused MCL to crash.

191 Cope, Computer Models of Musical Creativity, 277.

 149

1. (setq *conversation*
2. '((hello!) ; user
3. (what is your name?) ; user
4. (is your what hello!) ; apprentice
5. (my name is reiner!) ; user
6. (name?) ; apprentice
7. (your name is apprentice!) ; user
8. (name?) ; apprentice
9. (what is your name?) ; user
10. (apprentice!) ; apprentice
11. (what is my name?) ; user
12. (reiner!))) ; apprentice
13.

Example 4-3: Sentences exchanged between Apprentice and user.

1. (setq *weighted-edges* '((apprentice!
2. ((reiner! 0.1) (name 0.2) (my 0.5) (name? 3.14) (your 0.6) (is 1.0)
3. (what 0.9) (hello! 0.1)))
4. (reiner!
5. ((name 0.6) (my 0.6) (name? 3.14) (your 0.9) (is 1.4) (what 0.9) (hello!

0.1)
6. (apprentice! 1.52)))
7. (name ((apprentice! 2.47) (is 2.7) (reiner! 2.19) (my 0.9) (name? 3.24)
8. (your 1.0) (what 1.0) (hello! 0.2)))
9. (my
10. ((name? 4.69) (apprentice! 1.62) (reiner! 2.57) (name 1.4) (your 1.0)
11. (is 1.8) (what 1.0) (hello! 0.2)))
12. (name?
13. ((apprentice! 1.72) (reiner! 1.72) (name 1.0) (my 1.0) (your 1.2) (is

2.0)
14. (what 1.2) (hello! 0.3)))
15. (your
16. ((name? 6.9) (apprentice! 2.57) (reiner! 1.72) (name 1.5) (my 1.0) (is

2.1)
17. (what 1.3) (hello! 0.3)))
18. (is
19. ((name? 7.43) (my 1.7) (apprentice! 3.17) (reiner! 3.27) (name 1.2)
20. (your 2.5) (what 1.6) (hello! 0.5)))
21. (what
22. ((name? 7.61) (is 3.7) (apprentice! 1.72) (reiner! 1.72) (name 1.0) (my

1.0)
23. (your 1.4) (hello! 0.3)))
24. (hello!
25. ((what 1.2) (is 2.0) (your 1.2) (name? 4.56) (my 0.8) (name 0.8)
26. (reiner! 1.52) (apprentice! 1.52)))))
27.

Example 4-4: Nodes and weighed edges produced by Apprentice.

1. (setq *conversation*
2. '((hallo!) ; user
3. (was ist dein name?) ; user
4. (ist dein was hallo!) ; apprentice
5. (ich heisse reiner!) ; user
6. (heisse ich was name?) ; apprentice
7. (du heisst lehrling!) ; user

 150

8. (heisst du name?) ; apprentice
9. (wie heisst du?) ; user
10. (heisst lehrling!) ; apprentice
11. (wie heisse ich?) ; user
12. (heisst lehrling!) ; apprentice
13. (ich heisse reiner!) ; user
14. (heisst heisse ich?) ; apprentice
15. (wie heisse ich?) ; user
16. (heisse reiner!))) ; apprentice
17.

Example 4-5: Sentences exchanged between Apprentice and user in German.

The conversation with Apprentice in German is not as gratifying as the

conversation in English (Example 4-5), and the output can only be described as

“Pidgeon” German. Nonetheless, the output is contextually comprehensible. After

asking Apprentice for its name in line 9, its response is correct, albeit grammatically

weak, because the program should respond with “Ich heisse Lehrling,” or “my name is

apprentice,” instead of the somewhat crude answer of “named apprentice.” Appropriate

words conjugations therefore would require much more time consuming training

sessions as in comparison to English.

1. (setq *weighted-edges* '((ich?
2. ((heisse 3.52) (du? 0.2) (wie 0.6) (lehrling! 0.2) (heisst 0.2) (du 0.2)
3. (reiner! 1.34) (ich 0.5) (name? 0.2) (dein 0.2) (ist 0.2) (was 0.2)
4. (hallo! 0.2)))
5. (du?
6. ((heisst 1.23) (wie 0.8) (lehrling! 0.1) (du 0.1) (reiner! 1.24)
7. (heisse 2.68) (ich 0.4) (name? 0.1) (dein 0.1) (ist 0.1) (was 0.1)
8. (hallo! 0.1) (ich? 0.6)))
9. (wie
10. ((heisse 5.38) (ich? 1.1) (du? 0.7) (lehrling! 0.3) (heisst 2.69) (du

0.3)
11. (reiner! 1.44) (ich 0.6) (name? 0.3) (dein 0.3) (ist 0.3) (was 0.3)
12. (hallo! 0.3)))
13. (lehrling!
14. ((heisst 1.34) (du 0.2) (reiner! 1.24) (heisse 2.68) (ich 0.4) (name?

0.1)
15. (dein 0.1) (ist 0.1) (was 0.1) (hallo! 0.1) (wie 0.9) (du? 0.3) (ich?

0.6)))
16. (heisst
17. ((du? 1.0) (wie 1.0) (lehrling! 2.31) (du 0.4) (reiner! 1.34) (heisse

2.78)
18. (ich 0.5) (name? 0.2) (dein 0.2) (ist 0.2) (was 0.2) (hallo! 0.2)
19. (ich? 0.6)))

 151

20. (du
21. ((lehrling! 2.09) (heisst 1.94) (reiner! 1.24) (heisse 2.68) (ich 0.4)
22. (name? 0.1) (dein 0.1) (ist 0.1) (was 0.1) (hallo! 0.1) (wie 0.9) (du?

0.3)
23. (ich? 0.6)))
24. (reiner!
25. ((ich? 0.7) (du? 0.4) (wie 1.0) (lehrling! 1.24) (heisst 1.54) (du 0.4)
26. (heisse 2.88) (ich 0.6) (name? 0.2) (dein 0.2) (ist 0.2) (was 0.2)
27. (hallo! 0.2)))
28. (heisse
29. ((ich? 2.2) (du? 0.6) (wie 1.2) (lehrling! 1.44) (heisst 1.74) (du 0.6)
30. (reiner! 5.1) (ich 0.9) (name? 0.4) (dein 0.4) (ist 0.4) (was 0.4)
31. (hallo! 0.4)))
32. (ich
33. ((reiner! 4.28) (heisse 3.98) (ich? 0.7) (du? 0.4) (wie 1.0) (lehrling!

1.24)
34. (heisst 1.54) (du 0.4) (name? 0.2) (dein 0.2) (ist 0.2) (was 0.2)
35. (hallo! 0.2)))
36. (name?
37. ((dein 0.2) (ist 0.2) (was 0.2) (hallo! 0.1) (ich 0.6) (heisse 2.88)
38. (reiner! 2.28) (du 0.3) (heisst 1.44) (lehrling! 1.14) (wie 0.9) (du?

0.3)
39. (ich? 0.6)))
40. (dein
41. ((name? 2.21) (ist 0.3) (was 0.3) (hallo! 0.1) (ich 0.6) (heisse 2.88)
42. (reiner! 2.28) (du 0.3) (heisst 1.44) (lehrling! 1.14) (wie 0.9) (du?

0.3)
43. (ich? 0.6)))
44. (ist
45. ((name? 2.09) (dein 0.8) (was 0.4) (hallo! 0.1) (ich 0.6) (heisse 2.88)
46. (reiner! 2.28) (du 0.3) (heisst 1.44) (lehrling! 1.14) (wie 0.9) (du?

0.3)
47. (ich? 0.6)))
48. (was
49. ((name? 2.47) (ist 0.9) (hallo! 0.1) (dein 0.4) (ich 0.6) (heisse 2.88)
50. (reiner! 2.28) (du 0.3) (heisst 1.44) (lehrling! 1.14) (wie 0.9) (du?

0.3)
51. (ich? 0.6)))
52. (hallo!
53. ((was 0.4) (ist 0.4) (dein 0.4) (name? 1.52) (ich 0.6) (heisse 2.88)
54. (reiner! 2.28) (du 0.3) (heisst 1.44) (lehrling! 1.14) (wie 0.9) (du?

0.3)
55. (ich? 0.6)))))
56.

Example 4-6: Nodes with weighed edges in German.

In the following chapter (“Musical Association”) Cope describes how to have a

musical conversation with Apprentice and uses note names. Since the association

network is independent of language one can easily use solfège syllables as well.

Creating a monophonic musical conversation becomes quite simple:

 152

1. (setq *conversation*
2. '((do re mi fa sol?) ; user
3. (sol fa mi re do!) ; user
4. (sol fa sol?) ; apprentice
5. (do ti do do!) ; user
6. (sol?) ; apprentice
7. (ti re?) ; user
8. (do!))) ; apprentice
9.

Example 4-7: Monophonic musical conversation with Apprentice.

The variable *conversation* captures the conversation for Apprentice. The

user asks (do re mi fa sol?) in line 2, to which Apprentice has no reply, but the

user replies with (sol fa mi re do!) in line 3. Apprentice asks (sol fa sol?) in

line 4, and the user replies with (do ti do do!) in line 5. Apprentice posits a

singular (sol?) question (line 6) that is answered by the user with a (ti re?)

question (line 7). Almost out of nowhere, Apprentice surprises with the answer of

(do!) in line 8, which makes sense from a tonal perspective. Example 4-8 shows the

associated network with the nodes that are the solfège note representations, and the

edges, now assuming the role of voice-leading procedure, along with their p value, or

weight, while Figure 4-1 shows the voice-leading rules of the learned procedure.192

1. (setq *weighted-edges*
2. '((re?
3. ((ti 0.2) (do! 0.1) (sol 0.1) (sol? 0.1) (fa 0.1) (mi 0.1) (re

0.1)(do 0.1)))
4. (ti
5. ((re? 2.21) (do! 2.29) (sol 0.2) (sol? 0.2) (fa 0.2) (mi 0.2) (re

0.2)(do 1.3)))
6. (do!
7. ((do 1.5) (ti 0.7) (sol 1.33) (sol? 0.2) (fa 0.3) (mi 0.3) (re

0.3)(re? 0.76)))
8. (sol
9. ((do! 2.22) (fa 1.1) (sol? 0.1) (mi 0.6) (re 0.6) (do 0.9) (ti

192 Wiggins is not entirely enthusiastic about these diagrams, since they are “utterly meaningless

and can only be there to create an impression of technical content,” because the diagrams are not
appropriately labeled, and are missing weight labels on the edges. Wiggins, "Computer Models of Musical
Creativity: A Review of Computer Models of Musical Creativity by David Cope," 114.

 153

0.6)(re? 0.76)))
10. (sol?
11. ((fa 0.7) (mi 0.7) (re 0.7) (do 1.0) (sol 1.9) (do! 2.02) (ti

0.6)(re? 0.76)))
12. (fa
13. ((sol 2.75) (do! 2.22) (mi 1.4) (sol? 2.31) (re 0.9) (do 1.2)

(ti 0.6)(re? 0.76)))
14. (mi
15. ((sol 2.75) (do! 2.22) (re 1.5) (sol? 2.19) (fa 1.4) (do 1.3)

(ti 0.6)(re? 0.76)))
16. (re
17. ((sol 2.75) (do! 2.72) (sol? 2.57) (fa 1.0) (mi 1.5) (do 1.4)

(ti 0.6)(re? 0.76)))
18. (do
19. ((do! 4.62)(ti 1.2)(sol 2.1)(sol? 3.05)(fa 1.2)(mi 1.2)(re

1.7)(re? 0.76)))))
20.

Example 4-8: Notes with weighted voice-leading.

Figure 4-1: Associative network showing learned voice-leading procedures.

Harmonic representations can be placed into a conversation with apprentice

 154

instead of PC representation. Therefore, a similar musical conversation can be held with

Apprentice using common harmonic progressions utilizing PCCs. PCCs, instead of PCs,

take the place of nodes. Reading Figure 4-2 from the top down shows in which order the

conversation flowed, while the Example 4-9 shows what the weighted edges were in

correlation to their nodes.

1. (setq *weighted-edges*
2. '((acise ((dfa! 1.38) (gbd 0.3) (dfa 0.3) (acise? 0.86)))
3. (gbd ((acise 2.77) (dfa! 1.18) (dfa 0.8) (acise? 3.17)))
4. (dfa ((acise 2.27) (dfa! 1.18) (gbd 1.8) (acise? 3.05)))
5. (acise? ((acise 1.72) (gbd 1.0) (dfa 1.0) (dfa! 1.18)))
6. (dfa! ((acise 2.47) (gbd 0.9) (dfa 0.9) (acise? 2.48)))))
7.

Example 4-9: Node/edge weights from a harmonic conversation.

 155

Figure 4-2: Associate network showing chord successions.

Clearly, composing with Emily Howell is both intimate and laborious, especially

considering that the composer also integrated pattern-matching, recombinance, and

SPEAC into the process. Table 4-4 shows compositions written by Cope utilizing Emily.

Cope’s next project, named Annie, will further explore aspects of machine learning.193

193 Christopher Steiner, Automate This (New York, New York: Penguin Group, 2012), 100-101.

 156

As was the case with previous software developed by Cope, Annie arises from

language processing, and the book of 2000 haikus titled Comes the Fiery Night was in

part written by Annie.194

Table 4-4: Works completed with the aid of Emily Howell.195

Title Instrumentation & Length Year
From Darkness, Light (opus
1) Two Pianos, 20’57” 2004

Shadow Worlds (op. 2) Three Pianos, 20’01” 2005
Land of Stone (op. 3) Chamber Orchestra, 17’14” 2007
From the Willow's Keep
(op. 4)

Tenor and Chamber
Orchestra, 16’ 2010

Prescience (op. 5) Chamber Orchestra, 15’30” 2012

SpaceTime (op. 6) Orchestra, 24’24” 2010
Silver Blood (op. 7) Chamber Orchestra, 10’10” 2009
Coming Home (op. 8) Chamber Orchestra, 7’39” 2009
Breathless (op. 9) Chamber Orchestra, 8’53” 2012

4.4. Cope’s Algorithmic Analyses

All of Cope’s work to this point utilizes algorithms to analyze music, and the

analyses are integral to Cope’s compositional process (when composing algorithmic

music). In 2009, Cope releases the book Hidden Structure.196 As was the case with

194 Ibid. Cope, Comes the Fiery Night.

195 Opus numbers 7, 8, and 9 were obtained from the composer (personal email correspondence
April 19, 2014).

196 Cope, Hidden Structure: Music Analysis Using Computers.

 157

CMMC, the title suggests a nod to Holland’s Hidden Order.197 In HS, Cope provides: (1)

a background to how algorithmic analysis and composition are closely interlinked

practices; (2) a quick Lisp tutorial; (3) his views on algorithmic information theory -

including pattern-matching algorithms, and compression algorithms; (4) set analysis

functions - especially in regards to range;198 (5) thoughts on scale analysis in post-tonal

music - including mathematical sequences (fibonacci, additive, polynomial) (6) function

and structure in post-tonal music - acoustic theory of chords, musical tension, SPEAC;

(7) generative models of music - modeling, recombinancy, probabilities, Markov chains;

and (8) a look to the future - the use of mathematical principles (cryptography,

complexity theory, combinatorics, game theory, graph theory, probability theory, logic,

number theory).199 However, Cope is not alone in utilizing computing power to analyze

music.

197 Cope directly quotes from Holland in Hidden Structure, while explaining that “no current

complex adaptive system yet exists for musical analysis.” John H. Holland, Hidden Order (New York:
Helix Books, 1995).

198 Cope provides set-theory functions on the accompanying CD-ROM, but the code contains
errors, and not all of the functions work appropriately.

199 Cope, Hidden Structure: Music Analysis Using Computers, 294-295.

 158

CHAPTER 5

ALGORITHMIC ANALYSIS

5.1. Brief History

Milton Babbitt acts as a visionary through his conceptualization of the role of the

computer in future musicology and music theory.1 Computer assisted music analysis

has been in existence almost as long as computers themselves, as is the case with

computer-assisted composition.2 Curtis Roads sees 1968 as the beginning “of modern

research into AI and music,” and points to two papers: (1) “Pattern in Music” – by

Herbert Simon, and Richard Sumner at Carnegie-Mellon University, in which the authors

“formalize musical patterns in tonal music in terms of rhythm, melody, harmony, and

form;” and (2) “Linguistics and the Computer Analysis of Tonal Harmony” – Terry

Winograd (then MIT), in which the primary task was to label chords occurring in

harmony, utilizing “systemic grammar,” or choice trees that can be represented by

conditional statements.3 Forte “feels that the musical questions that will be asked in the

future will become increasingly similar to those being asked in the field of artificial

1 Milton Babbitt, "The Use of Computers in Musicological Research," Perspectives of New Music

3, no. 2 (1965): 74-83.

2 For a detailed history of the computer-assisted music analysis consult Nico Schuler’s
dissertation. Nico Stephan Schuler, “Methods of Computer-Assisted Music Analysis: History,
Classification, and Evaluation” (Michigan State University, 2000). Heinrich Taube at UIUC started to
develop an analysis application titled Music Theory Workbench. The application has been re-written and
is now called Harmonia. Taube’s application is mostly designed with the music theory student in mind,
rather than the music scholar.

3 Curtis Roads, "Artificial Intelligence and Music," Computer Music Journal 4, no. 2 (1980): 15.
Winograd used Lisp to build his program. Ibid., 16.

 159

intelligence.”4

In 1972, Otto Laske “started working in a theory of music cognition based on

information processing psychology and generative grammar models developed by A.

Newell, H. Simon, G. Miller, and N. Chomsky.”5 As part of Laske’s theory was his

concept of the musical robot that contained “a sensory pattern recognition part, a

particular grammar for music, and a general problem-solving part.”6 By the 1980s,

pursuing algorithmic analysis of music becomes more common. Alphonce conjectures

that “many projects in music analysis are in need of a music theory comprehensive

enough to account for a wide range of musical behavior.”7 Smoliar “feels that the

structure of AI languages like Lisp can provide a useful analogy to certain musical

structures.”8 Meehan suggests “that some major features of music could be

characterized in terms of Conceptual Dependency formalism, akin to Roger Schank’s AI

mode for” NLP.9 Furthermore, Rahn unifies Rothgeb’s, Smoliar’s, and Meehan’s

papers.10

4 A. Wayne Slawson, "Computer Applications in Music by Gerald Lefkoff," Journal of Music

Theory 12, no. 1 (1968): 106.

5 Roads, "Artificial Intelligence and Music," 17.

6 Ibid.

7 Ibid., 18. Bo H. Alphonce, "Music Analysis by Computer: A Field for Theory Formation,"
Computer Music Journal 4, no. 2 (1980): 26-35.

8 Roads, "Artificial Intelligence and Music," 18. Stephen W. Smoliar, "A Computer Aid for
Schenkerian Analysis," Computer Music Journal 4, no. 2 (1980): 41-59.

9 Roads, "Artificial Intelligence and Music," 18. James R. Meehan, "An Artificial Intelligence
Approach to Tonal Music Theory," Computer Music Journal 4, no. 2 (1980): 60-65.

10 Roads, "Artificial Intelligence and Music," 18. Rahn, "On Some Computational Models of Music
Theory," 66-72.

 160

5.2. Current Systems

Since the 1990s options for computer based analyses move from prototypes to

actual usable systems. Currently the question arises of what type of pre-existing

software should be used. Humdrum, released in 1999 and still completely usable at

present, was developed by David Huron at Ohio State University is perhaps one of the

earlier unified systems, consisting of several command line tools that can be assembled

into programs to handle all kinds of searches on musical scores. On the Humdrum

website a list of sample problems that can be solved with Humdrum is listed; for

example:11

 Determine the rhyme scheme for a vocal text. 1.
 Identify any French sixth chords. 2.
 Locate instances of the pitch sequence D-S-C-H in Shostakovich's music. 3.
 Are German drinking songs more likely to be in triple meter. 4.
 Determine whether Haydn tends to avoid V-IV progressions. 5.
 Locate any doubled seventh scale degrees. 6.
 Are dynamic swells (crescendo-diminuendos) more common than dips 7.

(diminuendos-crescendos)?
 Determine which English translation of a Schubert text best preserves the 8.

vowel coloration.
 Find all woodwind quintets in compound meters that contain a change of 9.

key.
 Identify all works that end with a “tierce de Picardie,” etc. 10.

In 2008, a new open source tool emerges through Michael Cuthbert at MIT. The

project is a collection of python classes that can be assembled to create programs for

specific computer based analytical tasks, which is philosophically similar to Huron’s

Humdrum project. On music21’s website some of the programs features are highlighted,

11 David Huron, "Sample Problems Using the Humdrum Toolkit", Ohio State University

http://www.musiccog.ohio-state.edu/Humdrum/sample.problems.html (accessed March 30, 2014).

 161

for example: 12

1. Finding Solutions with Small Scripts
2. Getting Musical Data
3. Visualizing Musical Data
4. Authoring and Transforming Musical Data
5. Creating a Reduction and Labeling Intervals13
6. Searching a Large Collection of Works for Ultimate Chord Quality
7. Searching the Corpus by Locale
8. Finding Chords by Root and Collecting their Successors
9. Pitch and Duration Transformations
10. Basic Counting of and Searching for Musical Elements, etc.

Both Humdrum and music21 represent an important turning point in computer-

assisted music analysis, since they are the first to have their source code freely

published online on the world wide web, and available to anybody, thereby providing a

free clearinghouse, and a center of information, enabling interscholastic dialogue.14

Thus, development of other future computer-assisted analysis programs will have

previously used and developed algorithms to solve music analytical problems available

for further development by enthusiasts, musicians, and hackers. Some of the models

developed in the analyses will be based on both Humdrum and music21, while other

tools will be original.

12 1-4. Michael Scott Cuthbert, "What Is Music21?", Massachusetts Institute of Technology

http://web.mit.edu/music21/doc/about/what.html (accessed October 30, 2014).

13 5-10. Michael Scott Cuthbert, "Examples and Demonstrations", Massachusetts Institute of
Technology http://web.mit.edu/music21/doc/about/examples.html (accessed October 30, 2014).

14 The need for a “clearinghouse” was established through a quote by Bowles, which appeared in
Schuler’s dissertation. Schuler, 33. Edward Bowles, "Discussion," in Musicology and the Computer: Three
Symposia, ed. Barry S. Brook, (New York: The City University of New York Press, 1970), 37-38. It should
also be noted that IRCAM’s OpenMusic composition software, as well as the Sibelius Academy’s PWGL
composition software contain music analysis algorithms, which in both cases have been implemented in
Common Lisp. Both environments feature documentation, which is not very clear, and expert Common
Lisp and programming expertise is required to start “hacking” in both of these environments.

 162

Figure 5-1: Input/Output Formats.

The three most important issues that need to be addressed with any kind of

computer-assisted music analysis are (Figure 5-1): (1) reading musical data, or input,

(2) representing musical data for internal computations, and (3) output of outcome to

either text-based, graphics, sound, or other music representation formats. In this project

input music data will be processed in the form of MIDI files that are being read via a

Common Lisp program designed to read MIDI data. As intermediary format the acquired

MIDI data will be encoded into events as summarized in Cope’s Virtual Music.15 In this

format events look like Example 5-1 in Common Lisp.

((0 38 147 2 90) (0 26 147 4 90) (147 41 147 2 90) (147 33 147 4 90) (294 45
147 2 90) (294 38 147 4 90))

15 Cope, Virtual Music: Computer Synthesis of Musical Style, 141-143.

Internal Music !
Representation

Input Formats

Output Formats

MIDI!
OSC

MusicXML!
LilyPond!
Kern, etc.

Audio
Other/Future

Formats
(Graphics)

MIDI!
OSC

MusicXML!
LilyPond!
Kern, etc.

Audio
Other/Future

Formats
(Graphics)

 163

Example 5-1: Musical event representation as summarized in Virtual Music.

The events are enclosed as lists of attributes within a list that holds all the events

of some music. Example 5-1 consists of six musical events. The six events occur during

three different points in time. Each musical events contains five values that represent

musical information about that event: (1) start time in milliseconds, (2) MIDI pitch value,

(3) end time, (4) channel number, and (5) intensity or dynamic level.16 Cope’s event

system, or MIDI event system then can be used to communicate between different

output systems, such as text, abc, MusicXML, MIDI, and LilyPond.17 In this study the

output of the analytical tools generated will be in text form, graphics will be represented

with .svg, .png, and .pdf files, scores will be generated as LilyPond and MIDI files.

5.3. Set Theory Analysis

One of the earlier integrations of mathematical group theory within music theory

is Milton Babbitt’s essay “Set Structure as a Compositional Determinant” (1961), in

which Babbitt discusses an algorithmic procedure to devise normal form.18 Straus

mentions two more of Babbitt’s essays as influential in the development of musical set

16 The described event system was used by Cope for EMI. A more modern system would be
better suited to read musical score data in via MusicXML. Since the event system is based upon MIDI a
lot of actual musical data potentially can be lost. For example the system above does not differentiate
between the PC B# or C and will always assign one number even though from a theoretical perspective
both pitch classes distinctively function in two different ways. Systems that use MusicXML as musical
input data format are Humdrum and music21. However, since Cope used MIDI representation as
described, used these representation to compose FDL, and because of the widespread freely available
MIDI representations online, MIDI representations will be used in this work.

17 LilyPond is a text-based music-typesetting tool, and can be scripted via the Scheme language,
another Lisp dialect.

18 Milton Babbitt, "Set Structure as a Compositional Determinant," Journal of Music Theory 5, no.
1 (1961): 72-94.

 164

theory, (1) “Twelve-Tone Rhythmic Structure and the Electronic Medium” (1962), and (2)

“Contemporary Music Composition and Music Theory as Contemporary Intellectual

History” (1972).19 Further, Straus points to three more milestones in the development of

musical set theory: (1) The Structure of Atonal Music by Allen Forte, (2) Basic Atonal

Theory by John Rahn, and (3) General Musical Intervals and Transformations by David

Lewin.20

The formalized procedures of set theory in music can be easily adapted into

algorithms in computer programs. A quick Internet search yields numerous results

where to find such algorithmic manifestations in computer programs. The basic

operations can also be easily represented in Lisp.21

5.3.1. The Set-Theory-Functions.lisp library

1. ;;;; ----- Set-Theory-Functions.lisp ----- ;;;;
2.

19 Milton Babbitt, "Twelve-Tone Rhythmic Structure in the Electronic Medium," Perspectives of
New Music 1, no. 1 (1962): 49-79. Milton Babbitt, "Contemporary Music Composition and Music Theory
as Contemporary Intellectual History," in The Collected Essays of Milton Babbitt, ed. Stephen Peles et al.,
(Princeton, New Jersey: Princeton University Press, 2012), 270-307.

20 Joseph N. Straus, Introduction to Post-Tonal Theory, 3rd ed. (Upper Saddle River, N.J:
Prentice Hall, 2005), 61. Allen Forte, The Structure of Atonal Music (New Haven, CT: Yale University
Press, 1977). John Rahn, Basic Atonal Theory (Upper Saddle River, New Jersey: Prentice Hall Press,
1981). David Lewin, Generalized Musical Intervals and Transformations (New York: Oxford University
Press, 2011).

21 “Common Lisp provides several functions for performing set-theoretic operations.” Peter Seibel,
Practical Common Lisp (New York: Apress, 2005), 155. One of the built-in Common Lisp functions that
will be used frequently is the set-difference function to find complements. Why does there have to be
yet another set of set music theory tools in a computer program? For one, most programs available for
free online do not always complete the set theoretical operations in an accurate manner, or follow the
procedures in the most efficient manner. Second, this study is about the algorithmic process in music, and
thus omitting a discussion on how to program the common algorithms set forth in musical set theory
would leave a lacuna. Third, most other music analysis tools will feature set theoretical tools at their very
foundation in how music data is interpreted by the computer. Finally, the set theoretical tools will be used
as a library in algorithmic music / analysis tools later on in this study.

 165

3. (defparameter *testset* '(5 2 9))
4. (defparameter *major-chord* '(6 9 2))
5. (defparameter *opus-16-3* '(0 4 8 9 11))
6.

Example 5-2: Set-Theory-Functions.lisp library global variables.

The first line re-iterates the name of the script in a comment preceded with 4

semicolons color coding the source code comment in red (Clozure CL). At the beginning

of the library, three test sets are defined as parameters or variables.22 The first one (line

3) is simply titled *testset* and contains the PCC {5, 2, 9}, or a D Minor triad.23 The

major-chord variable consists of PCC {6, 9, 2} (line 4), while the *opus-16-3* variable

(line 5) is used by Straus to explain the algorithm of how to devise the normal form of a

PCC, in which a reduction for two pianos of the first three mm. from Schoenberg’s

Orchestral Piece, Op. 16, No 3 is utilized.24

7. ;; ----- Stable Sort ----- ;;
8.
9. (defun safe-sort (alist &optional (predicate '<))
10. "Safer sorting."
11. (let ((temporary
12. (loop for x in alist
13. collect x)))
14. (stable-sort temporary predicate)))
15.

Example 5-3: The utility safe-sort function in Set-Theory-Functions.lisp.

Lines 7-15 define the safe-sort utility function to sort a list. Common Lisp’s

22 A library is a type of script or program that can be placed into another program by reference,
such as a link, so that a duplication of the code is not required, in which the “libraries” code is being re-
used. Because the Set-Theory-Functions.lisp library contains more than just a few lines of code,
the code has been broken up into several bits. The unifying feature of the library is the continuous line
numbering scheme. Each code example will feature one extra line number at the end of the example,
since the code will be continued within the narrative. If a line number is missing from a particular line in
the code, then the line of code extended beyond the width of the page in this study.

23 Interestingly enough, the variable *testset* is a palindrome. This particular *testset* will
appear later in the analysis.

24 Straus, 35-38.

 166

built-in sort function sometimes can destroy a list, and it is therefore recommended

that before sorting a list to apply the copy-seq function in combination with the

stable-sort function to the list to be sorted. A comment that organizes and

delineates the script is provided in line 7. The safe-sort function (line 9) smoothly

completes a similar operation, by using alist and the predicate '< as arguments.

Line 10 provides a documentation string, while in line 11 the local variable temporary

is declared via the let function (i.e. a variable that only lives in its enclosing function,

unlike a global variable that can be used anywhere in the script), which is populated by

a loop macro that iterates through each item of the alist, and creates a new list of x

values with collect. The temporary variable is then used, along with the

predicate (sort in ascending order – '<), as an argument for the stable-sort

function in line 14. Therefore, only a copied list was actually sorted and becomes the

outcome of the function, while the original list stays intact without having been operated

on.

5.3.2. Finding the Complement

In pitch space the complement set is a set that is produced from the finite

assumption that a particular pitch space consists of 12 distinct pitch classes, numbered

0-11. Therefore, if a set A contains three PCs than its complement, set B, will consist of

PCs that are ⊄ of A. The chromatic scale is a PCC consisting of {0, 1, 2, 3, 4, 5, 6, 7, 8,

9, 10, 11}. Set A is a ⊂ of the chromatic scale. Set B, its complement, will be the PCs

that are ∉ of Set A, but still a ⊂ of the chromatic scale. So, if PCC {0, 2, 4, 6, 8, 10} is A,

 167

then PCC {1, 3, 5, 7, 9, 11} is PCC A’s complement.

16. ;; ----- Complement ----- ;;
17.
18. (defun chromatic-scale (&optional (alpha 0) (omega 11))
19. "Chromatic scale."
20. (loop for i from alpha to omega append (list i)))
21.
22. (defun complement-set (pcc-a)
23. "Complement set."
24. (let ((pcc-c (chromatic-scale)))
25. (safe-sort (set-difference pcc-c pcc-a) #'<)))
26.
27. ; (complement-set '(0 1 2 4 7 8))
28. ; => (3 5 6 9 10 11)
29.

Example 5-4: Finding a complementary set.

Line 16 provides an organizational delimiter to keep the script readable and

organized. In lines 18-20 the function chromatic-scale creates a chromatic scale

with the beginning, or alpha - PC 0, and ending, or omega - PC 11, supplied as default

arguments. Line 19 supplies the documentation string, while in line 20 a loop macro

creates a current value i for a singular iteration and counts from alpha to omega.

During each one of the iterations, the new count i is append-ed to a list that results

in an ascending PCC, the chromatic scale. The chromatic-scale function is used as

a subroutine for the complement-set function in lines 22-25. The complement-set

function takes a PCC as an argument. In line 24, let creates space for the local

variable pcc-c that is populated with the outcome of the chromatic-scale function.

The built-in Common Lisp function set-difference automatically finds the

complement with pcc-c (chromatic scale) and pcc-a as supplied arguments.25

Additionally, the set-difference function is wrapped by the safe-sort function

25 Common Lisp is clearly showing off its mathematical heritage here.

 168

and its corresponding #'< predicate to ensure that the complement will be displayed in

ascending order. A call to the complement-set function with the PCC {0, 1, 2, 4, 7, 8}

(the all-trichord hexachord) supplied looks the following way: (complement-set '(0

1 2 4 7 8)) (line 27). The result at the REPL reads: (3 5 6 9 10 11) (line 28).

5.3.3. Transposition

30. ;; ----- Transposition ----- ;;
31.
32. (defun transpose (pcc n)
33. "Transpose set."
34. (mapcar #'(lambda (i) (mod (+ n i) 12)) pcc))
35.
36. ; (transpose *testset* 6)
37. ; => (11 8 3)
38.

Example 5-5: Transposition in Set-Theory-Functions.lisp.

An organizational comment is provided in line 30 of the script. Lines 32-34 show

a variation of the transpose function from Example 3-9. The supplied arguments to

the transpose function, (1) pcc, and (2) transposition level n, remain to be the same.

However, the difference is that (+ n i) in the lambda function is supplied with a pcc

as arguments to the mapcar function, and is wrapped by the mod function to ensure

that the newly transposed value n will be a number within the range of 0-11. Calling the

(transpose *testset* 6) function (line 36) results at the REPL in: (11 8 3) (line

37).

5.3.4. Inversion

39. ;; ----- Inversion ----- ;;
40.
41. (defun invert (pcc n)

 169

42. "Invert set."
43. (mapcar #'(lambda (i) (mod (- n i) 12)) pcc))
44.
45. ; (invert *testset* 0)
46. ; => (7 10 3)
47. ; (invert *testset* 1)
48. ; => (8 11 4)
49.

Example 5-6: Inversion in Set-Theory-Functions.lisp.

Since inversion in set theory is different than melodic inversion, as shown in

Example 3-7, a new invert function has to be defined. In set theory 0 inverts to 0, 1 to

11, 2 to 10, 3 to 9, 4 to 8, 5 to 7, 6 to 6, 7 to 5, 8 to 4, 9 to 3, 10 to 2, and 11 to 1.

Surprisingly, the invert function looks almost identical to the transpose function

(Example 5-5), with one major difference in the lambda function: instead of adding the

transposition level n to i (PC), the i is subtracted from n (line 43). Two tests ensure

the accuracy of the invert function: (1) a call to (invert *testset* 0) (line 45) –

resulting in (7 10 3) at the REPL (line 46), and (2) a call to (invert *testset*

1) (line 47) – which accurately results in (8 11 4) at the REPL (line 48).

5.3.5. CPP-Forms

The CPP-Form, or “Common Practice Period” form simply stacks a chord in

ascending numeric order from bottom to top, for quickly viewing a PCC in order. These

forms may seem redundant and are not part of the commonly used set theory canon,

but give the analyst a quick way of defining chords with a more “traditional” naming

convention.26

26 David Cope introduces these forms as well in Hidden Structure, as t-normal form, or t-normal

pitch class set. However, this document’s t-normal forms are actually based on normal forms, and
therefore Cope’s t-normal forms have been renamed cpp-form, and t-cpp-form in this context.

 170

50. ;; ----- CPP-Form ----- ;;
51.
52. (defun cpp-form (pcc)
53. "Stacks all members of a PCC into numerical order."
54. (stable-sort pcc #'<))
55.
56. ; (cpp-form *testset*)
57. ; => (2 5 9)
58. ; (cpp-form *opus-16-3*)
59. ; => (0 4 8 9 11)
60.
61. (defun t-cpp-form (pcc)
62. "Stacks all members of a PCC into numerical order and start at 0."
63. (let ((sorted-pcc (cpp-form pcc)))
64. (mapcar #'(lambda (x) (mod (- x (car sorted-pcc)) 12)) sorted-pcc)))
65.
66. ; (t-cpp-form *testset*)
67. ; => (0 3 7)
68. ; (t-cpp-form *opus-16-3*)
69. ; => (0 4 8 9 11)
70.

Example 5-7: CPP-Forms.

The script delimiter comment is set in line 50. The cpp-form function is declared

in lines 52-54, and a pcc needs to be supplied as an argument. A call to the stable-

sort function is made with the pcc and an ascending sort predicate supplied as

arguments (line 54). The function can be tested with a function call (cpp-form

testset) provided in line 56 (and second call (cpp-form *opus-16-3*) in line

58), which results in the answer shown in line 57 (2 5 9), or line 59 (0 4 8 9 11)

respectively. The ensuing t-cpp-form function also takes a pcc as an argument,

stacks all members into numerical order, but zeroes the result (lines 61-64). A local

variable sorted-pcc is declared with the let function and the result from a call to the

cpp-form with the pcc provided as an argument is assigned to the sorted-pcc local

variable (line 63). The enclosed mapcar function is provided a lambda function as an

argument that quickly transposes all members of the sorted-pcc, whereby the first

member is set to 0. Two test calls to the t-cpp-form function are provided in lines 66

 171

(t-cpp-form *testset*) and 68 (t-cpp-form *opus-16-3*), and the desired

results are indicated in lines 67 (0 3 7) and 69 (0 4 8 9 11) respectively.

5.3.6. Normal Form

With these very basic set theoretical operations examined, attention needs to

turn to how to generate the normal form of a PCC. The operation requires numerous

subroutines, which will be unified into one function call at the very end. The first step is

finding all the possible rotations of a PCC.

71. ;; ----- Normal Form ----- ;;
72.
73. (defun rotations (pcc)
74. "Create all possible rotations from a sorted set."
75. (let ((sorted-pcc (safe-sort pcc #'<)))
76. (loop for i from 0 below (length sorted-pcc)
77. collect (append
78. (subseq sorted-pcc i (length sorted-pcc))
79. (subseq sorted-pcc 0 i)))))
80.
81. ; (rotations '(4 9 1))
82. ; => ((1 4 9) (4 9 1) (9 1 4))
83.

Example 5-8: Finding rotations - normal form.

The script is first delimited by a comment in line 71. The rotations function

takes a pcc as an argument and is declared in lines 73-79. The let function in line 75

declares a local variable sorted-pcc by making a call to the safe-sort function that

is provided with the pcc and an ascending sort predicate as arguments. A for loop

macro is initiated in line 76, and iterates through the length of the sorted-pcc. Each

repetition builds a list by rotating the substring index i at the position indicated by the

length of the sorted-pcc that then is appended by the substring index i at position

0 (lines 77-79). Making a call to the function rotations with the PCC '(4 9 1)

 172

provided in an argument (line 81), results in the ((1 4 9) (4 9 1) (9 1 4))

rotations at the REPL (line 82).

84. (defun fast-normal-form (rotations)
85. "Finds set with smallest interval from first and last PC in set, and

adds that interval as key to the set."
86. (if (null rotations) nil
87. (cons
88. (list
89. (mod (- (car (last (car rotations))) (caar rotations)) 12)
90. (car rotations))
91. (fast-normal-form (cdr rotations)))))
92.
93. ; (fast-normal-form (rotations '(4 9 1)))
94. ; => ((8 (1 4 9)) (9 (4 9 1)) (7 (9 1 4)))
95.

Example 5-9: Finding intervals between first and last pitches in rotated PCCs.

The purpose of the fast-normal-form function (which takes the previously

generated rotations of a PCC as an argument) is to figure out the smallest interval

between the first and last PC of one of the rotations, and adds that interval as a key

to the rotation (lines 84-91). The task is completed through a recursion that is initiated

via an if/else condition that checks whether or not all rotations have been processed

(line 86). When all rotations have been processed the recursion ends. Otherwise a list is

assembled via the cons function that consists of a key/value pair, where the key is the

interval calculated from the first and last PC of a rotation PCC (line 89), and the value

contains the corresponding rotation from whence the interval originated (line 90). The

recursion begins anew with a call to itself with the remaining rotations provided as

argument (line 91). Calling the fast-normal-form function with the rotations

function – holding the PCC '(4 9 1) as an argument – provided as an argument (line

93) should result at the REPL with ((8 (1 4 9)) (9 (4 9 1)) (7 (9 1 4))).

96. (defun min-list (lst)
97. "Builds keys only list."

 173

98. (if (null lst) nil
99. (cons
100. (caar lst)
101. (min-list (cdr lst)))))
102.
103. ; (min-list '((8 (1 4 9)) (9 (4 9 1)) (7 (9 1 4))))
104. ; => (8 9 7)
105.

Example 5-10: List of keys (Intervals) from previous example.

The min-list function (lines 96-101) generates a list of only the keys (intervals)

from the key/value pair list generated with the fast-normal-form function. The

recursive min-list function requires a key/value pair list as an argument, and the

recursion terminates with an if/else condition that checks whether or not any values

have not been processed in the provided list (line 98). The new list is assembled via the

cons function by only utilizing the key from the key/value pair and adding it to the list

(lines 99-100). The remainder of the key/value pair list is passed back to the top of the

function with a call to itself (line 101). Running the min-list function (line 103) with an

argument (min-list '((8 (1 4 9)) (9 (4 9 1)) (7 (9 1 4)))) results in

the (8 9 7) list at the REPL (line 104)

106. (defun find-smallest-key (closest)
107. "Finds the smallest key from a group of sets."
108. (reduce #'min (min-list closest)))
109.
110. ; (find-smallest-key '((7 (4 8 9 11 0)) (4 (8 9 11 0 4))))
111. ; => 4
112.

Example 5-11: Finding the smallest key from a group of sets.

The find-smallest-key function finds the smallest interval key of a set of

rotated PCCs (line 106). The results of the fast-normal-form are passed to this

function as an argument (here locally called closest, which is a set of rotated PCCs).

Two built-in Common Lisp functions (reduce and #’min) are used for this procedure in

 174

combination with the min-list function (line 108). When passing a set of a rotated PCC

with key (interval)/value pairs '((7 (4 8 9 11 0)) (4 (8 9 11 0 4))), or

closest, to the find-smallest-key function (line 110), the result will be 4 (line 111), which

is the rotation with the smallest interval between the first and last PC.

113. (defun find-dupes (lst match)
114. "Find sets with duplicate keys and group them together."
115. (loop for i from 0 below (length lst)
116. if (equal (car (nth i lst)) match)
117. collect (cadr (nth i lst))))
118.
119. ; (find-dupes '((8 (1 4 9)) (9 (4 9 1)) (7 (9 1 4))) 7)
120. ; => ((9 1 4))
121.

Example 5-12: Finding rotations with duplicate keys.

Sometimes rotations of a PCC may contain duplicate keys, which should be

eliminated. The feature is useful when two rotations have the same key, and a new key

needs to be found by measuring the interval from the first PC of a rotated PCC to the

penultimate PC in a PCC. The find-dupes function receives a list (lst) and a match

for its argument (line 113). A for loop macro reiterates, for the duration of the passed

in list, through the keys and selects the PCC that is matched with the match, i.e. key, of

the PCC (lines 115-117). A call to the find-dupes function with a list of '((8 (1 4

9)) (9 (4 9 1)) (7 (9 1 4))) and 7 as a match provided as arguments (line

119), results in ((9 1 4)) (line 120). The find-dupes function itself is a matching

function, but used in conjunction with the next-to-last function as an argument

serves the purpose of a duplicate finder function.

122. (defun next-to-last (dupes &optional (i 0))
123. "Drills down to find smallest interval between first and second to last

PC in set."
124. (if (null dupes) nil
125. (cons
126. (list

 175

127. (mod (- (car (subseq (car dupes) (- (length (car dupes)) (+ i 2))
(- (length (car dupes)) (+ i 1)))) (caar dupes)) 12)

128. (car dupes))
129. (next-to-last (cdr dupes) i))))
130.
131. ; (next-to-last '((4 8 9 11 0) (8 9 11 0 4)))
132. ; => ((7 (4 8 9 11 0)) (4 (8 9 11 0 4)))
133.

Example 5-13: Finding the interval from first PC to second to last PC.

The next-to-last recursive function is a subroutine for the inter-normal-

form function, and can be used in a recursion to determine whether or not the interval

between the first PC and the next to last PC of a rotated set needs to be found (line

122). Additionally, the position of the penultimate PC can be shifted to the

antepenultimate PC of a rotated PCC, or a pre-antepenultimate PC of a rotated PCC,

meaning a position i to the right from the end of the PCC. The function receives the

results of the find-dupes function as an argument (called simply dupes here). The

recursion ends when no more dupes are available and otherwise creates a new

key/value pair list that features the interval between the first PC of a passed in rotated

set of PCCs and a penultimate PC as a key, and the corresponding PCC as a value

(lines 124-128). The next-to-last function calls itself with the remainder of the

dupes variable and position i from the end (line 129). To simulate what the next-to-

last function accomplishes two PCC rotations that have the same interval value

between the first and last PC are passed in as the dupes argument '((4 8 9 11 0)

(8 9 11 0 4)) (line 131), which results in the following key/value pair list (line 132):

((7 (4 8 9 11 0)) (4 (8 9 11 0 4))).

134. (defun inter-normal-form (keyed-pcc &optional (i 0))
135. "Recursively finds smallest key."
136. (let* ((matcher (find-smallest-key keyed-pcc))
137. (dupes (find-dupes keyed-pcc matcher))

 176

138. (no-dupes (cadar (stable-sort (copy-seq keyed-pcc) #'< :key
#'car))))

139. (cond ((equal (length (cadar keyed-pcc)) (length dupes)) no-dupes)
140. ((> (length dupes) 1)
141. (inter-normal-form (next-to-last dupes (+ i 0)) (+ i 1)))
142. (t no-dupes))))
143.
144. ; (inter-normal-form (fast-normal-form (rotations '(1 4 9))))
145. ; => (9 1 4)
146. ; (inter-normal-form (fast-normal-form (rotations '(5 2 8 11))))
147. ; => (2 5 8 11)
148.

Example 5-14: Pulling all subroutines together to find normal form.

The inter-normal-form finds the normal form of a set by pulling all previously

discussed subroutines together into one function (lines 134-142). The function is

recursive and takes the key/value-paired rotations (keyed-pcc) as the first argument,

and a count i as the second argument. In lines 136-138 three local variables are

defined with the let* function: (1) matcher – which is populated with the results of a

call to the find-smallest-key function and the keyed-pcc provided as an

argument, (2) dupes – which is populated with the results of the find-dupes function

which is provided with the keyed-pcc and the previously assigned matcher variable,

and (3) no-dupes – which is provided with the first PCC of the ascending sorted

keyed-pcc.27 A conditional decision tree, built with cond, then checks if there is more

than one duplicate key, meaning if there is more than one PCC that has the same

interval as its key (line 139). If there is no duplicate key then the recursion ends and the

function returns the normal form, taken from the no-dupes variable. However, if there

is more than one duplicate, then a function call to the inter-normal-form, or itself, is

made with the first argument supplied through a call to the next-to-last function

27 The safe-sort function could not be used here, since the stable-sort function is supplied
here with more than two arguments.

 177

(that takes the dupes variable, and a count i value as its argument), and the second

argument with a count plus 1 (lines 140-141). The inter-normal-form function can

be tested, by supplying the results of the rotations function with a PCC supplied as

an argument that is supplied as an argument to the fast-normal-form function. The

fast-normal-form function consequently is supplied as an argument to the inter-

normal-form function (line 144) or: (inter-normal-form (fast-normal-form

(rotations '(1 4 9)))). The result of the operation is displayed in line 145: (9 1

4). Another function call – (inter-normal-form (fast-normal-form

(rotations '(5 2 8 11)))) – is provided in line 146, which results in (line 147):

(2 5 8 11).

149. (defun normal-form (pcc)
150. "Find normal form."
151. (inter-normal-form (fast-normal-form (rotations (remove-duplicates

pcc)))))
152.
153. ; (normal-form *testset*)
154. ; => (2 5 9)
155. ; (normal-form *major-chord*)
156. ; => (2 6 9)
157. ; (normal-form '(3 1 5 2 8 9))
158. ; => (1 2 3 5 8 9)
159. ; (normal-form '(0 8 11 4 9))
160. ; => (8 9 11 0 4)
161. ; (normal-form '(4 9 1))
162. ; => (9 1 4)
163. ; (normal-form '(5 2 8 11))
164. ; => (2 5 8 11)
165.

Example 5-15: Normal form.

The call to the inter-normal-form with two nested functions as arguments is

cumbersome to use as part of another script in an analysis situation and it would be

more useful to query the normal form of a PCC by simply writing the following

statement: (normal-form '(5 2 9)). This is accomplished by the normal-form

 178

function, which takes a pcc as its argument (line 149). In line 151 the function simply

assembles the more complex function call to the inter-normal-function with its

two nest functions supplied as arguments. Lines 153-164 show different PCCs supplied

as arguments to the normal-form function and their corresponding results.

5.3.7. T0-Normal-Form

Sometime, it is useful to view the PCC of the normal form transposed to 0 (e.g.:

major or minor chords), which can be achieved with the following t-normal-form

function:

166. ;; ----- T-0-Normal Form ----- ;;
167.
168. (defun t-normal-form (pcc)
169. "Create transposed (to '0') normal form."
170. (let ((nf (normal-form pcc)))
171. (mapcar #'(lambda (x) (mod (- x (car nf)) 12)) nf)))
172.
173. ; (t-normal-form *testset*)
174. ; => (0 3 7)
175. ; (t-normal-form *major-chord*)
176. ; => (0 4 7)
177. ; (t-normal-form '(3 1 5 2 8 9))
178. ; => (0 1 2 4 7 8)
179. ; (t-normal-form '(0 8 11 4 9))
180. ; => (0 1 3 4 8)
181. ; (t-normal-form '(4 9 1))
182. ; => (0 4 7)
183. ; (t-normal-form '(11 2 8 4))
184. ; => (0 3 6 8)
185.

Example 5-16: Normal form T0 in Set-Theory-Functions.lisp.

Delineation for the script has been implemented in line 166 in the form of a

comment. The t-normal-form function takes a pcc as its argument (line 168). The

local variable nf is declared via the let function, and the outcome of a call to the

normal-form function with a pcc as its argument is bound to nf (line 170). The

 179

following mapcar function (line 171) is supplied by two arguments: (1) a lambda

function that takes the first item via the car function of the nf and subtracts it from the

remaining PCs, or x, in the nf list, and mod 12s all numbers representing PCs (e.g: a -

4 value becomes 8); and (2) the nf PCC. Six test calls to the t-normal-form function

along with their solutions have been provided in line 173-184. The necessity for

establishing the t-normal-form function becomes clear by observing line 175: with

t-normal-form the PCC is displayed as a major chord (line 176), or (0 4 7).

5.3.8. Prime Form

Prime form can provide additional information on a PCC. Like the normal-form

algorithm the prime-form algorithm also uses several subroutines: (1) all-

transpositions – created with help of the transpose function (Example 5-5), and

(2) all-inversions – created with help of the invert function (Example 5-6). The

prime-form function then unifies the information resulting from its subroutines, to one

convenient function that only needs to be supplied with a PCC for its argument.

186. ;; ----- Prime Form ----- ;;
187.
188. (defun all-transpositions (pcc)
189. "Creates transposition scheme for prime form."
190. (remove-duplicates
191. (loop for i from 0 below 12
192. collect (transpose pcc i)) :test 'equalp))
193.
194. ; (all-transpositions *testset*)
195. ; => ((5 2 9) (6 3 10) (7 4 11) (8 5 0) (9 6 1) (10 7 2) (11 8 3) (0 9 4)

(1 10 5) (2 11 6) (3 0 7) (4 1 8))
196.

Example 5-17: Finding all transpositions of a PCC.

Line 186 shows a script organizational delineation. Lines 188-192 show the all-

 180

transpositions function that takes a pcc as its argument. A loop macro is initiated

(lines 191-192) in which the transpose function, supplied with the pcc and

transposition level i, is iterated 12 times from 0 to 11. The representative count I

assumes a new number with each corresponding count of its iteration, in order to collect

a list of all possible transpositions of a pcc. The loop is wrapped with the built-in

Common Lisp remove-duplicates function (line 190) where the resulting list of

transposed PCCs is trimmed with any multiples that may have occurred by running the

'equalp predicate as a :test in line 192. A call to the (all-transpositions

testset) function (line 194) – recall that the *testset* consisted of PCC {5, 9, 2} –

reveals all possible transpositions of the supplied PCC (line 195): ((5 2 9) (6 3

10) (7 4 11) (8 5 0) (9 6 1) (10 7 2) (11 8 3) (0 9 4) (1 10 5)

(2 11 6) (3 0 7) (4 1 8)).

197. (defun all-inversions (pcc)
198. "Creates inversion scheme for prime form."
199. (remove-duplicates
200. (loop for i from 0 below 12
201. collect (invert pcc i)) :test 'equalp))
202.
203. ; (all-inversions *testset*)
204. ; => ((7 10 3) (8 11 4) (9 0 5) (10 1 6) (11 2 7) (0 3 8) (1 4 9) (2 5

10) (3 6 11) (4 7 0) (5 8 1) (6 9 2))
205.

Example 5-18: Finding all inversions of a PCC.

The all-inversions function (lines 197-201) operates identically to the all-

transpositions function, with the exception of iterating through the invert function

instead of the transpose function, and when called with the (all-inversions

testset) function (line 203) results in a list consisting of all possible inversions:

((7 10 3) (8 11 4) (9 0 5) (10 1 6) (11 2 7) (0 3 8) (1 4 9) (2

 181

5 10) (3 6 11) (4 7 0) (5 8 1) (6 9 2)). The two helper-functions will now

be unified in the prime-form function.

206. (defun prime-form (pcc)
207. "Prime form of a set, by summing all rotations. Smallest sum is prime

form."
208. (let* ((clean-pcc (remove-duplicates pcc))
209. (all-ti-forms
210. (append (all-transpositions clean-pcc) (all-inversions clean-

pcc)))
211. (sums
212. (loop for ti in all-ti-forms
213. collect (cons (loop for pc in ti sum pc) ti))))
214. (safe-sort (cdar (stable-sort (copy-seq sums) #'< :key #'car)) #'<)))
215.
216. ; (prime-form '(3 1 5 2 8 9))
217. ; => (0 1 2 4 7 8)
218. ; (prime-form '(7 1 8))
219. ; => (0 1 6)
220. ; (prime-form '(2 6 9))
221. ; => (0 3 7)
222. ; (prime-form '(0 4 8 9 11))
223. ; => (0 1 3 4 8)
224. ; (prime-form *major-chord*)
225. ; => (0 3 7)
226.

Example 5-19: Prime form in Set-Theory-Functions.lisp.

 The prime-form function takes a pcc as its argument (lines 206-214). After the

documentation string, the let* function creates three local variables needed to find the

prime form of a PCC: (1) clean-pcc – a variable bound with the outcome of a call to

the built-in remove-duplicates function with the pcc supplied as an argument, (2)

all-ti-forms – a variable created by append-ing the outcome of the all-

transpositions function with the outcome of the all-inversions functions that

both use the clean-pcc variable as an argument, and (3) sums – a variable created

through the use of a loop macro that iterates through the all-ti-forms list, and

within this list uses another loop macro that iterates through each PC in the sets of the

all-ti-forms variable and sums (here a keyword within the loop macro) these PCs

 182

of the set to one number. A list of sums with its corresponding set is created. The PCC

with the lowest sum is the prime form. The prime-form function sorts and picks the

aforementioned set in line 214, by first sorting the sums list according to the first item

(#'car) in a set as its :key, and with the #'< predicate in ascending order utilizing the

copy-seq function in combination with the stable-sort function. Consequently, the

cdar function picks the set without its key value, which is then supplied to the safe-

sort function in order to ensure that the prime form is displayed in ascending order with

the #'< function as predicate. Lines 216-225 show test scenarios for the prime-form

function with different PCCs supplied as arguments and the possible outcomes of these

calls. Observing the call with PCC *major-chord* (line 224), properly results in SC (0 3

7) in line 225.

Furthermore, using the aforementioned method to devise the prime form leaves

one question open: Is the resulting prime form like Forte’s algorithm, packed from the

right, or is the resulting prime form like Rahn’s algorithm, packed from the left? Running

the (prime-form '(9 10 2 3 5)) function reveals that the procedure described

results with the same outcome as Rahn’s algorithm: SC (0 1 3 7 8). It is very clear why

Rahn’s algorithm has become the more dominantly used one: (1) for its mathematical

“purity,” and (2) because of its more elegant implementation in computer code. The

following table shows the six SCs that are different:28

28 Cope, Hidden Structure: Music Analysis Using Computers, 108-111. At a later point if one of

these six SCs occurs an appropriate substitution algorithm will be defined.

 183

Table 5-1: SC differences.

Forte Number SC Forte Algorithm SC Rahn Algorithm

5-20 (0 1 5 6 8) (0 1 3 7 8)

6-Z29 (0 2 3 6 7 9) (0 1 3 6 8 9)

6-31 (0 1 4 5 7 9) (0 1 3 5 8 9)

7-Z18 (0 1 4 5 6 7 9) (0 1 2 3 5 8 9)

7-20 (0 1 2 5 6 7 9) (0 1 2 4 7 8 9)

8-26 (0 1 3 4 5 7 8 10) (0 1 2 4 5 7 9 10)

5.3.9. Interval Vectors

The interval-vector function is used to find the interval vector of a given

PCC and uses two subroutines: (1) all-intervals-from – a utility to check what

types of intervals are in a set, and (2) all-intervals – a utility to check how many

times certain interval types occur in a set.

227. ;; ----- Interval Vectors ----- ;;
228.
229. (defun all-intervals-from (pc pcc)
230. "Type of intervals in a set."
231. (loop for i in pcc
232. collect (min (abs (mod (- i pc) 12))
233. (abs (mod (- pc i) 12)))))
234.
235. ; (all-intervals-from (car '(0 8 11 4 9)) (cdr '(0 8 11 4 9)))
236. ; => (4 1 4 3)
237.

Example 5-20: Finding interval vectors.

A delineation of the script (for organizational purposes) occupies line 227. The

all-intervals-from function takes a pc, and a pcc as its arguments (line 229).

 184

The function essentially determines what types of intervals occur in a given set, and

serves as a subroutine for the all-intervals function. After the documentation string

in line 230, the loop macro is initiated (line 231). The loop iterates as many times as

the pcc has members and assembles a list with collect by determining an absolute

number value through the abs function, in which first a pc is subtracted from the

numerator i, and then uses the abs function where the numerator i is subtracted from

the pc. In both instances of the abs function, the outcome of the subtractions is filtered

through mod 12 functions to ensure a result ranging from 0-11. Both absolute number

values are then supplied as the two required arguments to the min function that returns

the real number that is closest to negative infinity. Line 235 shows how a call to the all-

intervals-from is performed with (all-intervals-from (car '(0 8 11 4 9))

(cdr '(0 8 11 4 9))). The car of PCC {0, 8, 11, 4, 9} is PC 0, while the cdr of

the same PCC is {8, 11, 4, 9}. The result is shown in line 236.

238. (defun all-intervals (pcc)
239. "Amount of interval types in a set."
240. (if (null pcc) nil
241. (append
242. (all-intervals-from (car pcc) (cdr pcc))
243. (all-intervals (cdr pcc)))))
244.
245. ; (all-intervals '(0 8 11 4 9))
246. ; => (4 1 4 3 3 4 1 5 2 5)
247.

Example 5-21: Enumerating interval types in a set.

The all-intervals function determines how many intervals of a given type

are contained within a given set, which is provided as a pcc argument (line 238). The

all-intervals function is recursive in character and is terminated by an if

statement that determines to stop the recursion as soon as the end of a pcc is reached

 185

(line 240). The recursion appends the outcome of the all-intervals-from function

(with the supplied arguments of the first, or car, value of the pcc, and the rest, or

cdr, of the same values) with a call to the top of the all-intervals function with the

remaining PCs of the pcc supplied as argument. The function can be tested with the

PCC {0, 8, 11, 4, 9} provided as an argument to the all-intervals function (line 245), and

results in the enumeration of the following intervals (line 246): (4 1 4 3 3 4 1 5 2

5).

248. (defun interval-vector (pcc)
249. "Set interval vector."
250. (let* ((clean-pcc (remove-duplicates pcc))
251. (intervals
252. (all-intervals clean-pcc)))
253. (loop for i below 6
254. collect (count (1+ i) intervals))))
255.
256. ; (interval-vector *testset*)
257. ; => (0 0 1 1 1 0)
258. ; (interval-vector '(0 8 11 4 9))
259. ; => (2 1 2 3 2 0)
260.

Example 5-22: Interval vectors in Set-Theory-Functions.lisp.

 Lines 248-254 show the interval-vector function that uses a pcc as its

argument. The let* function creates two local variables, (1) clean-pcc, populated

with the outcome of the pcc supplied as an argument to the built-in remove-

duplicates function, and (2) intervals, populated with the outcome of the all-

intervals function with the clean-pcc as argument (lines 250-253). Since the

interval vector consists of six slots the ensuing use of the for loop macro iterates from

0 to 5 (below 6) and collect(s) a list by counting the intervals that are added to

themselves via (1+ i). The interval-vector function is called the following way:

(interval-vector '(0 8 11 4 9)) (line 258), which results in the interval vector

 186

of (2 1 2 3 2 0) (line 259), sometimes notated as <212320>.29

5.3.10. Transpositional and Inversional Relationships

In set theory analysis sometimes questions arise how two different sets may be

related to each other. There are three methods listed by Straus that accomplish these

tasks: (1) transpositional relationships – Tn, (2) inversional relationships – TnI, and (3)

inversion – Iyx, “where x and y are pitch classes that invert onto each other.”30

5.3.11. Transpositional Relationships

261. ;; ----- Transpositional Relationships ----- ;;
262.
263. (defun transpositionally-related (pcc-1 pcc-2)
264. "Are two sets transpositionall related?"
265. (if (equal (length pcc-1) (length pcc-2))
266. (let* ((nf-set-1 (normal-form pcc-1))
267. (nf-set-2 (normal-form pcc-2))
268. (results (remove-duplicates (mapcar #'(lambda (x) (mod x 12))

(mapcar #'- nf-set-2 nf-set-1)))))
269. (if (> (length results) 1)
270. 'no-relationship
271. (car results)))
272. 'cardinality-mismatch))
273.
274. ; (transpositionally-related '(0 1 4) '(3 4 7))
275. ; => 3
276.

Example 5-23: Calculating transpositional relationships between two sets.

A comment demarcates the script for organizational purposes in line 261, and

indicates the purpose of the following section. The transpositionally-related

function (line 265) requires two arguments, (1) set-1, and (2) set-2. The first

29 Rahn, Basic Atonal Theory. Michael L. Friedmann, Ear Training for Twentieth-Century Music

(New Haven, CT: Yale University Press, 1990).

30 Straus, 35-38.

 187

condition determines whether or not the two sets are of the same length, or if they

contain the same amount of PCs (line 265). If the sets are not of the same length the

user will be provided with a brief error message at the REPL (line 272). However, if the

sets are of the same length, three local variables are established via the let*

function: (1) nf-set-1 – which is bound to the outcome of a call to the normal-form

function call with a set-1 argument, (2) nf-set-2 – variable bound to the outcome of

a call to the normal-form function with a set-2 argument, and (3) results –

assigned to the outcome of a call to a mapcar function that maps a subtractive

operation to each member of the two sets, which then are fed to an anonymous lambda

function that mod twelve(s) the resulting values (lines 266-268). If the results variable

is larger than 1, not the PC but the length of the set, then the sets are not

transpositionally related, but if the results variable contains one number, then the

sets are inversionally related by that number. Using the PCC {0, 1, 4} as set-1

argument, and the PCC {3, 4, 7} as set-2 argument for the transpositionally related

function (line 274) results in 3 (line 275). Thus {0, 1, 4} and {3, 4, 7} are transpositionally

related by T3.

5.3.12. Index Sum

277. ;; ----- Index Sum ----- ;;
278.
279. (defun ixy (pc-1 pc-2)
280. "Translates from Ixy (x & y are stacked), and creates the index sum."
281. (mod (+ pc-1 pc-2) 12))
282.
283. ; (ixy 0 2)
284. ; => 2
285. ; (ixy 11 4)
286. ; => 3
287. ; (ixy 9 4)

 188

288. ; => 1
289. ; (ixy 2 1)
290.

Example 5-24: Calculating index sums between PCs.

The “index number offers a simpler way of inverting sets” and being able to tell “if

two sets are inversionally related.”31 Line 277 delimits the script with a comment. The

function ixy creates the index sum from two PCs supplied as arguments (line 279-281).

The pc-1 and pc-2 variables are added to each other and the results are mod

twelve(d). Lines 283-289 show a series of test calls to the ixy function with their

corresponding results. Supplying PC 11, and PC 4 to the ixy function (line 285) results

in the index sum of 3 (line 286). The ixy function will be used as a subroutine in the

inversionally-related function.

5.3.13. Inversional Relationships

291. ;; ----- Inversional Relationships ----- ;;
292.
293. (defun inversionally-related (set-1 set-2)
294. "Are two sets inversionally related?"
295. (if (equal (length set-1) (length set-2))
296. (let* ((nf-set-1 (normal-form set-1))
297. (rnf-set-2 (reverse (normal-form set-2)))
298. (results (remove-duplicates (mapcar #'ixy nf-set-1 rnf-set-

2))))
299. (if (> (length results) 1)
300. 'no-relationship
301. (car results)))
302. 'cardinality-mismatch))
303.
304. ; (inversionally-related '(11 8 7) '(4 1 5))
305. ; => 0
306. ; (inversionally-related '(7 8 11) '(7 10 11))
307. ; => 6
308. ; Berios Sequenza for Flute:
309. ; (inversionally-related '(1 4 6) '(9 11 2))
310. ; => 3
311. ; (inversionally-related '(9 11 2) '(0 3 5))

31 Ibid., 47.

 189

312. ; => 2
313.
314. ; - Inversional relationship from Ixy pairs manually - ;
315. ; ----- Berio Sequenza for Flute, Straus, p. 51 ----- ;
316. ; (mapcar #'ixy (normal-form '(1 4 6)) (reverse (normal-form '(9 11 2))))
317. ; => (3 3 3)
318. ; (mapcar #'ixy (normal-form '(9 11 2)) (reverse (normal-form '(0 3 5))))
319. ; => (2 2 2)
320.
321. ; ----- Schoenberg Op. 11, No. 1, Straus, p. 56 ----- ;
322. ; (mapcar #'ixy (normal-form '(7 8 11)) (reverse (normal-form '(7 10

11))))
323. ; => (6 6 6)
324. ; (ixy 7 11)
325. ; => 6
326. ; (mapcar #'ixy (normal-form '(7 10 11)) (reverse (normal-form '(8 9

0))))
327. ; => (7 7 7)
328. ; (ixy 11 8)
329. ; => 7
330.

Example 5-25: Calculating inversional relationships between Two PCCs.

The comment in line 291 separates the inversionally-related function

from the rest of the script for structural intentions. The inversionally-related

function takes two sets, set-1, and set-2, as arguments (line 293). As was the case

with the transpositionally-related function, an if/else statement checks

whether the sets are of equal length, and provides an error message if they are not

(line 302). Three local variables are defined with the let* function in lines 296-298: (1)

nf-set-1 – which holds the result of a call to the normal-form function with set-1

provided as an argument, (2) rnf-set-2 – which is assigned the results of function

call to the normal-form function with set-2 provided as an argument that is then

wrapped into the built-in reverse function, and (3) results – which binds the results

of a call to a mapcar function that maps the ixy function to all members of nf-set-1

and rnf-set-2 that then is wrapped within the built-in remove-duplicates function.

If the results variable holds more than 1 number then a 'no-relationship

 190

message is supplied to the user at the REPL (line 300). However, if the length of the

results is exactly 1, then that results variable holds the number representing the

inversional relationship. By providing PCC {1, 4, 6} and PCC {9, 11, 2} from Berio’s

Sequenza for Flute to the inversionally-related function as arguments (line 309),

the resulting inversional relationship would be T3I or I3 (line 310),32 meaning that all

three mapped PCC members were inversionally related by I3. Extracting the mapcar

function further illustrates this: (mapcar #'ixy (normal-form '(1 4 6))

(reverse (normal-form '(9 11 2)))). The operation results in (3 3 3), and

is the equivalent of the following expression: IAF# = IEB = IDC# . Lines 314-329 show the

extraction functions

5.3.14. Batch Relationships

Most of the analysis functions will be used repetitively to label chords. The two

relationship functions can either operate by themselves, as referential look-up functions,

or they can be used as subroutines in a batch operation. A batch operation involves all

identified pitch class sets (PCCs in normal form) of a composition that have been

grouped together into a collection, or PCSC. Here is an example of a PCSC: [[3, 7, 10],

[4, 7, 11], [6, 9, 1]]. The batch operations will check all PCS in a PCSC against each

other and determine whether they are related to one another by transposition, or

inversion. The batch size is not limited by how large a PCSC may be.

331. ;; ----- Batch Relationships ----- ;;
332.

32 Ibid.

 191

333. (defun relations (pccs type)
334. "Check for inversional or transpositioan relationships amongst a PCSC."
335. (labels ((cleaner (unclean-relations)
336. (if (null unclean-relations) nil
337. (cons
338. (remove '(not-related) (car unclean-relations)

:test #'equal)
339. (cleaner (cdr unclean-relations))))))
340. (let* ((type-function (cond ((equal type 't)

#'transpositionally-related)
341. ((equal type 'i) #'inversionally-

related)))
342. (type-relation (cond ((equal type 't)

'transpositionally)
343. ((equal type 'i) 'inversionally)))
344. (dirty-relations
345. (loop for j from 0 below (- (length pccs) 1)
346. collect (loop for i from 0 below (- (length

pccs) 1)
347. collect (cond ((or (equal (funcall

type-function (nth j pccs) (nth i pccs)) 'no-relationship)
348. (equal (funcall

type-function (nth j pccs) (nth i pccs)) 'cardinality-mismatch))
349. (list 'not-

related))
350. (t
351. (list
352. 'PCS
353. (nth j pccs)
354. 'and
355. (nth i pccs)
356. (append
357. '(are) (list

type-relation) '(related by T)
358. (list (funcall

type-function (nth j pccs) (nth i pccs)))
359. (cond ((equal

type 'i) (list 'I)))))))))))
360. (cleaner dirty-relations))))
361.
362. ; ----- Using (relations) function ----- ;
363.
364. (setf *pcsc* '((3 7 10) (4 7 11) (6 9 1)))
365. "A PCS Collection.")
366.
367. (setf *pcsc-t-relations* (relations *pcsc* 't))
368. ; => (((PCS (3 7 10) AND (3 7 10) (ARE TRANSPOSITIONALLY RELATED BY T

0))) ((PCS (4 7 11) AND (4 7 11) (ARE TRANSPOSITIONALLY RELATED BY T 0))))
369.
370. (setf *pcsc-i-relations* (relations *pcsc* 'i))
371. ; => (((PCS (3 7 10) AND (4 7 11) (ARE INVERSIONALLY RELATED BY T 2 I)))

((PCS (4 7 11) AND (3 7 10) (ARE INVERSIONALLY RELATED BY T 2 I))))
372.
373. (defun print-relations (relations)
374. "Provides a more readible format of the transpositionally and

inversionally related PCSC."
375. (loop for i from 0 below (length relations)
376. do (loop for j from 0 below (length (nth i relations))

 192

377. do (fresh-line) (princ (nth j (nth i relations))))))
378.
379. (print-relations *pcsc-t-relations*)
380. ; =>
381. #|
382. (PCS (3 7 10) AND (3 7 10) (ARE TRANSPOSITIONALLY RELATED BY T 0))
383. (PCS (4 7 11) AND (4 7 11) (ARE TRANSPOSITIONALLY RELATED BY T 0))
384. |#
385.
386. (print-relations *pcsc-i-relations*)
387. ; =>
388. #|
389. (PCS (3 7 10) AND (4 7 11) (ARE INVERSIONALLY RELATED BY T 2 I))
390. (PCS (4 7 11) AND (3 7 10) (ARE INVERSIONALLY RELATED BY T 2 I))
391. |#

Example 5-26: Batch processing relationships.

Example 5-26 features the relations function, which takes a PCSC, here

named pccs, and the type, inversional, or transpositional, as arguments. At its core,

the algorithm consists of two nested loops that check each PCS against itself and every

other occurring PCS in the PCSC (lines 345-359). The first loop initiates the counter j

ranging from 0 to the size of the PCSC and groups all occurring comparisons together

by PCS (line 345-346). The second nested loop initiates the counter i ranging from 0

to the size of the PCSC as well, but now iterates through the individual PCS that are

being compared to the PCS by which they have been grouped (lines 346-347). Before

the relationships are assembled into a list, two conditions are being checked: (1) does a

function call to either the transpositionally-related or inversionally-

related function – substituted by a funcall to type-function, which determines

in its local assignment (lines 340-341) which one of the two functions to use – result in

either a cardinality-mismatch, or no-relationship (lines 347-348); or (2) what

to do – t – if no error flag had been raised. In the former case a list is assembled with

the flag 'not-related (line 349), and in the latter case a list is assembled with

 193

what two PCS have been used, and how they are related, or type-relation. The

results of the doubly nested loops are assigned to the local variable dirty-

relations.

The type-function local variable (lines 340-341) is bound to either the

transpositionally-related, or the inversionally-related function

depending on the outcome of a condition that checks which type has been provided as

an argument to the relations function. The type-relation variable is bound to

either the word 'transpositionally, or 'inversionally, depending on the

conditional outcome provided through the type argument supplied to the relations

function, and is used in line 357. The local variables have been wrapped by the let*

function (line 340), and are nested within the labels function (line 335). The local

recursive cleaner function cleans the dirty-relations variable (line 360), and

takes the dirty-relations, for clarity called unclean-relations locally, as an

argument. The recursion ends when all unclean-relations have been processed.

Each process checks whether or not the '(not-related) flag has been set within the

unclean-relations, and removes the flag via the remove function with an equality

:test. That means that all PCS in the PCSC that do not have any relations will be

filtered out of a list of relations.

Lines 364-370 display how to use the relations function. In line 364 the global

variable *pcsc* is bound to PCSC [[3, 7, 10], [4, 7, 11], [6, 9, 1]]. In line 367 the

pcsc variable is supplied along with 't, for “transpositionally related,” to the

relations function as arguments. The outcome of the function is bound to the

 194

pcsc-t-relations global variable, and an outcome is listed in line 368. The same

procedures is applied to binding the *pcsc-i-relations* global variable, except

that instead of 't, 'i, for “inversionally related,” has been supplied along with *pcsc*

as an argument to the relations function. The outcome is shown in line 371.

When the PCSC consists of more than three PCS, as above, reading the

outcomes of the relations functions displayed at the REPL on one line, can be slightly

cumbersome to read. For this purpose the print-relations function that takes the

relations as an argument has been supplied. The function is a doubly nested loop,

and works the same way as the relations function worked. The function groups the

relationships together by the first PCS, and lists each relationship on an individual line at

the REPL. The result of calling the print-relations function with *pcsc-t-relations*

as an argument is displayed in lines 379-384, and the result of calling the same function

with the *pcsc-i-relations* argument is shown in lines 366-391.

5.3.15. Set Theory Functions Epilogue

Many other functions can be added to the Set-Theory-Functions.lisp

library as needed, as long as they follow the established pattern of creating a specific

function that uses a supplied PCC as its argument to calculate a value. Yet, the most

basic set theory functions have been covered and are ready to be integrated in any

other script.

 195

CHAPTER 6

ANALYSIS

6.1. General Remarks

From Darkness, Light is listed as Opus 1 in the liner notes of its compact disc.1

Opus 2 (Shadow Worlds), and Opus 3 (Land of Stone) are included on the same audio

recording. All three opuses were composed, utilizing the same Emily Howell process, as

previously described. Opus 2 is written for Disklavier and is reminiscent of Conlon

Nancarrow’s corpus of player piano pieces, while Opus 3 is a single movement

composition for a large chamber orchestra partially leans on compositions by Messiaen

and Ives.2

Cope explains that all of Opus 1 is a six-movement composition for two pianos

“built on a decidedly triadic base.”3 Furthermore, Cope explains that even though triadic

material is being used as the harmonic basis for the composition that the “musical

syntax no longer follows traditional tonal order,” or that post-tonal tonality is being

applied throughout.4 In addition, the composer explains that the composition follows “a

prelude-fugue pairing and the work could have been titled Three Preludes and Fugues

1 David Cope, liner notes to Emily Howell: From Darkness, Light, Erika Arul and Mary Jane Cope,

Centaur CRC 3023, CD, 2010.

2 Ibid.

3 Ibid.

4 Ibid.

 196

for Two Pianos.”5 Finally, “From Darkness, Light requires that the two pianists negotiate

severely gymnastic technical demands while keeping within a tight ensemble

performance.”6 In addition to Cope’s description of his pieces in the liner notes, it also

becomes important what the terms prelude and fugue suggest.

The title of the composition From Darkness, Light, could have been generated

with the program itself. However, it turns out that Cope, who had named the program

with the idea to show its relation to Emmy, and in honor of his father’s first name

(Howell), whom Cope considers a great role model, had become aware, through a quick

Internet search by his wife, that a real person named Emily Howell actually existed.7 A

dedicated website to the “real” Emily Howell, was a tribute site to a young woman who

had been murdered on a semester abroad in Costa Rica.8 Upon learning about the fate

of this young woman, Cope decided to dedicate all of Emily’s music to the woman, after

whom it was accidentally named.9 The memorial website featured the alleged Nelson

Mandela quote that stood out to Cope, which reads, “It is our light, not our darkness,

that most frightens us.”10

5 Ibid.

6 Ibid.

7 Ibid. Cope, Tinman Too: A Life Explored, 475-476. Laurabelle Melton, "Emily Brook Howell",
Mount Holyoke College http://www.mtholyoke.edu/~lbmelton/emily/ (accessed April 12, 2014).

8 Cope, Tinman Too: A Life Explored, 476.

9 Ibid., 477.

10 Ibid., 476. In either case the quote has been widely misattributed to Nelson Mandela, but is
actually from Marianne Williamson’s book A Return to Love. Brian Morton, "Falser Words Were Never
Spoken," The New York Times, August 30, 2011. Marianne Williamson, A Return to Love: Reflections on
the Principles of a Course in Miracles (New York, New York: HarperCollins, 1992), 190-191.

 197

6.1.1. Prelude

The definition found in the Harvard Dictionary of Music explains that the prelude

is “a piece of music designed to be played as an introduction, e.g., to a liturgical

ceremony, or, more usually, to another composition, such as a fugue or suite.”11 This

description clearly defines the prelude as it was commonly used during the baroque

period, one only has to think of the 48 preludes preceding the 48 fugues of books one

and two of Bach’s Well-Tempered Clavier (BWV 846–893).

However, the “genre” dates to the fifteenth and sixteenth centuries, in which 10-

20 measure pieces “remarkable for their free keyboard style, made up of passages and

chords, in marked contrast to the strict contrapuntal style of contemporary vocal

music.”12 This meaning is completely obscured during the nineteenth and early twentieth

centuries through the use of the term by pianistic composers, such as Chopin, Scriabin,

Debussy, Rachmaninov, describing improvisatory-like alone standing compositions, also

described as “pianistic character pieces.”13 Wagner’s term Vorspiel is often translated to

prelude in English.14

11 Harvard Dictionary of Music, Second ed. s.v. "Prelude."

12 Ibid.

13 Ibid.

14 Ibid.

 198

Figure 6-1: Algorithmic shorthand notation of BWV 846a.

Bach drew a few figures (Figure 6-1) that show an ascending arpeggiation (first 6

mm.), followed by half note value blocked chords (mm. 7-14), which then is further

reduced to just whole note blocked chord values, while leaving the outer shells (highest

and lowest parts), and the compound inner voice-leading intact.15 Bach could have

easily just written the prelude in blocked chord notation (Figure 6-2), and thereby would

clearly have outlined the voice-leading of the five voices (top three voices, and the

15 The score clearly indicates that Bach follows a recursive thought pattern in how to realize the

suggested blocked chord. The example here draws upon the Bach Gesellschaft’s Dörffel edition. Another
instance in which Bach creates this type of shorthand notation is for the Prelude of the French Suite No. 4
in E-Flat Major, BWV 815.

1

2 3

6

4
75

15 16149 118 10 1312

252423 27261917 18 21 2220

 199

bottom two voices), but chose to be more explicit, and perhaps left it up to the listener to

discover the voice-leading.

David Cope wrote 48 preludes that precede 48 fugues titled The Well-

Programmed Clavier. These sets of preludes and fugues were a result of his re-

combinatory Emmy program. Cope connects his practice of the prelude to the

conceptually fifteenth-sixteenth-century understanding of the term, by explaining that

Bach notated an earlier version of his not-yet-famous prelude in C major (BWV 846a) as

a set of instructions (Figure 6-1), or as Cope calls it an “explicit algorithm.”16 But, Cope

also explores the idea of combining a Bach style prelude – BWV 846 – with a nineteenth

century piano character piece – Beethoven’s Moonlight Sonata – as exemplified by

Sonata for piano (in the style of Beethoven): Part 2.17

Figure 6-2: BWV 846a as blocked chords.

16 Cope, Computer Models of Musical Creativity, 165. This prelude appears in the Notebook of

Wilhelm Friedeman Bach, and is also known as BWV 846a, while the prelude appearing in the Well-
Tempered Clavier book is designated with BWV 846b. Cope shows a facsimile print of Bach’s
handwriting. There are preludes without explicit or orthodox realizations, namely the Prélude non mesuré.

17 Ibid., 257. Cope, Virtual Music: Computer Synthesis of Musical Style, 469-471, 480-483.

63 4 5 9 107 8 13121121 14

2321 22 26 2724 2516 1715 2018 19

 200

6.2. FDL-1

6.2.1. Traditional Analysis

Cope describes the first movement as “a Romantic variant of a Bach prelude

from his Well-Tempered Clavier,” since it “consists almost entirely of upward flowing

sixteenth notes relentlessly progressing through a chromatic and triadic chord

progression.”18 The immediate pressing issues brought forth are whose or what type of

Romantic music language is being utilized, and of which Bach prelude is David Cope

speaking. In order to answer these questions about FDL-1, a traditional – or “manual,”

meaning sans ordinateur – chord type analysis will be provided as a point of departure

to preliminarily map the composition. Since the composition is not provided with a key

signature (the computer does not care in what “key” it writes a composition), but implies

the existence of some type of “key” center, at least to humanoids, a few current key-

finding algorithms will be employed and tested even if the key can be determined

“manually.”

After the establishment of chord movement and key, creating an algorithm that

automatically will reduce the triadic PCCs to their smallest possible representation will

initiate a voice-leading analysis. The results are used in the establishment of voice-

leading, and chord succession rules through the use of machine learning techniques.19

The machine learning technique stems from one of Cope’s algorithms described in

18 Cope, "Emily Howell: From Darkness, Light."

19 Chord “succession” is used as a substitute for the term “progression,” since “progression”
implies CPP “tonal” language.

 201

Hidden Structure: Music Analysis Using Computers.20 The results of the analysis will be

expressed in various chord labels, histograms, tables, probability tables, and digraphs.

The prelude consists of 66 measures, and is about 2 minutes and 35 seconds

long, according to David Cope’s notes at the beginning of the score. The tempo marking

is q = 112. However, in order for the piece to last 2:35, the tempo should actually have

been marked q = 102, which comes close to the performance on the Centaur label

recording. The intensity level is set to ff and does not change for the duration of the

piece. FDL-1 belongs to preludes written in a style reminiscent to the style brisé, in

which “the various members of a sustained chordal texture are sounded not

simultaneously, but in irregular successions of jagged arpeggiation.”21 However, the

pattern established here is highly regular, which is sometimes also described as a

“broken style,” in the “older manner of a digitally motoric German keyboard prelude

sometimes called an applicatio.”22 The chords are mechanically spun-out according to a

“preexistent local,” or “arpeggiation pattern,” “into a whole sixteen-note sequence,” an

20 Cope, Hidden Structure: Music Analysis Using Computers.

21 Richard Troeger, Playing Bach on the Keyboard: A Practical Guide (Prompton Place, NJ:
Amadeus Press, 2003), 52. The “term originated in the twentieth-century to describe seventeenth-century
lute textures and keyboard textures derived from the lute style,” since “the lute’s technique relies on
broken chords,” because “full simultaneous chords are not always feasible.” Rings describes, “the
arpeggio space is highly relevant to the historical and stylistic context of the prelude, which imitates the
French lutenists' style brisé.” Steven Rings, Tonality and Transformation (New York: Oxford University
Press, 2011), 9. Ledbetter explains, “during the seventeenth century the expressive moulding of a
continuum of sound became a fundamental part of the keyboard idiom, equal in importance to the shaping
of individual contrapuntal lines.” David Ledbetter, "Style Brisé", Grove Music Online. Oxford Music Online.
Oxford University Press. http://www.oxfordmusiconline.com/subscriber/article/grove/music/27042
(accessed September 4, 2014). Ledbetter further describes that “these competing compositional priorities
were ultimately, but straightforwardly, reconciled in the opening prelude of J.S. Bach’s Das
wohltemperierte Clavier BWV 846. Ibid.

22 Laurence Dreyfus, Bach and the Patterns of Invention, 3rd ed. (Cambridge, MA: Harvard
University Press, 2004), 37-38.

 202

example of “texture-matching.”23 Additionally, Cope explains:

Thus, a purely vertical C-E-G triad could be spun out, for instance, into a C-G-E-
G figure to be incorporated into an Alberti-type bass-line, or into a very wide E-C-
G arpeggio to match the widely arpeggiated pattern of the bass-line of a Chopin-
like nocturne. It could even be turned into the very long sequences of notes ‘C-E-
G-C-E-G-C-E; C-E-G-C-E-G-C-E,’ which you may recognize as the melody in the
first measure of the C major Prelude of Book I of Bach’s Well-Tempered
Clavier.24

Figure 6-3: BWV 846b, M. 1 - repetition as ornamentation.

Observing BWV 846b (Figure 6-3), one of the characteristics of baroque

keyboards music are the elaborate ornamentations, which give the musical gestures

irregular shapes, one of the literal meanings of baroque’s etymology. Examining m. 1 of

BWV 846b, the ornamentation is indirect, since it is not represented as a traditional

mordents, or trill, etc., that is usually connected to a dissonance, but instead is

represented as a consonant curlicue, bounce-back, or repetition of the first iteration of a

PCC {G, C, E} triad, over a PCC {C, E} dyad. However, if the curlicue that makes the

gesture baroque is removed and instead is stretched, then a different representation of

the musical gesture becomes apparent (Figure 6-4). Furthermore, another

23 Cope, Virtual Music: Computer Synthesis of Musical Style, 45-46. “Texture-matching” is one of
two parts that contribute to “syntactic meshing.” The other part is called “voice-hooking,” which is
explained later. Ibid., 45.

24 Ibid.

1

Repetition

 203

transformation, or perhaps evolution, of the specific gesture, in which an octave would

be displaced, the held over dyadic values would be integrated into the arpeggio, and the

second iteration would happen sequentially octave-sliced above the previous iteration,

is also possible (Figure 6-5).

Figure 6-4: BWV 846b, M. 1 - stretched.

Figure 6-5: BWV 846b, M. 1 - arpeggio integration, octave displacement & slice.

The missing item is the anacrusis figure of the dyad. When the dyad from BWV

846b is placed into retrograde with exact values, then {E, C}, would appear at the very

end of the measure at b. 4.5, and instead of being held across the measure would

sound merely as attacks. Once the rhythmic operation is complete the dyad itself can be

transformed to an octave-displaced dyad of scale degree 5, and two accent marks are

1

Stretched

1

Dyad Integrated

Octave Sliced

 204

added. The gesture acts as the hook. Further, the modality is changed from major to

minor by lowering the third of the arpeggios. The arpeggiated group of sixteenth notes

will be grouped together under one large slur (Figure 6-6). Finally, the arpeggio’s

modality is transformed through a T2 from a C minor arpeggio, to a D minor arpeggio,

not shown, and the result is the first measure of FDL-1.

Figure 6-6: BWV 846b, M. 1 - final transformations.

Measures 1-2 contain a d-minor triad that is arpeggiated over the span of six

octaves. The first piano iterates the d-minor triad (or the unordered collection of pitches

{D, F, A}) from the D below the left hand bass clef staff (or D2) up to D7, strictly

adhering to the ascending {D, F, A} structure of its content. The left hand and the right

hand alternate from four notes of an iteration of the minor triad, so that the first

arpeggiation consists of the pitch class collection {D, F, A, D}, the second permutation –

re-ordering – consists of the PCC of {F, A, D, F}, the third permutation of the

arpeggiation consists of the PCC of {A, D, F, A}, and the final iterated permutation

1

Slur added

Dyad reversed and now based on scale degree 5
Modality changed

 205

consists of {D, F, A, D}.25 Thus, the arpeggiation can be regarded as containing a phase

shift ratio of 5:4. The ascending motion of the d-minor triad, or PCC {D, F, A}, is

smoothly connected though a slur spanning from D2-D7. On the second half of b. 4 (or

b. 4.5) a disruption is introduced to the arpeggiation of the {D, F, A} through the use of

an octave displaced A3/A2 (scale degree 5, or chord degree 3, or an octave

transformation has been applied to A3 that results in A2) marked with an accent mark

(>). However, upon closer inspection the disruption is actually used as the introduction

or anacrusis to the repetition of the entire ascending d-minor figure in m. 2, functioning

as a hook that chains itself from the previous to the next measure through this overlap.

Figure 6-7: Chord-A.

The second piano includes almost an identical arpeggiation of {D, F, A}, with the

exception that the first permutation in the left hand of the piano begins with D1, but then

skips to scale degree 5 – A1, and begins ascending from there, so that the first

permutation consists of {D, A, D, F}, the second permutation consists of {A, D, F, A}, the

25 It should be noted that the permutations indicate a suggested performance practice, by which

the hands cross over, creating a visual effect of the performance that is similar to Webern’s Op. 27.

2

ff

= 1121

ff

 206

third permutation includes {D, F, A, D}, and the final permutation consists of {F, A, D, F}.

The final note of the fourth rotation F6 pairs up with the D7 in the right hand of the first

piano. The second piano features the same type of disruption consisting of an A2/A1

octave displaced accented anacrusis, or hook. PC A completes the d-minor triad that

appears vertically on b. 4.75 in the right hands of the first and second piano, and

creates a strong sense of instability (or tension) through its second inversion, a PCC of

{A, F, D}. The procedure underlines the anacrusis hypothesis from earlier, since in this

configuration the PC A longs to move to PC D, which happens in the exact repetition of

the material in m. 2.

The procedure is a coupling of {D, F, A} that has been permutated through four

sixteenth note iterations which are phrase grouped through a slur with an octave-

displaced monad (or dyad), here on scale degree 5, that acts as an anacrusis and

chains two ascending groups of chords together, i.e. a “hook.”26 This shape is used as

the template, or macro, for all remaining chords, except for the final chord in m. 66, and

is directly reminiscent of Cope’s example of Bach’s algorithmic thinking in Figure 6-1

above. The chord will be labeled as “Chord-A,” and, as previously mentioned; m. 2 is

populated with another iteration of Chord-A (Figure 6-7).

In mm. 3-4 the pitch class content of the procedure, or algorithm above, changes.

Piano 1 keeps D2 as a pedal functioning note at the bottom, but now the content on b. 1

is {D, E, G, C#}. The content changes on the second b. through a permutation and a

26 Cope considers “voice-hooking” as the other important part of “syntactic meshing” (the other

being “texture matching” – explained above), where “a given fragment’s melodic line should link up
smoothly with the melodic line of its successor fragment.” Cope, Virtual Music: Computer Synthesis of
Musical Style, 45.

 207

transposition function to {E, G, C#, E}, and now is permutated first on b. 3 to {G, C#, E,

G}, and then to {C#, E, G, C#} on b. 4, clearly reflecting a fully diminished triad. On the

second half of b. 4 the octave displaced anacrusis to m. 3 is assigned to G3/G4, which

represents scale degree five of a diminished scale, or scale degree six in the key of d-

minor. The second piano initiates its ascending arpeggiation with a D1 as a pedal as

well, so that the first PCC reads as {D, G, C#, E}, which is a permutation from what

piano 1 plays on b. 1. However, the second piano settles into the diminished PCC of {G,

C#, E, G} on b. 2, which is permutated to {C#, E, G, C#} on b. 3, and to {E, G, C#, E} on

b. 4. As the algorithm prescribes scale degree five of the diminished scale G is used as

an octave displaced (G2/G1) anacrusis to the following measure. As was the case in

mm. 1-2, b. 4.75 consists of {G, E, C#}, or really {G, G, G, C#, E, E, C#}. The top note in

the right hand of piano 1, C#7, then acts as a catalyst to return to D, which it does in its

re-iteration in m. 4 (namely the pedal D2, and D1), and mm. 5-6 where Chord-A is being

re-used. The {C#, E, G} is labeled Chord-B.27 Therefore, mm. 1-6 include a motion that

can be understood, from the common practice period perspective, as a move from a d-

minor i chord, to a c#-diminished viiº chord that returns to a d-minor I chord, or

downward lower neighbor wavelet with a D anchor.

Whereas mm. 3-4, represented an overall downward motion away from what now

can be seen only as a D key center, and mm. 7-8 represent an overall upward motion

that returns to D, or Chord-A in mm. 9-10. Piano 1 in mm. 7, b. 1., begins with the pedal

D-2, from which the PCC {D, G, Bb, E} emerges. A transposition and permutation

27 Even though the D1/D2s are not held over the course of the measure as a whole note, they still
act as a pedal, since they are re-annunciated with each new measure until the end of the composition.

 208

function is applied, and the second beat in the piano 1 part settles in for its next series

of permutations based upon {G, Bb, E, G}, which would be a iiº chord, from a d-minor

scale. On b. 3 the transformation brings forth {Bb, E, G, Bb}, and on b. 4 {E, G, Bb, E}.

However, the anacrusis now just explores the root of the iiº chord, with an octave

displacement between E3 and E2. But, since E is scale degree 2 a strong downward

motion or return to D is implied.

Figure 6-8: Chained FDL-1 algorithm.

The second piano part continues the D pedal, still on D1, and the ascend begins

with the following PCC: {D, Bb, E, G}. The first transformation occurs, as previously was

the case on b. 2, and the PCC consists of {Bb, E, G, Bb}, followed by {E, G, Bb, E} on b.

3, and {G, Bb, E, G} on b. 4. The anacrusis is transposed by on octave, and uses an

octave displacement between E2 and E1, whose implication was previously discussed.

etc.

ascent

anacrusis !
("hook")

overlap

iteration

Chord-A!
(x 2)

Chord-B!
(x 2)

Chord-A!
(x 2)

Chord-C!
(x 2)

Permutated !
Triad (x 2)

Dyad Dyad Dyad Dyad

D-pedal

 209

The iiº chord is labeled Chord-C. Figure 6-8 provides an overview of what has been

explained so far, in regards of how the algorithm that organizes the PCCs in FDL-1

works. Additionally, Figure 6-8 also points to how the Chord-A, becomes a sort of a

node from where other areas are explored in a wave-like motion.

Chord-A reappears in mm. 9-10, and the pitches in the ascending lines in both

pianos are identical, but the octave-displaced dyad now utilizes a F3-F2 transformation

in the first piano, and a F2-F1 transformation in the second piano, hinting at a possible

new chord or transformation in mm. 11-12. The new chord in mm. 11-12 shall be called

Chord-D, and consists of the following notes: {G, Bb, D} + D1/D2 pedal. Table 6-1

shows the previous 12 mm., and how the rest of FDL-1 unfolds.

Table 6-1: Chord successions in FDL-1.

M. Trichord
PPC

Trichord
Label

Dyad
PPC

Dyad
Label Combined Pedal RN

1-2 {D, F, A} Chord-A {A, A} Dyad-A {D, F, A} D i
3-4 {C#, E, G} Chord-B {G, G} Dyad-B {C#, E, G} D viiº
5-6 {D, F, A} Chord-A {A, A} Dyad-A {D, F, A} D i
7-8 {E, G, Bb} Chord-C {E, E} Dyad-C {E, G, Bb} D iiº
9-10 {D, F, A} Chord-A {F, F} Dyad-D {D, F, A} D i
11-12 {G, Bb, D} Chord-D {D, A} Dyad-E {G, A, Bb, D} D (iv)
13-14 {F, Ab, C} Chord-E {F, F} Dyad-D {F, Ab, C} D iii
15-16 {C#, E, G} Chord-B {G, G} Dyad-B {C#, E, G} D viiº
17-18 {D, F, A} Chord-A {A, A} Dyad-A {D, F, A} D i
19-20 {A, C, E} Chord-F {E, E} Dyad-C {A, C, E} D v
21-22 {Ab, B, D} Chord-G {F, F} Dyad-D {B, D, F, Ab} D viº
23-24 {G, Bb, D} Chord-D {Bb, Bb} Dyad-F {G, Bb, D} D iv

25-26 {F#, A, C#} Chord-H {C#, C#} Dyad-G {F#, A, C#} D #iii

 210

M. Trichord
PPC

Trichord
Label

Dyad
PPC

Dyad
Label Combined Pedal RN

27-28 {F, Ab, C} Chord-E {F, F} Dyad-D {F, Ab, C} D iii
29-30 {E, G, B} Chord-I {E, E} Dyad-C {E, G, B} D ii
31-32 {Eb, G, Bb} Chord-J {Eb, Eb} Dyad-H {Eb, G, Bb} D bII
33-34 {D, F, A} Chord-A {A, A} Dyad-A {D, F, A} D i
35-36 {C#, E, G} Chord-B {G, G} Dyad-B {C#, E, G} D viiº

37-38 {D, F, A} Chord-A {A, A} Dyad-A {D, F, A} D i
39-40 {E, G, Bb} Chord-C {E, E} Dyad-C {E, G, Bb} D iiº
41-42 {D, F, A} Chord-A {A, A} Dyad-A {D, F, A} D i
43-44 {G, Bb, D} Chord-D {D, A} Dyad-E {G, A, Bb, D} D (iv)
45-46 {F#, A, C#} Chord-H {C#, C#} Dyad-G {F#, A, C#} D #iii
47-48 {F, Ab, C} Chord-E {F, F} Dyad-D {F, Ab, D} D iii
49-50 {E, G, B} Chord-I {E, E} Dyad-C {E, G, B} D ii
51-52 {Eb, G, Bb} Chord-J {Eb, Eb} Dyad-H {Eb, G, Bb} D bII
53-54 {D, F, A} Chord-A {A, A} Dyad-A {D, F, A} D i
55 {A, C, E} Chord-F {E, E} Dyad-C {A, C, E} D v
56 {Ab, B, D} Chord-G {F, F} Dyad-D {B, D, F, Ab} D viº
57 {G, Bb, D} Chord-D {D, A} Dyad-E {G, A, Bb, D} D (iv)

58 {F#, A, C#} Chord-H {C#, C#} Dyad-G {F#, A, C#} D #iii
59 {F, Ab C} Chord-E {F, F} Dyad-D {F, Ab, C} D iii
60 {E, G, B} Chord-I {E, E} Dyad-C {E, G, B} D ii
61-62 {Eb, G, Bb} Chord-J {Eb, Eb} Dyad-H {Eb, G, Bb} D bII
63-65 {D, F, A} Chord-A {A, A} Dyad-A {D, F, A} D i
66 {D, F, A} Chord-A n/a n/a {D, F, A} D i

Table 6-1 shows how the PPCs contribute to the form of the piece. Several PCC

groupings emerge: (1) Group 1, consisting of chords A, B, A, C, A, and dyads A, B, A,

C, D in mm. 1-10, which is repeated in mm. 33-42 with the exception that the dyads are

 211

now combined as A, B, A, C, A; (2) Group 2, consisting of chords A, D, E, B, A, and its

corresponding dyads D, E, D, B, A; and (3) Group 3, consisting of chords A, F, G, D, H,

E, I, J, A, and dyads A, C, D, F, G, D, C, H, A in mm. 17-34, its literal repetition in mm.

53-65, or its expanded repetition in mm. 41-65, whereby the chord sequence D, H, E, I,

J, and its corresponding dyads E, G, D, C, H (note that the sequence here starts with E,

rather than F, as in mm. 23-24) is inserted between two iterations of {D, F, A} before its

literal repetition in mm. 41-52. In all cases {D, F, A} always serves as the part of

departure and arrival.

Furthermore, the entire composition is based on different expansions of the

chords in Group 1. The first expansion is based on the motion of chords A => B = > A in

mm. 1-6, and is represented through the utilization of chords A => (D => E =>) B => A in

group 2, whereby the parentheses represent the chords that were used for the

expansion.28 The second expansion is based on the motion of chords A => C => A in

mm. 5-10. Group 3’s expansion is veiled, since chord C, does not appear in the basic

form of Group 3. However, chord C reappears transformed as chord I, and J, thus the

expansion can be represented in the subsequent manner: A => (F => G => D => H => E

=>) C (I =>, J =>) => A, whereby the first set of parentheses shows the expansion

before chord C, and the second set of parentheses shows the two substitutions of chord

C, namely the transformations I, and J. Additionally, as was the case with the micro

level algorithm that determines how to arpeggiate the chord succession, the different

28 The double arrow here is used to indicate the motion from one chord to another as explained

by Tymoczko. Dmitri Tymoczko, A Geometry of Music: Harmony and Counterpoint in the Extended
Common Practice (New York: Oxford University Press, 2011), 44. Cope, Virtual Music: Computer
Synthesis of Musical Style, 45.

 212

sections are chained together through the use of the overlapping {D, F, A} PCC on the

macro level.

The chord successions of Table 6-1 clearly indicate the abandonment of CPP’s

functional harmony, and give rise to a different system typical of post-tonal “tonality”

practice. One only has to notice the absence of the V chord and all its implications in the

entire movement, unless the viiº chord is considered as a V chord an omitted root. The

chord successions are governed by voice-leading principles, and their corresponding

transformations. Creating a middle ground style PCC reduction, since the majority of the

PCC members are repeated, can substantiate this claim. A middle ground PCC

reduction can be created as an algorithmic procedure.

Before any type of reduction is created though, a few parameters concerning the

composition will need to be gathered in order to simplify the automated reduction

process. Therefore a few statistics will be gathered: (1) how many notes are there in the

composition, (2) what is the ambitus, or range of these notes, (3) a histogram of the

pitch space, meaning how many discrete pitches occur how many time, and (4) a

histogram of pitch classes that will be used to determine a pitch center.29

6.2.2. Counting Pitches in FDL-1

To know how many notes are contained in a composition helps in creating

percentage values, or float point values between 0 and 1 when creating histograms. The

0-1 values then can be used to create pitch weights for further probability studies. A

29 A histogram is a graphical representation of distributed data.

 213

note count is created the following way in Common Lisp:

1. (defparameter *score* (score-loader-midi "Scores/" "1-Prelude.midi")
2. "Holds a score.")
3.
4. (defun pitch-count (score)
5. "Prunes score to include pitches only."
6. (labels ((pitches-only (score-data)
7. (if (null score-data) ()
8. (cons
9. (cadr (car score-data))
10. (pitches-only (cdr score-data))))))
11. (length (pitches-only score))))
12.
13. ; (pitch-count *score*)
14. ; => 2349
15.

Example 6-1: Counting pitches in a composition.

Line 1 loads the MIDI data into the (defparameter *score*) variable via the

(score-loader-midi) function (the (score-loader-midi) function is part of a

subset of functions described in Appendix B, section B.1. – every time midi data is

loaded a reference to that function will be made). Note that here defparameter is

used, which is a way of declaring a global variable that can be changed anytime during

the operation of the program, unlike defvar. In lines 4-11 the pitch-count function is

declared. The pitch-count function uses a score as its argument. Its purpose it to

strip each event (to recall, a note event contains the following information: (0 38 147

2 90)) from all of its data, and assemble a list that only contains pitches, without start

times, end times, channel numbers or velocities. The task is achieved through the

label function that declares a local recursive pitches-only function (lines 6-10) that

takes score-data as its argument. A conditional if statement terminates the

recursion (line 7) by checking if the last item (null) of the score-data has been

reached. If so, the pitches-only function returns a list of items, if not the function

 214

builds a list (cons – line 8) by only including the second item (cadr – an “older way”

of using second) of each first occurring event (car – an “older” way of using first) in

line 9. The remaining events (cdr – another way of saying rest) are passed back to

the top of the pitches only-function (line 10) as an argument. In order to calculate

the note count of the composition, the built-in Common Lisp length function is called

by utilizing the pitches-only function with the score-data as a supplied parameter,

in line 11. Line 13 shows how to call the function (commented out, but if the cursor is

place behind the closing parenthesis the function will evaluate at the REPL). The result (

; =>) of this operation is: FDL-1 consists of 2349 notes. The pitch count will be used

in the following section to map the pitch space.

6.2.3. Defining the Pitch Space of FDL-1

The range of a composition shows what precise pitch space a composition

occupies. Finding the lowest and the highest note of a composition calculates its range.

Example 6-2 shows how this task can be completed in Common Lisp:

1. (defparameter *score* (score-loader-midi "Scores/" "1-Prelude.midi")
2. "Loads MIDI data from file and stores it in a variable.")
3.
4. (defun pitches-only (score)
5. "Prunes MIDI list to include pitches only."
6. (if (null score) ()
7. (cons
8. (cadr (car score))
9. (pitches-only (cdr score)))))
10.
11. (defun midi->pc (pitch)
12. "Translate MIDI pitches into numeric pitch classes."
13. (mod pitch 12))
14.
15. (defun pitch-space (pitches)
16. "Find the ambitus, or range of a composition."
17. (let* ((only-pitches (pitches-only pitches))
18. (low (first (sort (copy-list only-pitches) #'<)))
19. (high (first (last (sort (copy-list only-pitches) #'<)))))

 215

20. (format t "~%Lowest Note: ~T~a~T(~a)~%Highest Note: ~a~T(~a)~%Range:
~14T~a Semitones"

21. low (midi->pc low)
22. high
23. (midi->pc high)
24. (- high low))))
25.
26. ; (pitch-space *score*)
27. ; =>
28. #|
29. Lowest Note: 22 (10)
30. Highest Note: 105 (9)
31. Range: 83 Semitones
32. |#
33.

Example 6-2: Finding the range of a composition.

As was the case with Example 6-1, first, a defparameter *score* is set to

hold the MIDI data of the composition to be examined in line 1 (again, the (score-

loader-midi) function is explained in Appendix B, on p. 400).30 Lines 4-9 prune the

midi data to only include pitches (this function has been re-used from Example 6-1). The

(defun midi->pc) function translates MIDI pitch numbers to PC numbers, so MIDI

pitch 60 equals PC 0, etc (lines 11-13). The following pitch-space function, lines 15-

24, requires the pitches from a score as an argument. Three local variables are

created with the let* function (any local variable that is declared with a let* function

is immediately available as a variable in the assignment of following local variables).

The results of a call to the pitches-only function with pitches supplied as an

argument (line 17) are assigned to the first variable only-pitches. The second

variable low makes a copy of the list to be sorted (in Common Lisp the sort function

destroys the contents of the only-pitches local variable, but since the parameter is

30 A note in reading the code: If line 2 of the code appears to have skipped a line, it means that

the previous code from line 1 did not fit into the same line from where it originally is located in the program
file.

 216

still needed later, a copy is made), sorts all the pitches from the lowest to the highest

note of the composition, and then is populated with the first member of the sorted list,

which is the lowest note (line 18). The third variable high uses exactly the same

procedure, except that it is being populated with the last member of the sorted pitch list.

The format function creates a readable output of the program, by creating a fill-in-the-

blanks sentence that (1) displays the lowest pitch in MIDI format, and provides its PC

name by a call to the (midi->pc) function with a pitch supplied as an argument, (2)

displays the highest pitch as both a MIDI number and a PC number, and (3) displays

the range of the pitch space of the examined composition in semitones. In line 26 the

pitch-space function is called with a *score* argument in order to process all the

above-described procedures, and produces the following output:31

Lowest Note: 22 (10)
Highest Note: 105 (9)
Range: 83 Semitones

Example 6-3: Pitch space range of FDL-1.

6.2.4. Histograms of FDL-1

Now that the pitch space the composition occupies has been established by the

analyst, the next step is to try to find out how the pitches are precisely distributed over

the established range of the composition. Creating a pitch space histogram, can aid in

this task. Several aspects of the previous two code examples can be reused, as follows:

1. ;; ----- global variables ----- ;;
2.

31 Observing the output from the range, the lowest note of the composition occurs in mm. 23-24,

while the highest not of the composition occurs in mm. 19-20, and m. 55.

 217

3. (defparameter *score* (score-loader-midi "Scores/" "1-Prelude.midi")
4. "Holds MIDI data.")
5.
6. ;; ----- functions ----- ;;
7.
8. (defun pitches-only (score)
9. "Prunes MIDI list to include pitches only."
10. (if (null score) ()
11. (cons
12. (cadr (car score))
13. (pitches-only (cdr score)))))
14.
15. ; (pitches-only *score*)
16. ; => (38 26 41 33 45 ...)
17.
18. (defun ps-histogram (notes &optional (counter (first (sort (copy-list

notes) #'<))))
19. "Creates raw pitch space histogram."
20. (if (eq counter (+ 1 (first (last (sort (copy-list notes) #'<))))) ()
21. (cons
22. (list counter (count counter notes))
23. (ps-histogram notes (+ counter 1)))))
24.
25. ; (ps-histogram (pitches-only *score*))
26. ; => ((22 2) (23 0) (24 0) (25 5) ... (105 3))
27.
28. (defun pitch-space-histogram (score)
29. "Prunes score first and then creates histogram."
30. (ps-histogram (pitches-only score)))
31.
32. ; (pitch-space-histogram *score*)
33. ; => ((22 2) (23 0) (24 0) (25 5) ... (105 3))
34.
35. (defun order-by-midi (psh direction)
36. "Orders pitch space histogram by MIDI pitches."
37. (let ((new-psh (sort (copy-list psh) direction :key #'first)))
38. new-psh))
39.
40. ; (order-by-midi (pitch-space-histogram *score*) #'<)
41. ; => ((22 2) (23 0) (24 0) (25 5) ... (105 3))
42.
43. (defun order-by-count (psh direction)
44. "Orders pitch space histogram by count."
45. (let ((new-psh (sort (copy-list psh) direction :key #'second)))
46. new-psh))
47.
48. ; (order-by-count (pitch-space-histogram *score*) #'>)
49. ; => ((38 100) (45 90) (57 71) (41 69) ... (104 0))
50.
51. (defun show (psh)
52. "Dumps histogram data to the screen."
53. (format t "~%~a ~a~{~%~{~T~A~^~5T~}~}" 'MIDI 'Count psh))
54.
55. ; (show (pitch-space-histogram *score*))
56. ; =>
57. #|
58. MIDI COUNT
59. 22 2

 218

60. 23 0
61. 24 0
62. 25 5
63. ...
64. 105 3
65. |#
66.
67. (defun save (psh to-where)
68. "Saves histogram to a .csv file."
69. (with-open-file (csv
70. (concatenate 'string *this-path* to-where)
71. :direction :output
72. :if-exists :supersede
73. :if-does-not-exist :create)
74. (format csv "~%~a,~a~{~%~{~A~^,~}~}~%" 'MIDI 'Count psh)))
75.
76. ; (save (pitch-space-histogram *score*) "Data/Pitch-Space-Histogram.csv")
77. ; =>
78. #|
79. MIDI,COUNT
80. 22,2
81. 23,0
82. 24,0
83. 25,5
84. ...
85. 105,3
86. |#
87.

Example 6-4: Generating data for a pitch space histogram in Common Lisp.

 In the first line a script delimiter is provided. Lines 3-4 have been reused from the

previous example, and load the MIDI score. The function pitches-only in lines 8-13

has been reused from the previous example, and removes all non-pitch data. An

outcome of a call to the pitches-only function with a score supplied as an argument

is proved in line 15, followed by an abridged result set in line 16. Lines 18-23 show how

to create the pitch class histogram via the ps-histogram function: the list is built by

(1) recursively iterating through all the pitches, (2) counting the pitches one at a time, (3)

associating the midi pitches with their corresponding count, all while sorting the pitches

from the lowest to the highest MIDI pitch value. Line 25 shows how to make a call to the

ps-histogram function with the outcome of a call to the pitches-only function

 219

supplied with a score parameter as an argument, while line 26 provides an abbreviated

outcome. The pitch-space-histogram function in lines 28-30 is supplied with the

score argument, and nests the following function call, (ps-histogram (pitches-

only score)), in order to create a one-step call to the pitch-space-histogram

function with a *score* argument (line 32). A truncated outcome is shown in line 33.

The order-by-midi function provides the possibility to order the histogram by

MIDI pitches in lines 35-38. Line 40 shows how nesting the (pitch-space-

histogram *score*) function within the order-by-midi function with an additional

direction argument can be used to sort the pitch space histogram (line 41 shows the

outcome of the operation, which is also the default outcome when first creating the pitch

space histogram). In lines 43-46, the possibility is given to order the pitch space

histogram according to how many occurrences of a MIDI pitch occur through the

order-by-count function. An example of a function call and a results set are shown

in lines 48 and 49 respectively.

The show function formats a pitch space histogram to a human readable format

and displays the data to the screen in lines 51-53. Line 55 shows a function call, while

lines 58-64 show the shortened result that will be displayed at the REPL. Finally, the

save function (lines 67-74), formats the histogram as CSV output, and saves it to a

CSV file. Line 76 show how the function can be used at the REPL, and lines 79-85 show

a resulting abridged CSV list.

 220

Figure 6-9: Pitch space histogram of FDL-1, sorted by MIDI.

Figure 6-9 and Figure 6-10 show the pitch space histograms that can be

generated with the two resulting CSV files, i.e. the first CSV file was generated by

ordering the pitch space histogram according to MIDI pitches – (1) (order-by-midi

(pitch-space-histogram *score*) #'<) (2) (save (pitch-space-

histogram *score*) "Data/Pitch-Space-Histogram-MIDI.csv")– while the

second CSV file was created by ordering the pitches according to their count – (1)

(order-by-count (pitch-space-histogram *score*) #'>), (2) (save

(pitch-space-histogram *score*) "Data/Pitch-Space-Histogram-

Count.csv").32 The number on top of each bar in Figure 6-9 shows how many times a

32 It would be no problem to add a graphing utility directly into the program at a later point.

22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 10
0

10
2

10
4

3
0

7
5

7

12

6

29

11
13

11

24

35

20

50

10

55

36

12

56

22
20

16

34

55

20

56

10

56

36

12

59

22
20

16

34

55

17

56

10

56

36

12

59

22
20

16

34

71

20

62

10

64

48

18

63

27

20
16

36

90

17

61

5

69

48

18

100

21

7
5

14

41

0

12

0

1212

6

66

5

00
2

 221

MIDI pitch occurs, while the x-axis shows the pitch space utilized in ascending order,

and provides an orientation of the pitch space contour.

Figure 6-10 shows the same number on top of each bar, but provides a clearer

view since its x-axis is sorted according to occurrences, rather than pitches. The pitch

with the highest pitch count is D2 (= MIDI pitch 38), followed by A2, A3, and F2.33 The

fifth bar is D1, followed by F3, and D3. Statistically that places the key center around PC

2, or D. Observing the pitch space histogram provides a very broad picture of centricity.

However, creating a pitch class histogram can shed more light on pitch centricity, by

providing a more concentrated look around more generic PCs.

Figure 6-10: Pitch space histogram of FDL-1, sorted by count.

1. ;; ----- global variables ----- ;;

33 Figure 6-10 clarifies the frequency of occurring pitches.

38 45 57 41 26 53 50 55 43 62 74 65 67 77 79 86 69 81 89 91 40 52 33 46 64 76 88 93 58 70 82 98 49 94 61 73 85 37 48 56 60 72 80 84 92 39 51 44 68 47 59 71 83 34 96 28 29 31 63 75 87 10
0 95 97 54 66 78 90 36 10
1

10
3 27 99 25 35 42 10
2

10
5 22

23
555566777

101010101111121212121212121314
1616161617171818

2020202020202021222222
24

27
29

3434343536363636

41

4848
50

5555555656565656
5959

61626364
66

69
71

90

100

 222

2.
3. (defparameter *score* (score-loader-midi "Scores/" "1-Prelude.midi")
4. "Holds MIDI data.")
5.
6. ;; ----- functions ----- ;;
7.
8. (defun pitches-only (score)
9. "Prunes MIDI list to include pitches only."
10. (mapcar #'cadr score))
11.
12. ; (pitches-only *score*)
13. ; => (38 26 41 33 ... 26)
14.
15. (defun midi->pc (pitches)
16. "Converts list of MIDI pitches to a list of PCs 0-11."
17. (mapcar (lambda (x) (mod x 12)) pitches))
18.
19. ; (midi->pc (pitches-only *score*))
20. ; => (2 2 5 9 ... 2)
21.
22. (defun pre-pc-histogram (notes &optional (counter 0))
23. "Creates pitch class statistics."
24. (if (equal counter 12) ()
25. (cons
26. (list counter (count counter notes))
27. (pre-pc-histogram notes (+ counter 1)))))
28.
29. ; (pre-pc-histogram (midi->pc (pitches-only *score*)))
30. ; => ((0 100) (1 130) (2 432) (3 84) (4 228) (5 319) (6 50) (7 304) (8

94) (9 350) (10 178) (11 80))
31.
32. (defun pc-histogram (score)
33. "Combines previous subroutine to create PC histogram."
34. (pre-pc-histogram (midi->pc (pitches-only score))))
35.
36. ; (pc-histogram *score*)
37. ; => ((0 100) (1 130) (2 432) (3 84) (4 228) (5 319) (6 50) (7 304) (8

94) (9 350) (10 178) (11 80))
38.
39. (defun order-by-pitch (pch direction)
40. "Orders pitch space histogram by MIDI pitches."
41. (let ((new-pch (sort (copy-list pch) direction :key #'first)))
42. new-pch))
43.
44. ; (order-by-pitch (pc-histogram *score*) #'<)
45. ; => ((0 100) (1 130) (2 432) (3 84) (4 228) (5 319) (6 50) (7 304) (8

94) (9 350) (10 178) (11 80))
46.
47. (defun order-by-count (pch direction)
48. "Orders pitch space histogram by count."
49. (let ((new-pch (sort (copy-list pch) direction :key #'second)))
50. new-pch))
51.
52. ; (order-by-count (pc-histogram *score*) #'>)
53. ; => ((2 432) (9 350) (5 319) (7 304) (4 228) (10 178) (1 130) (0 100) (8

94) (3 84) (11 80) (6 50))
54.
55. (defun show (pch)

 223

56. "Dumps histrogram data to screen."
57. (format t "~%Histogram~%PC~2T~TCount~{~%~{~d~^~3T~T~}~}" pch))
58.
59. ; (show (pc-histogram *score*))
60. ; =>
61. #|
62. Histogram
63. PC Count
64. 0 100
65. 1 130
66. 2 432
67. ...
68. 11 80
69. |#
70.
71. (defun save (pch path filename)
72. "Saves histogram to a .csv file."
73. (with-open-file (csv
74. (concatenate 'string path filename)
75. :direction :output
76. :if-exists :supersede
77. :if-does-not-exist :create)
78. (format csv "~%~a,~a~{~%~{~A~^,~}~}~%" 'PC 'Count pch)))
79.
80. ; (save (pc-histogram *score*) *this-path* "Data/Pitch-Class-Histogram-

PC.csv")
81. ; =>
82. #|
83. PC,COUNT
84. 0,100
85. 1,130
86. 2,432
87. ...
88. 11,80
89. |#
90.

Example 6-5: Creating a PC histogram in Common Lisp.

 The first line in Example 6-5 delineates and organizes the script. Lines 3-4 here

are the same as in the previous examples (Example 6-1, Example 6-2, Example 6-4).

The pitches-only function has been adapted from the previous two examples

(Example 6-1, Example 6-2, Example 6-4) in lines 8-10, except that the recursion is now

being handled by the higher-order mapcar function that maps the cadr function over

the score to create the pitches only list. Line 12 show how to call the pitches-only

function with the *score* argument, and line 13 shows a truncated results set. The

 224

midi->pc function is new in this program, and through a lambda calculation converts

MIDI pitches to PCs (lines 15-17). Line 19 shows how to use the midi->pc function

with a nested pitches-only function and the *score* supplied as an argument. The

result of the function call is listed in abbreviated form in line 20.

 The following pre-pc-histogram function counts all pitches belonging to a

certain PC through recursion, builds a list, and pairs the count results with the PCs

(lines 22-27). The argument for the pre-pc-histogram function is provided through

the use of the midi->pc function that itself nests the pitches-only function as an

argument. The argument of the nested pitches-only function is the *score*

variable. The function call is shown in line 29, and line 30 shows the resulting histogram.

In order to create an easier to use function, the pc-histogram function has been

provided. A *score* needs to be supplied as an argument to the pc-histogram

function. The function includes the (pre-pc-histogram (midi->pc (pitches-

only score))) function call, and therefore the simplified function call becomes (pc-

histogram *score*) – line 36 – resulting in a histogram, line 37.

The two following four function definitions of order-by-pitch, order-by-

count, show, and save (lines 39-89) are taken from Example 6-4, and have been

slightly modified. Lines 44, 52, 59, and 80 show how the functions can be used to create

two different PC histograms (again, see Example 6-4 for detailed description). Only the

save function is used slightly differently, since two different file names need to be

created (one presumably for the outcome of the order-by-pitch function, and one

for the outcome of the order-by-count function. Thus the save function takes the

 225

(pc-histogram *score*), a directory path (*this-path*), a local path, and a file

name (e.g: “Data/Pitch-Class-Histogram-MIDI.csv”,” Data/Pitch-Class-

Histogram-Count.csv”) as its arguments. As is evident from this example, the

previous examples can all be rolled out into one unified program. In either case Figure

6-11 and Figure 6-12 show how the CSV data outcomes can be modeled graphically.

Figure 6-11: PC histogram FDL-1, sorted by PCs.

Figure 6-11 shows the pitch class distribution of FDL-1, and one can observe

how the pattern actually maps onto the large pitch space histogram from Figure 6-9, as

if it was a reduction of sorts. Figure 6-12 creates a clear picture of how the twelve equal

tempered notes that divide the octave are distributed as PCs, and can be mapped onto

the much larger histogram from Figure 6-10. The most common PC is D, followed by A

and F, providing a definite key center of D, and a strong sense of D minor, which is

0 1 2 3 4 5 6 7 8 9 10 11

80

178

350

94

304

50

319

228

84

432

130
100

 226

underlined by the use of PC F#, the least used PC.34 Interestingly enough though, PC G

is only by 15 occurrences less common than PC F.

34 This is somewhat of a simplification from other more sophisticated key finding schemes, and

would have to be fleshed out further in the future. For example, an extra module of the Humdrum toolkit
utilizes, which music21 also uses, called keycor consists of five different key-profile weights to which pitch
content of a composition is compared through correlation. The correlations consist of values that indicate
the likelihood of whether a pitch belongs to a certain key, for twelve pitches. In order to find the right
scheme, provided the Humdrum command line tools are installed on a given system, a music
representation file format would first need to be converted in to the Humdrum native data format (.krn)
with the mid2hum, or xml2hum commands (e.g.: mid2hum [input] [> output]). The second step
involves running the keycor command, with one of the supplied flags that control formatting what type of
data, and what type of histogram is to be used. Thus, running keycor --temperley 1-Prelude.krn,
results in: The best key is: D Minor. Furthermore, running keycor -f 1-Prelude.krn (the –f
flag shows the extracted note histogram of the input), produced the subsequent values:

The best key is: D Minor

Pitch[0] = 6.25
Pitch[1] = 8.125
Pitch[2] = 31.6875
Pitch[3] = 5.25
Pitch[4] = 14.25
Pitch[5] = 21.8125
Pitch[6] = 3.125
Pitch[7] = 19
Pitch[8] = 5.875
Pitch[9] = 23.75
Pitch[10] = 11.125
Pitch[11] = 5

The results correspond to the results achieved with the algorithm presented in this study, except that it is
expressed in percentage points. In either case, it should be noted, the weights of the key-profiles are
based on CPP compositions. Harvard Dictionary of Music.

In music21, at the python REPL called Idle, provided music21 has been installed on a given system, a
musicXML file needs to be imported into the system as well, but then is assigned to a variable: sCope =
converter.parse(‘/path/to/Corpus/1-Prelude.xml'). Once the variable has been assigned it can get attached
to a process, the creation of one of the key analysis objects music21 provides:
>>> p = analysis.discrete.KrumhanslSchmuckler()
>>> p. getSolution(sCope)
The solution the program provides reads: <music21.key.Key of d minor>. The consequent key finding
algorithms are provided as objects in music21 (in addition to the one shown
above): .TemperleyKostkaPayne(), .KrumhanslKessler(),
.BellmanBudge(), .AardenEssen(). All of the algorithms are based on exhaustive studies for which the
objects are named.

 227

Figure 6-12: PC histogram FDL-1, sorted by count.

6.2.5. The Chord Compression Script

Now that a key center, and a probable key have been found a chord reduction

can proceed. The following strategy will by used for the following reduction: (1)

reduction for piano 1, (2) reduction for piano 2, and (3) combined reduction for both

instruments. Here are some considerations in creating a reduction of the first piano part.

A harmonic rhythm, or the interval at which chords are used needs to be specified, so

that any rhythmic values will be fused into a blocked chord value. So, if four groups of

sixteenth notes form one rhythmic harmonic interval (in FDL-1 one measure), they will

be reduced to a stacked chord consisting of whole notes.

Both the lowest and highest notes of each chord form the outer shell of a chord.

The lowest note needs to be the bottom note of the reduced chord. The highest note of

the chord needs to be the top note of the reduced chord. The resulting shell can be

reduced to a two-octave range. The inner voices of a chord are being reduced to only

2 9 5 7 4 10 1 0 8 3 11 6

50
808494100

130
178

228

304319
350

432

 228

singular instances of themselves with their distribution in tact, in order to show the

correct voice-leading procedure. That means that a chord consisting of a {D, F, A} PCC,

begins with D2 and repeats the order of its content consecutively, as a D-minor triad as

D2, F2, A2, D3…D7, can be reduced to contain a D3 as the lower shell member, a D5

as its upper shell member, and a F4 and a A4 as its inner voice members. The dyad at

the end of each measure acting as an anacrusis will be separated during this procedure.

The resulting PCCs will then be labeled through an automated process that consists of

creating an ordered PCS, and matching it up with a catalogued PCS name, such as 3-1

(0 1 2) from a database.

The procedure is not much different from what is known in algorithmic information

theory, described by Cope in Hidden Structure, as data compression.35 Cope describes

how a string of data with a recurring pattern can be reduced from 2, 4, 5, 7, 8, 2, 4, 5, 7,

8 (10 characters) to 24578r (6 characters), requiring to be represented with only 60% of

the data necessary, while at the same time still containing all the information necessary

to be decompressed to its original version through the letter ‘r’ that indicates the pattern

to be repeating once.36 However, the chord succession of Table 6-1, does not

necessarily constitute being a real data compression, since there is no indication of how

the chords in the succession can be decompressed accurately to their original state.

A certain amount of data is lost with data compression in MIDI, which Cope cites

35 Cope, Hidden Structure: Music Analysis Using Computers, 57-62.

36 Ibid., 60.

 229

as an example of “lossy” compressed music data representation.37 Therefore, Cope

suggests prepending the term AIT with the letter M, for musical.38 As an example of

compression as used in musical algorithmic information theory, Cope shows that the

string 2 4 5 7 3 5 6 8 can be reduced to 2457t1, where t = transposition, and 1 = one

(half) step.39 Thus it would be ideal to create a symbol for the range of each chord

(easily done with the range finding algorithm previously mentioned), the outer shells of

the chord will already have been calculated, and a symbol to count the iterations of each

chord member, in order to be able to decompress the reduced information, if so

desired.40 These two bits of data will be included as part of the chord labeling scheme.

In previous examples (Example 6-1, Example 6-2, Example 6-4, Example 6-5) it

was shown how an outside score representation was loaded into a program. It was also

clarified that in this particular work the loaded score representation used is a MIDI

score.41 While loading small bits of music, i.e. a single voice in a measure, or a few

37 Ibid., 62.

38 Ibid.

39 Ibid., 57-62.

40 The chord succession reduction, therefore, is not a chord reduction in the Schenkerian sense,
since such a reduction would be destructive.

41 The composer provided only a score in .pdf format, which shows the music represented in
traditional notation. Therefore a midi score first had to be generated. Initially MakeMusic’s Finale,
commercially available notation software, was used to create a MIDI representation of the score.
However, it turns out that the byte data generated by Finale to encode the music representation as MIDI
was inaccurate, i.e. a sixteenth note rather than being represented by a numeric value of 250, would
range anywhere between 237 and 265, which made the Finale MIDI representation not very accurate.
Since the entire piece was already typeset in Finale, the scores were exported via MusicXML into
MuseScore, freely available open-sourced notation software, which was then able to generate very
accurate MIDI representations without any inconsistencies. Cope, Hidden Structure: Music Analysis Using
Computers, 57-62. Additionally, it was also found that MIDI representations generated by LilyPond were
just as accurate as the MIDI representations generated in MuseScore. In fact, all musical examples in this
dissertation have been typeset in LilyPond. "Musescore" http://musescore.org/ (accessed October 31,

 230

measures of music, or a phrase of music is not very difficult to manipulate, a larger set

of music becomes exponentially more difficult to manipulate and operate on. When

loading a MIDI representation of FDL-1 into the program, it came to light that the

composition consists of 2,349 distinct musical events.

Therefore, a more efficient method is needed to be able to go through this data.

In music21 one is able to select a specific voice, and specific measures, and measure

subdivisions, or beats. The capability to select parts, measures, or beats and isolate

them for “viewing,” seems to be a perfectly reasonable addition to any set of algorithms

used for analysis. For further consideration, this set of capabilities should be re-useable

for the rest of the composition in this study, and should be build in such a matter that it

can be copied and pasted to any set of algorithms created for analysis, or even better,

be able to be loaded into a program to be created. The following analysis prototype

shows exactly how to create the needed score manipulation features.42

6.2.6. Defining Global Variables

35. ;; ----- Global Variables ----- ;;
36.
37. (defparameter *score* (score-loader-midi "Scores/" "score-fdl-prelude-

1.midi")
38. "Holds MIDI data.")
39.
40. (defparameter *piano-1* nil
41. "Contains the first piano part.")
42.
43. (defparameter *piano-2* nil

2014). Furthermore, all MIDI score representations have been set 60 beats per minute, in order to ensure
one type of label for a note length in milliseconds.

42 Since the ensuing code example is quite a bit longer than all previous examples it will be
broken up into several different sections. The reader will know that the same program is being discussed,
by the use of sequentially continuous line numbers.

 231

44. "Contains the second piano part.")
45.
46. (defparameter *time-signature* nil
47. "The time signature of a composition.")
48.
49. (defparameter *measure-count* nil
50. "How many measures contained in a composition.")
51.
52. (defparameter *music-set* nil
53. "A set of numbered measures to complete analytical operations on.")
54.
55. (defparameter *segmented-music-set* nil
56. "Keeps a measured music set according to a segmentation scheme.")
57.
58. (defparameter *pitches-music-set* nil
59. "A set only containing measure numbers and pitches.")
60.
61. (defparameter *compressed-sets* nil
62. "Measured compressed music sets.")
63.
64. (defparameter *note-values*
65. '((maxima 32000)
66. (longa 16000)
67. (breve 8000)
68. (whole 4000)
69. (half 2000)
70. (quarter 1000)
71. (eighth 500)
72. (sixteenth 250)
73. (thirtysecond 125)
74. (sixtyfourth 63))
75. "Note values and their corresponding MIDI representations in

milliseconds.")
76.

Example 6-6: Analysis prototype - global variable bindings.

 The first items loaded into the analysis script have been re-used from previous

examples, and are listed on p. 402. Example 6-6 begins with line 35, and the code

declares a series of global variables that will be used throughout the program prototype.

Line 35 begins with a delineation of the script in order to maintain readable code. Lines

37-38 place the MIDI representation of the music into a defparameter named

score, as has been done with previous examples. Unlike in previous examples the

defparameter variable also contains a documentation string. The code should ideally

be self-documenting, so the documentation string was added. If at any point in the

 232

programming process one wonders what type of information a particular variable

contains, the built-in documentation function can be called, to access the specified

documentation string. To access the documentation string for the defparameter

score variable, the documentation function would be called at the REPL in the

following way: (documentation '*score* 'variable). The following

corresponding documentation string then would be displayed: "Holds a MIDI

representation of the score."

 In lines 40-41, the defparameter *piano-1* is declared, which will later hold

the first piano part. However, here it will be bound to nil. The organization of the code

is such that the defparameter will be set after an evaluation of a specific function. A

documentation string is also provided describing what kind of information is held in the

piano-1 variable.43 Lines 43-44 create the defparameter *piano-2*, to hold

the MIDI data for the second piano part, and nil is bound to the variable. In lines 46-47,

the defparameter *time-signature* of the composition is declared and bound

with nil. The defparameter *measure-count* is set to nil (lines 49-50), and will

later be populated with how many measures the composition contains. In lines 52-53

the defparameter *music-set* is created, and set to nil. The variable will be

populated with a set of numbered measures on which music analysis operations can be

completed.

 The *music-set* variable should only be bound after a range of measures for

analysis has been selected, while the following defparameter *segmented-music-

43 Lines 1-39, feature variable declarations, and all declarations feature corresponding
documentation strings.

 233

set* (lines 55-56) will contain a measured music set that has been organized

according to a segmentation scheme. Lines 58-59, define the ante-penultimate

defparameter called *pitches-music-set*, which is a measured set of music that

has been stripped from non-relevant MIDI data, in this case it will only hold occurring

pitches according to a measured amount. The penultimate defparameter

compressed-sets (lines 25-26), is set to nil, and will be populated with

measured compressed, or reduced, music sets at a later point. The last variable is

declared with defparameter *note-values*, and holds a key/value pair list for

common name note values, and their corresponding MIDI representations in

milliseconds (lines 28-29).44 The next section of code, score handling, shows how to

populate most of the declared variables for relevant musical information. The code in

this section will be able to be re-used, either as a copy-paste item or in a separated file.

6.2.7. Counting Measures

77. ;; ----- Score Handling ----- ;;
78.
79. ; -- setting the time signature -- ;
80. (setf *time-signature* '(4 quarter))
81.
82. (defun round-number (number)
83. "Rounds a floating point number to a closest integer value."
84. (car (list (round number))))
85.
86. ; (round-number '3.1415)
87. ; => 3
88. ; (round-number '1.618)
89. ; => 2

44 If the MIDI score has been set to 60 beats per minute, then a quarter note will be represented
by 1000. A finer granularity can be achieved by simply decreasing the beats per measure value in an
encoded MIDI file, for example 30 beats per minute would yield 2000 for a quarter note. Less granularity
can be achieved by encoding the MIDI file as having 120 beats per minute, which in turn would yield 500
as the quarter note value. The key/value pair list or as Lispers call the alist (association list) is used
here as a database table.

 234

90.
91. (defun measure-count (score time-signature note-values)
92. "Determines how many measures are in a score."
93. (let ((last-note-start (caar (last score)))
94. (last-note-length (caddar (last score)))
95. (beat (car time-signature))
96. (note-value (cadr (assoc (cadr time-signature) note-values))))
97. (round-number (/ (+ last-note-start last-note-length)
98. (* beat note-value)))))
99.
100. ; (measure-count *score* *time-signature* *note-values*)
101. ; => 66 ; if "score-fdl-prelude-1.midi"
102.
103. ; -- setting measure count -- ;
104. (setf *measure-count* (measure-count *score* *time-signature* *note-

values*))
105.

Example 6-7: Analysis prototype - counting measures.

As with previous examples a demarcation of the script maintains code readability

(lines 77-79). The first section of the score handling functions handles time signatures

and how many measure numbers there are in a given composition. In line 80 the

time-signature defparameter is bound to the list '(4 quarter), meaning

that a measure contains four quarter notes, and that the quarter will receive a beat, i.e.

4/4 time.45 The round-number function (lines 82-84) rounds a number to its closest

integer in common rounding fashion (i.e. the floating point number 0.5 rounds up, and

the floating point number 0.49 rounds down) by using the built-in round function,

placing its results into a list, which would be an integer and its floating point number,

and just selecting the first item from the list, the integer. Calling the round-number

function with 3.1415 (line 86-87) results in 3, and providing 1.618 as a parameter,

45 4/4 does not represent a fraction here, but represents two stacked numbers, as they would

occur as the time signature in music notation. The input here has been designed to be input in a relatively
easy human readable format. At a later point a command line interface can be introduced that would
make the specification of the time signature even easier. Furthermore, at a yet even later point, and
algorithm that determines the time signature by itself could be employed that will set the time signature
variable automatically.

 235

results in 2 (line 88-89). The round-number function does not do anything by itself, but

is used as a subroutine (or helper function) for the next function, called measure-

count (lines 91-98).

The measure-count function uses three arguments: (1) a MIDI data list –

score, (2) how many beats there are in the time signature – time-signature, and

(3) which note value receives the beat in a time signature – note-values (line 91).

The let function (lines 93-96) declares four local variables: (1) last-note-start,

generated from the first item of the last list within a list (…(260000 26 4000 4

90)), i.e. 260,000, which appears in the supplied score argument; (2) last-note-

length, also generated from the score argument, whereby now the third item within

the list of the list – the score – is elected, see (1), or 4000; (3) beat, which is generated

from the first item (car) of the time-signature list that was supplied as an argument

to the function; and (4) note-value, which assigns the appropriate length in

milliseconds associated (assoc) through the second (cdar) item of the time-

signature list (4000ms = 1 quarter note), and the passed in note-values

database. Consequently the sum of the last-note-start and the last-note-

length item is divided by the product of the beat and the note-value, resulting in an

argument that is supplied to the previously defined round-number subroutine (lines

97-98). The measure-count function is called with the *score*, *time-

signature*, and the *notes-values* variables as arguments (line 100), which

results in 66 mm. numbers, if the *score* parameter was bound to the score-fdl-

prelude-1.midi file (line 101). Subsequently, the *measure-count* variable is

 236

bound in line 104 to the outcome of the (measure-count *score* *time-

signature* *note-values*) function call. In the next section of the program a

specific part is chosen, even though a specific part can be omitted if the entire score is

to be selected.

6.2.8. Part Selection

106. (defun choose-part (score part)
107. "Split score into parts."
108. (if (null score) ()
109. (if (or (eql (fourth (first score)) (first part))
110. (eql (fourth (first score)) (second part)))
111. (cons
112. (first score)
113. (choose-part (rest score) part))
114. (choose-part (rest score) part))))
115.
116. ; (choose-part *score* '(1 2)) ; piano 1
117. ; => ((0 38 250 2 90) (250 41 250 2 90) (500 45 250 2 90) (750 50 250 2

90)
118. ; (1000 53 250 1 63) (1250 57 250 1 63) (1500 62 250 1 63) (1750 65

250 1 63) ...)
119. ;
120. ; (choose-part *score* '(3 4)) ; piano 2
121. ; => ((0 26 250 4 90) (250 33 250 4 90) (500 38 250 4 90) (750 41 250 4

90)
122. ; (1000 45 250 3 63) (1250 50 250 3 63) (1500 53 250 3 63) (1750 57

250 3 63) ...)
123.
124. ; -- setting parts -- ;
125. (setf *piano-1* (choose-part *score* '(1 2)))
126.

Example 6-8: Analysis prototype - selecting a part.

Lines 106-114 show the choose-part function. The function uses the score

and a list of part selections as its argument. This recursive function splits the score

into piano parts. Each piano part consists of two channels (left hand = channel 1 / right

hand = channel 2), so that the part of the first piano is split with a '(1 2) list, while the

second piano part is split with a '(3 4) list. In line 108 the recursion is initialized with a

 237

conditional if statement, and a nil is issued as soon as no more events remain in the

provided score. Within the recursion the following condition has to be followed: (1) if

the fourth item within an event of the score equals the first item in the part list,

or (2) if the fourth item within an event of the score equals the second item in the

part list. When the conditions are met a list is created by adding the first item of the

midi-list to the remaining items of the same midi-list, and is being passed back

to the beginning of the choose-part function. However, if the condition is not met, no

list is created, and the remainder of the midi-list is passed back to the beginning of

the choose-part function. Line 116-118 show a test function call (choose-part

score '(1 2)), that results in the ((0 38 250 2 90) (250 41 250 2 90)

(500 45 250 2 90) (750 50 250 2 90) (1000 53 250 1 63) (1250 57

250 1 63) (1500 62 250 1 63) (1750 65 250 1 63)...).46 The result

reflects that the right and left hand of the first piano part have been grouped together.

Another test function call in which the second piano part is selected, and its result are

shown in lines 120-122. In line 125 the *piano-1* variable is bound to the outcome of a

call to the choose-part function with the *score* variable, and a channel list –

representing the right and left hand of the piano – supplied as arguments.

A MIDI representation of a score does not contain any measure numbers. In the

next section measure numbers will group score events together and are assigned to the

selected parts.

46Here only the first two beats of the selected part of the score are listed. The truncation is
specified through the ellipses.

 238

6.2.9. Grouping Musical Events by Measure Numbers

127. (defun fetch-measure (midi &optional (mm-start 0) (mm-end 4000))
128. "Selects a measure range to examine."
129. (if (null midi) nil
130. (if (>= (caar midi) mm-start)
131. (if (< (caar midi) mm-end)
132. (cons
133. (car midi)
134. (fetch-measure (cdr midi) mm-start mm-end)))
135. (fetch-measure (cdr midi) mm-start mm-end))))
136.
137. ; (fetch-measure *piano-1*) ; selects the first measure
138. ; =>
139. #|
140. ((0 38 250 2 90) (250 41 250 2 90) (500 45 250 2 90) (750 50 250 2 90)
141. (1000 53 250 1 63) (1250 57 250 1 63) (1500 62 250 1 63) (1750 65 250 1

63)
142. (2000 69 250 2 90) (2250 74 250 2 90) (2500 77 250 2 90) (2750 81 250 2

90)
143. (3000 86 250 1 63) (3250 89 250 1 63) (3500 93 250 1 63) (3500 57 250 2

90) (3750 98 250 1 63) (3750 45 250 2 90))
144. |#
145. ; (fetch-measure *piano-1* 0 1000) ; selects the first beat of measure 1
146. ; => ((0 38 250 2 90) (250 41 250 2 90) (500 45 250 2 90) (750 50 250 2

90))
147.
148. (defun measure (m)
149. "Converts measure numbers to millisecond numbers."
150. (let ((note-count-measure (first *time-signature*))
151. (note-value (second (assoc (second *time-signature*) *note-

values*))))
152. (cond
153. ((= m 1) '0)
154. ((> m 1)
155. (- (* m (* note-count-measure note-value))
156. (* note-count-measure note-value)))
157. (t '(the input was not recognized)))))
158.
159. ; (measure 66) ; select measure 66
160. ; => 260000 ; measure 66 starts at 260000 milliseconds
161.
162. (defun measure-numbers (score measure-count)
163. "Groups music according to measures."
164. (loop for i from 1 to measure-count
165. collect (append (list i) (fetch-measure score (measure i) (measure (+

1 i))))))
166.
167. ; -- numbering measures -- ;
168. ; (measure-numbers *piano-1* *measure-count*)
169. ; =>
170. #|
171. ((1
172. (0 38 250 2 90) (250 41 250 2 90) (500 45 250 2 90) (750 50 250 2 90)
173. (1000 53 250 1 63) (1250 57 250 1 63) (1500 62 250 1 63) (1750 65 250 1

63)
174. (2000 69 250 2 90) (2250 74 250 2 90) (2500 77 250 2 90) (2750 81 250 2

90)

 239

175. (3000 86 250 1 63) (3250 89 250 1 63) (3500 93 250 1 63) (3500 57 250 2
90) (3750 98 250 1 63) (3750 45 250 2 90))

176. ...
177. (66
178. (260000 77 4000 1 63) (260000 86 4000 1 63) (260000 81 4000 1 63)

(260000 74 4000 1 63)
179. (260000 62 4000 2 90) (260000 65 4000 2 90) (260000 69 4000 2 90)))
180. |#
181.
182. ; -- assigning measure numbers to a score as *music-set* -- ;
183. (setf *music-set* (measure-numbers *piano-1* *measure-count*))
184.

Example 6-9: Analysis prototype - grouping musical events by measure numbers.

The fetch-measures function (lines 127-135) is a subroutine for the

measure-numbers function (lines 162-165). The main objective of the recursive

fetch-measure function is to group four quarter notes, which sum to 4000, into one

measure, also defined as a measure range. The function takes a score selection,

represented as a midi events list, as its argument. Optionally, a mm-start (measures

start) argument – set to 0 initially, and a mm-end (measures end) argument – set to

4000 initially, can also be provided to the fetch-measure function. The if statement

in line 129 terminates the recursion once the midi list has been finished parsing. The

next condition checks whether the range of the start time MIDI events is larger or equal

to the mm-start argument. If the condition is true, the recursion will check for another

condition (line 131), but if it is false, a self-referential call with the remainder of the

midi-list, the mm-start, and the mm-end arguments to the feature-measures

function is initiated (line 135). Continuing in line 131, the next condition checks whether

the start time of the MIDI event is smaller than the mm-end argument. If it is, then a

range of MIDI events has been defined, and this range of MIDI events is grouped

together into a measure by building a list (lines 132-133) with the first, or next, MIDI

 240

event in the MIDI list, and the remainder of the list (line 134) is passed back with the

midi, mm-start, and mm-end as arguments supplied to the beginning of the fetch-

measures function. However, if it is false, meaning if the MIDI event evaluated does not

fall within the range of mm-start, and mm-end, then the entire events list (midi), the

mm-start, and the mm-end arguments are passed back to the top of the fetch-

measures function (line 135). The fetch-measures function can be called with just a

selected part, e.g. *piano-1* (lines 137-144), which results in the selection of events

within one measure (since the default argument to the optional mm-end variable was set

to 4000). However, if the fetch-measures function is called with *piano-1*, 0, and

1000 as its arguments, only the musical events that fall within the first beat are selected

(lines 146-146).

The following measure function (lines 148-157) is the second subroutine utilized

by the measure-numbers function (lines 162-165). Its purpose is to translate human-

readable measure values to corresponding machine readable numbers values, meaning

that the statement (measure 1), will be translated to “all midi-events with a start time

from 0-4000, etc. The measure function accepts one argument m, the human readable

value for a measure number. Two local variables are established with the let function,

(1) note-count-value, bound to the first value of the *time-signature* global

variable (line 150), and (2) note-value, bound to the second value of a search result,

where the second value of the *time-signature* global variable is being used to

query the *note-values* table (line 151). Upon establishing the local variables, a list

of conditions have to be fulfilled, which is achieved through the use of the cond function

 241

(lines 152-157) – a conditional that evaluates not just to t (true), or nil (false), but can

evaluate a series of different, but related conditions. The first condition checks whether

the number entered is 1, and if it is 0 will be passed on to the measure-numbers

function. The second condition checks whether m is larger than 1, in which case the

passed-in number is subtracted by the product of the note-count-measure and

note-value, and m arguments from the product of the note-count-measure and

note-value arguments. If neither of these two conditions is met, an error message is

provided. A test call and its result are shown in lines 159-160: 66 is provided as an

argument to the measure function, resulting in 260000.

The measure-numbers function (lines162-165) utilizes the aforementioned two

functions (fetch-measure, and measure), and creates a list that groups a list of MIDI

events, by measure numbers. In order to complete this task, two arguments have to be

supplied to the measure-numbers function: (1) the score, i.e. MIDI event list, and (2)

a measure-count. With these arguments supplied a loop is initiated that counts, i

represents the current count, from one to the measure-count argument (which was

66). During each one of the iterations of the loop a list is collected that calls upon the

fetch-measures function with the music, the starting measure, and the ending

measure numbers supplied as arguments. Both the starting and ending measure

numbers are created by calling upon the measures function, and by using the i

counter as its argument, whereby the second counter for the ending measure

arguments is created throughout the addition of i to one. The list of MIDI events is then

placed into an alist with the counter i (the measure number) as key. Creating this

 242

type of alist will facilitate queries to the MIDI events list by measures. The function

measure-number function is called with a selected part, or *piano-1*, and the

measure-count variables as arguments and results in the (truncated) events list

shown in lines 171-179.

The *music-set* variable is bound to the outcome of the measure-number

function (line 183). The next function shows how to select a specific range of measures.

6.2.10. Selecting a Measure Range

185. (defun select-measures (measure-range music)
186. "Select a range of measures."
187. (loop for i from (car measure-range) to (second measure-range)
188. collect (assoc i music)))
189.
190. ; (select-measures '(1 1) *music-set*)
191. ; =>
192. #|
193. ((1 (0 38 250 2 90) (250 41 250 2 90) (500 45 250 2 90) (750 50 250 2 90)
194. (1000 53 250 1 63) (1250 57 250 1 63) (1500 62 250 1 63) (1750 65 250

1 63)
195. (2000 69 250 2 90) (2250 74 250 2 90) (2500 77 250 2 90) (2750 81 250

2 90)
196. (3000 86 250 1 63) (3250 89 250 1 63) (3500 93 250 1 63) (3500 57 250

2 90) (3750 98 250 1 63) (3750 45 250 2 90)))
197. |#
198.
199. ; -- selecting a range of measures and assigning them ti *selected-music-

set* -- ;
200. (setf *selected-music-set* (select-measures '(1 66) *music-set*))
201.

Example 6-10: Analysis prototype - selecting a measure range.

The select-measures function (line 185-188) takes two arguments: (1) the

measure-range, and (2) the music (measured MIDI events list). A loop is initiated in

lines 187-188, in which a count, represented as i, ranges from the first (car) item in a

measure-range list, to a second item in a measure-range list. Further, collect

will assemble all of the measures specified with the measure-range argument list by

 243

providing i to the assoc function, which queries the music list for the specified

measures. A test call to the select-measures function is shown in line 190. The measure

range argument is specified in list form, meaning to select mm. 1-4, the list argument

would look like '(1 4). In the test call only m. 1 is selected with '(1 1). The second

argument is the measured *music-set*. The result of the test function call is listed in

lines 193-196). The *selected-music-set* variable can now be bound with the

outcome to a call to the select-measures function, as shown in line 200.

The select-measures function completes the re-usable score handling section

of the analysis prototype. The next section will discuss how a selected measure range

can be algorithmically segmented according to the previous established analytical

results of FDL-1. There are other segmentation possibilities, and therefore a

segmentation function should be fully modular, or substitutable.

6.2.11. Segmentation

Ideally, a segmentation scheme should be based on how the music is being

perceived by a listener, or analysist. Figure 6-8 and Table 6-1 show an analysis that

subdivides each measure into a group of successive ascending pitches outlining a type

of chord, while being introduced, and supported by an ever present dyad. Therefore, a

segmentation scheme has already been created. Thus the next function involves how to

create this segmentation programmatically. A look at the first measure’s MIDI events will

further illuminate how the music maybe organized (as has been previously established

m. 1 is the algorithm that determines the handling of the rest of the chord successions in

 244

the entire composition). The *music-set* has been populated with the *piano-1*

part, and the first measure can be selected with (select-measures '(1 1)

music-set). Here, again, is the outcome of that operation:47

((1 (0 38 248 2 90) (250 41 248 2 90)
(500 45 248 2 90) (750 50 248 2 90)
(1000 53 248 1 63) (1250 57 248 1 63)
(1500 62 248 1 63) (1750 65 248 1 63)
(2000 69 248 2 90) (2250 74 248 2 90)
(2500 77 248 2 90) (2750 81 248 2 90)
(3000 86 248 1 63) (3250 89 248 1 63)
(3500 93 248 1 63) (3500 57 248 2 90)
(3750 98 248 1 63) (3750 45 248 2 90)))

Example 6-11: Selected m. 1 - MIDI representation.

The key (as in key/value pair, not as in key signature) is 1, which is also the

measure number. The fourth position in the MIDI event list shows the channel number.

Since the example was typeset in LilyPond, the left hand was automatically assigned to

channel 2, for the first group of four sixteenth notes. The second group of four sixteenth

notes, even though the pitches ascend in order through the registers, was assigned to

channel 1, since the group appears in the right hand of the first piano part. The pattern

repeats until beat 3.5 (each beat is represented by 1000, so beat 3.5 is shown as 3500).

The dyad is introduced into the left hand on beat 3.5 and beat 3.75 on channel 2,

through the use of a {A3, A4} (or {57, 45}) octave displaced dyad. The needed

segmentation scheme becomes clear: every note that is played on or after beat 3.5, and

belongs to channel 2, is part of the dyad, while other notes are part of the rising

arpeggio. The result are three possible segmentation scenarios: (1) all notes in a

measure – no segmentation, (2) all notes from the rising arpeggio – without the dyad,

47 The events list (of the first measure, from Example 6-10, lines 193-196) has been re-organized

by two pairs of sixteenth notes, for easier readability.

 245

and (3) the dyad – without the arpeggio. The next function of the program takes care of

the second scenario, since it has been previously discussed in the analysis.

202. (defun measure-segmentation-pattern-1 (music &optional (beat 3500)
(isolate 'arpeggio))

203. "Separates arpeggios from dyads and vice versa."
204. (if (null music) nil
205. (cond ((equal isolate 'arpeggio)
206. (if (and (>= (caar music) beat) (equal (cadddr (car music))

2))
207. (measure-segmentation-pattern-1 (rest music) beat isolate)
208. (cons
209. (car music)
210. (measure-segmentation-pattern-1 (rest music) beat

isolate))))
211. ((equal isolate 'dyad)
212. (if (and (>= (caar music) beat) (equal (cadddr (car music))

2))
213. (cons
214. (car music)
215. (measure-segmentation-pattern-1 (rest music) beat isolate))
216. (measure-segmentation-pattern-1 (rest music) beat isolate)))
217. (t '(no isolation pattern has been specified)))))
218.
219. ; (measure-segmentation-pattern-1 *selected-music-set* '4000 'arpeggio)
220. ; =>
221. #|
222. ((1
223. (0 38 250 2 90) (250 41 250 2 90) (500 45 250 2 90) (750 50 250 2 90)
224. (1000 53 250 1 63) (1250 57 250 1 63) (1500 62 250 1 63) (1750 65 250 1

63)
225. (2000 69 250 2 90) (2250 74 250 2 90) (2500 77 250 2 90) (2750 81 250 2

90)
226. (3000 86 250 1 63) (3250 89 250 1 63) (3500 93 250 1 63) (3500 57 250 2

90) (3750 98 250 1 63) (3750 45 250 2 90))
227. |#
228.
229. (defun select-measures-segmentation-pattern-1 (music m-range isolate)
230. "Specifies a range of measures to use measure segmentation pattern."
231. (loop for i from (car m-range) to (cadr m-range)
232. collect (append (list i)
233. (measure-segmentation-pattern-1 (cdr (assoc i music))

(- (* i 4000) 500) isolate))))
234.
235. ; (select-measures-segmentation-pattern-1 *selected-music-set* '(1 1)

'arpeggio) ; also works with just *music-set*;
236. ; =>
237. #|
238. ((1 (0 38 250 2 90) (250 41 250 2 90) (500 45 250 2 90) (750 50 250 2 90)
239. (1000 53 250 1 63) (1250 57 250 1 63) (1500 62 250 1 63) (1750 65 250

1 63)
240. (2000 69 250 2 90) (2250 74 250 2 90) (2500 77 250 2 90) (2750 81 250

2 90)
241. (3000 86 250 1 63) (3250 89 250 1 63) (3500 93 250 1 63) (3750 98 250

1 63)))
242. |#

 246

243.
244. ; (select-measures-segmentation-pattern-1 *selected-music-set* '(1 1)

'dyad) ; also works with just *music-set*
245. ; => ((1 (3500 57 250 2 90) (3750 45 250 2 90)))
246.
247. ; -- segment a music set according to dyads, as relevant to 1-prelude, or

arpeggios -- ;
248. (setf *segmented-music-set* (select-measures-segmentation-pattern-1

selected-music-set '(1 66) 'arpeggio))
249.

Example 6-12: Analysis prototype - segmentation patterns.

Lines 202-217 show the measure-segmentation-pattern-1 function,

named post fixed with -pattern-1 for FDL-1. The function takes two optional

arguments the beat where the segmentation is to take place, and isolate, or what

type of segmentation needs to be used. The default values for both arguments are 3500

for the former, and 'arpeggio for the latter. The function is recursive, and the if

statement in line 204 determines when the end of a list is reached, and stops the

recursion, in order to avoid for the recursion to last indefinitely, and causing the dreaded

stack overflow. Lines 205-217 check for two conditions to be true, and provide an error

message when neither statement evaluates to being true. The first condition within the

cond function checks whether the 'arpeggio isolation needs to be created. If so, a

second test is required, represented by an if statement (line 206), which determines

whether the first item in the first list in the MIDI events list (here it has been

shortened to just caar, rather than using two first functions) is equal to or larger than

the beat; and whether the fourth item in the first list of the MIDI events list (here

shortened to just cadddr with a car combination), is located in the left hand, or

channel 2. If so the recursion starts anew from the top of the measure-

segmentation-pattern-1 function, but if not, then a new list is created with the

 247

first MIDI event, and the remaining MIDI events are passed back with their

appropriate arguments to the top of the measure-segmentation-pattern-1

function.

The second condition (line 211) checks if the 'dyad needs to be isolated. If the

condition evaluates to t, the next condition is checked via an if statement that is

identical to the one from line 206. However, the t and nil operations are reversed,

meaning that if the condition evaluates to t, a list is assembled from the first MIDI

event in the music, and the remainder of the music is sent back to the top of the

measure-segmentation-pattern-1 function, but if the condition evaluates to nil

then the music is sent back to the top of the measure-segmentation-pattern-1

function anew, in order for the next element to be evaluated. Line 217 provides a

fallback condition in case neither of the 'arpeggio, nor 'dyad values have been

supplied as arguments. The reason why the cond function was chosen here is that if

only evaluates to t or nil, while with cond a decision tree can be built, in case the

need for another segmentation scheme should arise.

The measure-segmentation-pattern-1 function is a subroutine for the

select-measures-segmentation-pattern-1 function in lines 229-233. The

select-measures-segmentation-pattern-1 function uses three arguments: (1)

the music, (2) the m-range – measure range, and (3) the isolation pattern –

'arpeggio, or 'dyad. The loop macro is initiated in order to create a count value i to

repeat the recursive measure-segmentation-pattern-1 function as many times

within the range created by the first item of the m-range argument list, and the

 248

second item of the m-range argument list. Afterwards, collect builds a list creating

the measure numbers as keys, and creating the outcome of the call to the measure-

segmentation-pattern-1, with the corresponding MIDI event list from its

corresponding measure via assoc (music), a multiple of 4000 (the length of a measure

in quarter notes) that is subtracted by 500 (beat), and an isolation patterns as its

arguments. Calling the select-measures-segmentation-pattern-1 function with

the *selected-music-set*, '(1 1), and 'arpeggio as arguments results in a

segmented measure, that omits the dyads, as shown in lines 238-241. However, if the

select-measures-segmentation-pattern-1 function is called with the

selected-music-set, '(1 1), and the 'dyad arguments, then the resulting

events list will only list the dyads as shown in line 245.48 The *segmented-music-

set* global variable can be appropriately bound with the following function call:

(select-measures-segmentation-pattern-1 *selected-music-set* '(1

66) 'arpeggio).

With a segmentation pattern in place attention will finally turn to score reduction.

6.2.12. Score Reduction Algorithms

With these mechanisms in place attention is turned back to the actual reduction.

The score can be reduced in two ways, (1) vertically, or (2) horizontally. Both of the

procedures will produce meaningful results. A vertical reduction will take all members of

a segmentation group, equalize their durational values, and stack the members of the

48 Both times the functions could also have been simply called with the *music-set* argument,
instead of the *selected-music-set* argument.

 249

16-note arpeggios that occur in each one of the piano parts into a blocked chord, i.e.

removing the iteration algorithm. From there, duplicate members of the chord can be

removed. In a horizontal reduction, a 16-note group only represents the first note of a

series that creates a compound melodic line. In FDL-1 that means that each piano that

contains 16 members in a chord will actually produce 16 different lines, from mm. 1-65

(m. 66 presents a point of stasis, since the chord played is not being arpeggiated, and

creates a clear sense of repose, or cadence). Both reductions have their own specific

function: (1) the vertical reduction aids in the automated analyses of chords, and (2) the

horizontal reduction creates a map of all possible voice-leading procedures of the

composition, since each one of the lines carries forth a one-to-one relationship with the

preceding, and ensuing member of a line.

6.2.13. Vertical Reduction

Here are some considerations about the vertical chord reduction. As mentioned

previously, in FDL-1 the arpeggios consist of 16-note sets. The arpeggio in mm. 1-2

consists of the set {38, 41, 45, 50, 53, 57, 62, 65, 69, 74, 77, 81, 86, 89, 93, 98} (or {D3,

F3, A3, D4, F4, A4, D5, F5, A5, D6, F6, A6, D7, F7, A7, D8}). When this set is

converted to contain only PCs then the latter can be represented in the following

fashion: {2, 5, 9, 2, 5, 9, 2, 5, 9, 2, 5, 9, 2, 5, 9, 2}. The outer shell consists of the same

PC, namely 2 (with a 60 semitone displacement). The first three and the last three PCs

from the 16 note set can be removed and reduced to {2, 5, 9, 2, 5, 9, 2, 5, 9, 2}, yet the

outer shell and the inner order of pitch distribution, or chord core, remains the same. By

 250

removing the first three, and the last three pitch classes again, the set is further

condensed to {2, 5, 9, 2}, which contains the essence of the set. In order to indicate the

compression scheme this set will be notated as ({38} {5, 9, 2} {Tx-5}), whereby the first

monad indicates that it is the lowest note (converted back to MIDI pitch value, but D3

would work as well), and the pedal. If the PC of the {x} ∈ {y, z, x} pitch class trichord it

will be displaced by an octave (which will not be the case if {x} ∉ {y, z, v}). The {Tx-5}

behind the PCC {5, 9, 2} set indicates that the latter will be repeated five times, each

time displaced by a new octave, or transposed which each iteration to the next octave

register. The compressed representation fulfills the requirement that it can be

decompressed to its original format. Furthermore, the core can be used to label the

chord appropriately, by placing its content into normal form PCS [2, 5, 9], and/or PCST0

[0 3 7], and then converting the latter into prime form SC 3-11 (0 3 7) or just SC (0 3 7) –

without the Forte number.49

250. ;; ----- Score Reduction Functions ----- ;;
251.
252. (defun display-pitches-only (music-set &optional (note-type 'midi))
253. "Displays only pitches of selected music sets."
254. (if (null music-set) nil
255. (cons
256. (list
257. (caar music-set)
258. (cond ((equal note-type 'midi)
259. (stable-sort
260. (copy-seq
261. (mapcar #'second
262. (cdr (assoc (caar music-set) music-set)))) #'<))
263. ((equal note-type 'pc)
264. (mapcar #'(lambda (x) (mod x 12))
265. (stable-sort
266. (copy-seq
267. (mapcar #'second

49 In some books there are no spaces in between the members of a SC, but here a space will be
place, since it looks identical to a list in Common Lisp. The example may seem redundant; however if the
PCC would have been {7, 10, 3}, then the PCS would be [3, 7, 10], the PCST0 [0 4 7], all belonging to SC
(0 3 7), whereby the PCST0 clearly indicates that the chord is a major chord.

 251

268. (cdr (assoc (caar music-set) music-set))))
#'<)))

269. (t' (please choose pc or midi))))
270. (display-pitches-only (rest music-set) note-type))))
271.
272. ; (display-pitches-only *segmented-music-set*)
273. ; => ((1 (38 41 45 50 53 57 62 65 69 74 77 81 86 89 93 98)) ...)
274.
275. ; (display-pitches-only *segmented-music-set* 'pc)
276. ; => ((1 (2 5 9 2 5 9 2 5 9 2 5 9 2 5 9 2)) ...)
277.
278. ; -- selected pitches occuring in measure without rhythmic and

durational values -- ;
279. (setf *pitches-music-set* (display-pitches-only *segmented-music-set*

'pc))
280.
281. (defun select-pcs-measure (measure pitches-music-set)
282. "Quickly query PCs in individual measures."
283. (cons
284. measure
285. (cdr (assoc measure pitches-music-set))))
286.
287. ; (select-pcs-measure 66 *pitches-music-set*)
288. ; => (66 (2 5 9 2 5 9 2))
289.

Example 6-13: Choosing pitches without rhythmic or durational values.

 The display-pitches-only function displays pitches without their

corresponding rhythmic or durational values within given measures. The function

accepts two arguments (line 252): (1) music-set – a collection of music, organized by

measures, and (2) note-type – a designation whether the pitches should be displayed

as PCs or MIDI pitches (others can be added if needed). The recursive function begins

with an if statement (line 254) in order to determine the end of the music-set and

terminate the recursion with nil when the last note contained in the set has been

processed. If, however, the passed-in music-set consists of more values, then the

recursion continues. The cons function (line 255) builds the actual list by adding a list

(line 256) to the remainder of values within the music-set that is passed back as an

argument to the top of the function (line 270). The inner list (lines 257-269) is assembled

 252

by taking the first item of the first list, which is the measure number, abbreviated

here with the caar function instead of wrapping the statement into two nested first

functions, as the key and assigning the corresponding PCC as a value (lines 258-269).

 Two conditions are checked with the cond function, before the pitches are added

as the values to their corresponding measure numbers: (1) was the 'midi argument

used as the note-type variable, or (2) was the 'pc argument used in the note-type

argument. If the MIDI value was used as an argument for the note-type (line 259-262),

then a mapcar function chooses a PC – (cdr (assoc (caar music-set))) –

from the music-set and builds a list of pitches. Additionally, the list of pitches is sorted

via a combination of the copy-seq function, and the stable-sort function with the

use of the #'< function as a predicate in order to create the ascending order. However,

if 'pc was used as an argument for the note-type (lines 263-268), then a mapcar

function is used to assemble a list by passing the PC, via another mapcar function that

chooses a PC one at a time from the music-set (see above) – which also is sorted

first, to a lambda function that mod 12s the PCs from the list to a value from 0-11.

When neither conditions (MIDI nor PC) are met (line 269), then the cond function

provides the user with an error message list '(please choose pc or midi).

Testing the display-pitches-only function can be accomplished by providing

segmented-music-sets as an argument (line 272). If no additional argument is

supplied, then all occurring MIDI pitches within a measure are listed (line 273).

Providing 'pc as an additional argument to the display-pitches-only function (line

275) lists all occurring PCs within an individual measure (line 276). The results of the

 253

display-pitches-only function, when supplied with a *segmented-music-set*

and 'pc arguments, will be bound to the *pitches-music-set* global variable (line

279).

 The select-pcs-measure function (line 281-285) is utilitarian in nature and allows

the user to quickly inspect the PC content of an individual measure. The function

requires a measure number, and the pitches-music-set as its arguments. In lines

283-285 the measure number is consed to the content of a query to the pitch content of

the corresponding measure. When the select-pcs-measure function is supplied with

66 as the measure number, and the global *pitches-music-set* variable as

arguments the outcome reads: (66 (2 5 9 2 5 9 2)).

The reduce-sets function (lines 303-320, Example 6-14) creates the desired

compression notation for the chord reduction, as previously described, consisting of an

outer shell, a core, and a compression index. Further, the reduce-sets function uses

the pattern matching subset-in-set-count subroutine (lines 292-298), which

counts how many times a subset occurs in a set.

290. ;; ----- compression ----- ;;
291.
292. (defun subset-in-set-count (music-set subset)
293. "Count how many times a subset occurs in a larger set."
294. (loop with z = 0 with s = 0
295. while s do
296. (when (setf s (search subset music-set :start2 s))
297. (incf z) (incf s (length subset)))
298. finally (return z)))
299.
300. ; (subset-in-set-count '(2 5 9 2 5 9 2 5 9 2 5 9 2 5 9 2) '(5 9 2))
301. ; => 5
302.
303. (defun reduce-sets (music-set &optional supplied-root)
304. "Displays the reduced set consisting of outer shell, a core, and

compression index."
305. (if (null music-set) nil
306. (cons
307. (list (caar music-set)

 254

308. (let* ((guts
309. (cdr
310. (assoc (caar music-set) music-set)))
311. (root
312. (if (null supplied-root)
313. (caar guts)
314. supplied-root))
315. (core
316. (remove-duplicates (cdar guts)))
317. (compression-index
318. (subset-in-set-count (cdar guts) core)))
319. (list root core compression-index)))
320. (reduce-sets (rest music-set) supplied-root))))
321.
322. ; (reduce-sets *pitches-music-set* 38) ; actual chord compression
323. ; => ((1 (38 (5 9 2) 5)) (2 (38 (5 9 2) 5)) (3 (38 (4 7 1) 5)) ...)
324.
325. ; -- assign compressed sets to global variable *compressed-sets* -- ;
326. (setf *compressed-sets* (reduce-sets *pitches-music-set* 38))
327.

Example 6-14: Building the compression notation.

The subset-in-set-count function requires two arguments, (1) a music-

set or PCC, and (2) a subset of a music-set, which is some type of PCC pattern

(lines 292-298). After the documentation string, a loop macro is initiated that uses a z

and s iteration local variable, both set to 0 (line 294). While s exists it creates an inner

loop that is followed by a do that checks a when condition. The when condition (line

296) assigns a new value to the variable s through a search of a subset within a

music-set that begins at the s count position of the music-set target string

(:start2), which dynamically becomes the condition. When the condition returns true

then the z variable is increased through the incf function by 1, but when the condition

returns false the s variable automatically increases by the length of the subset (line 297).

At then end, or finally, z is returned as a number value that contains the count of a

subsequence of a sequence. Therefore, when calling the (subset-in-set-count

'(2 5 9 2 5 9 2 5 9 2 5 9 2 5 9 2) '(5 9 2)) function the result will be 5,

 255

since the subsequence '(5 9 2) occurs 5 times in the '(2 5 9 2 5 9 2 5 9 2 5

9 2 5 9 2) sequence (lines 300-301).

The reduce-sets function (lines 159-166) is a recursive function that accepts

two arguments: (1) a music-set – created with (display-pitches-only

segmented-music-set 'pc)), and (2) optionally a supplied-root. Line 305

initiates, and terminates the recursion. The recursion produces a list through use of the

cons function (line 306) in which a manipulated list is added to the remainder of the

music-set provided along with the supplied-root variable to the top of the function

as arguments (line 320). The manipulated list (lines 307-319) consists of the measure

number (caar music-set) – the key – and a list that consists of the root, the

chord core, and a compression-index – the value, which are created as local

variables in the let* function. The guts local variable (line 308) builds a list consisting

only of the PCC (the value), and is used in the assignment of the following local

variables as a shortcut.

The root local variable (line 311) is created by either a supplied-root, if a

supplied-root has been passed in as an argument, or generates a root through a

caar function applied to the guts variable, if no supplied-root argument has been

passed into the function as an argument. The core local variable (line 315) is

assembled by excluding the root from the PCC through applying the cdar function to

the guts, and then removing all recurring PCs. The compression-index local

variable (line 317) is built by calling the subset-in-set-count subroutine with the

cdared guts and the core as its arguments. The variables root, core, and

 256

compression-index are then put into a list (line 319). The function can be called in

the following manner (line 322): (reduce-sets *pitches-music-set* 38). The

result is shown in line 323:50 ((1 (38 (5 9 2) 5)) (2 (38 (5 9 2) 5)) (3

(38 (4 7 1) 5)) …). Finally the result of the reduce-sets function call can be

bound to the *compressed-sets* global variable (line 326).

6.2.14. Labeling Chords Programmatically

With the compressed chord information, generated via the segmentation scheme,

the composition’s harmonic framework can be labeled with outcomes from basic set

theory operations (i.e.: loading the Set-Theory-Function.lisp library from Chapter

5.3). Two functions are needed for this process a subroutine that analyzes each

individual measure, and labels the measure appropriately, and a function that iterates

though all the selected measures.

328. ; -- load set theory functions -- ;
329. (library-loader "" "Example-5-2->5-25-Set-Theory-Functions.lisp")
330.
331. (defun label-chord (compressed-sets)
332. "Labeling chords."
333. (let ((set (cadadr compressed-sets)))
334. (with-output-to-string (stream)
335. (terpri stream)
336. (princ "Measure: " stream)
337. (princ (car compressed-sets) stream)
338. (fresh-line stream)
339. (princ "Pedal: " stream)
340. (princ (caadr compressed-sets) stream)
341. (princ " - PC " stream)
342. (princ (mod (caadr compressed-sets) 12) stream)
343. (fresh-line stream)
344. (princ "Set Input: " stream)
345. (princ set stream)
346. (fresh-line stream)
347. (princ "Normal Form: " stream)

50 Another function could be build to translate the outcome to the previously described human
readable format of ({38} {5, 9, 2} {Tx-5}), but the essence is the same.

 257

348. (princ (normal-form set) stream)
349. (fresh-line stream)
350. (princ "T-Normal Form: " stream)
351. (princ (t-normal-form (normal-form set)) stream)
352. (fresh-line stream)
353. (princ "Prime Form: " stream)
354. (princ (prime-form set) stream)
355. (fresh-line stream)
356. (princ "Interval Vector: " stream)
357. (princ (interval-vector set) stream)
358. (fresh-line stream))))
359.
360. (defun label-all-chords (sets)
361. "Prints out all measures with labeled chords."
362. (loop for i from 0 below (length sets)
363. do (princ (label-chord (nth i sets)))))
364.
365. ; (label-all-chords *compressed-sets*)
366. ; =>
367. #|
368. Measure: 1
369. Pedal: 38 - PC 2
370. Set Input: (5 9 2)
371. Normal Form: (2 5 9)
372. T-Normal Form: (0 3 7)
373. Prime Form: (0 3 7)
374. Interval Vector: (0 0 1 1 1 0)
375. ...
376. Measure: 66
377. Pedal: 38 - PC 2
378. Set Input: (5 9 2)
379. Normal Form: (2 5 9)
380. T-Normal Form: (0 3 7)
381. Prime Form: (0 3 7)
382. Interval Vector: (0 0 1 1 1 0)
383. |#
384.

Example 6-15: Labeling all chords in FDL-1 with set theory functions.

The set theory library needs to be loaded via the library-loader function in line

329, since it has previously not been loaded. The label-chord subroutine (lines 331-

358) uses compressed-sets as its argument and formats the set theory evaluations

that are generated by using the chord core as the PCC argument. The let function (line

333) is used to assign a local variable set with the core of a compressed set –

(cadadr compressed-sets). The set local variable becomes the argument for all

ensuing set theory operations. The with-output-to-string macro (function) “creates a

 258

character output stream, performs a series of operations that may send results to this

stream, and then closes the stream.”51 The name of the output stream is supplied as

an argument to the macro (line 334). The macro is used to avoid a nil return value for

each measure that is printed to the screen.

The terpri function creates a newline within the stream being created (line

335). Lines 336 and 337 create a key/value pair for the stream, where the former shows

a princ function followed by a string ("Measure:") and ensued by the name of the

stream it is to be written to as the key, and the latter shows the princ function

supplied with a car function that takes the first item of the compressed-sets list and

writes it to the stream as the value. Each to be written key/value pair is followed by the

fresh-line function that writes a newline to the stream, “only if the output-stream is

not already at the start of a line” (lines 338, 343, 346, 349, 352, 355, and 358).52 Lines

339-342 show a key/value pair that prints the pedal; lines 344 and 345 show a

key/value pair that prints the set that was input as is; lines 347 and 348 show a

key/value pair that prints the normal form, derived from a call to the normal-form

function, supplied with a set argument, in the set theory functions library that was

previously loaded; lines 350 and 351 show a key/value pair that prints the t-normal form,

drawn from a call to the t-normal-form function with a set given as an argument;

lines 353 and 354 display a key/value pair that prints the prime form stemming from a

call to the prime-form function with a set provided as an argument; and lines 356-

51 "Lilypond" http://www.lilypond.org/ (accessed October 31, 2014).

52 Cope, Hidden Structure: Music Analysis Using Computers, 60.

 259

357 indicate a key/value pair that writes an interval vector to the stream by making a

call to the interval-vector function with a set argument supplied.

The label-chord subroutine labels one chord. The label-all-chords

requires compressed-sets as its argument, and dutifully loops through all selected

measures. The for loop macro determines the length of the sets collection (how

many measures) and prints for each count i the outcome of call a to the label-chord

subroutine. Providing the label-all-chords with the *compressed-sets* global

variable as an argument results in a list shown in lines 368-382 (abbreviated – the

completed list is shown in Example 6-16).

Measure: 1
Pedal: 38 - PC 2
Set Input: (5 9 2)
Normal Form: (2 5 9)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 2
Pedal: 38 - PC 2
Set Input: (5 9 2)
Normal Form: (2 5 9)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 3
Pedal: 38 - PC 2
Set Input: (4 7 1)
Normal Form: (1 4 7)
T-Normal Form: (0 3 6)
Prime Form: (0 3 6)
Interval Vector: (0 0 2 0 0 1)

Measure: 4
Pedal: 38 - PC 2
Set Input: (4 7 1)
Normal Form: (1 4 7)
T-Normal Form: (0 3 6)
Prime Form: (0 3 6)
Interval Vector: (0 0 2 0 0 1)

Measure: 5
Pedal: 38 - PC 2
Set Input: (5 9 2)

 260

Normal Form: (2 5 9)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 6
Pedal: 38 - PC 2
Set Input: (5 9 2)
Normal Form: (2 5 9)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 7
Pedal: 38 - PC 2
Set Input: (7 10 4)
Normal Form: (4 7 10)
T-Normal Form: (0 3 6)
Prime Form: (0 3 6)
Interval Vector: (0 0 2 0 0 1)

Measure: 8
Pedal: 38 - PC 2
Set Input: (7 10 4)
Normal Form: (4 7 10)
T-Normal Form: (0 3 6)
Prime Form: (0 3 6)
Interval Vector: (0 0 2 0 0 1)

Measure: 9
Pedal: 38 - PC 2
Set Input: (5 9 2)
Normal Form: (2 5 9)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 10
Pedal: 38 - PC 2
Set Input: (5 9 2)
Normal Form: (2 5 9)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 11
Pedal: 38 - PC 2
Set Input: (10 2 7)
Normal Form: (7 10 2)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 12
Pedal: 38 - PC 2
Set Input: (10 2 7)
Normal Form: (7 10 2)
T-Normal Form: (0 3 7)

 261

Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 13
Pedal: 38 - PC 2
Set Input: (8 0 5)
Normal Form: (5 8 0)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 14
Pedal: 38 - PC 2
Set Input: (8 0 5)
Normal Form: (5 8 0)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 15
Pedal: 38 - PC 2
Set Input: (4 7 1)
Normal Form: (1 4 7)
T-Normal Form: (0 3 6)
Prime Form: (0 3 6)
Interval Vector: (0 0 2 0 0 1)

Measure: 16
Pedal: 38 - PC 2
Set Input: (4 7 1)
Normal Form: (1 4 7)
T-Normal Form: (0 3 6)
Prime Form: (0 3 6)
Interval Vector: (0 0 2 0 0 1)

Measure: 17
Pedal: 38 - PC 2
Set Input: (5 9 2)
Normal Form: (2 5 9)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 18
Pedal: 38 - PC 2
Set Input: (5 9 2)
Normal Form: (2 5 9)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 19
Pedal: 38 - PC 2
Set Input: (0 4 9)
Normal Form: (9 0 4)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

 262

Measure: 20
Pedal: 38 - PC 2
Set Input: (0 4 9)
Normal Form: (9 0 4)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 21
Pedal: 38 - PC 2
Set Input: (5 8 11 2)
Normal Form: (2 5 8 11)
T-Normal Form: (0 3 6 9)
Prime Form: (0 3 6 9)
Interval Vector: (0 0 4 0 0 2)

Measure: 22
Pedal: 38 - PC 2
Set Input: (5 8 11 2)
Normal Form: (2 5 8 11)
T-Normal Form: (0 3 6 9)
Prime Form: (0 3 6 9)
Interval Vector: (0 0 4 0 0 2)

Measure: 23
Pedal: 38 - PC 2
Set Input: (10 2 7)
Normal Form: (7 10 2)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 24
Pedal: 38 - PC 2
Set Input: (10 2 7)
Normal Form: (7 10 2)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 25
Pedal: 38 - PC 2
Set Input: (9 1 6)
Normal Form: (6 9 1)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 26
Pedal: 38 - PC 2
Set Input: (9 1 6)
Normal Form: (6 9 1)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 27

 263

Pedal: 38 - PC 2
Set Input: (8 0 5)
Normal Form: (5 8 0)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 28
Pedal: 38 - PC 2
Set Input: (8 0 5)
Normal Form: (5 8 0)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 29
Pedal: 38 - PC 2
Set Input: (7 11 4)
Normal Form: (4 7 11)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 30
Pedal: 38 - PC 2
Set Input: (7 11 4)
Normal Form: (4 7 11)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 31
Pedal: 38 - PC 2
Set Input: (7 10 3)
Normal Form: (3 7 10)
T-Normal Form: (0 4 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 32
Pedal: 38 - PC 2
Set Input: (7 10 3)
Normal Form: (3 7 10)
T-Normal Form: (0 4 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 33
Pedal: 38 - PC 2
Set Input: (5 9 2)
Normal Form: (2 5 9)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 34
Pedal: 38 - PC 2
Set Input: (5 9 2)

 264

Normal Form: (2 5 9)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 35
Pedal: 38 - PC 2
Set Input: (4 7 1)
Normal Form: (1 4 7)
T-Normal Form: (0 3 6)
Prime Form: (0 3 6)
Interval Vector: (0 0 2 0 0 1)

Measure: 36
Pedal: 38 - PC 2
Set Input: (4 7 1)
Normal Form: (1 4 7)
T-Normal Form: (0 3 6)
Prime Form: (0 3 6)
Interval Vector: (0 0 2 0 0 1)

Measure: 37
Pedal: 38 - PC 2
Set Input: (5 9 2)
Normal Form: (2 5 9)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 38
Pedal: 38 - PC 2
Set Input: (5 9 2)
Normal Form: (2 5 9)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 39
Pedal: 38 - PC 2
Set Input: (7 10 4)
Normal Form: (4 7 10)
T-Normal Form: (0 3 6)
Prime Form: (0 3 6)
Interval Vector: (0 0 2 0 0 1)

Measure: 40
Pedal: 38 - PC 2
Set Input: (7 10 4)
Normal Form: (4 7 10)
T-Normal Form: (0 3 6)
Prime Form: (0 3 6)
Interval Vector: (0 0 2 0 0 1)

Measure: 41
Pedal: 38 - PC 2
Set Input: (5 9 2)
Normal Form: (2 5 9)
T-Normal Form: (0 3 7)

 265

Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 42
Pedal: 38 - PC 2
Set Input: (5 9 2)
Normal Form: (2 5 9)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 43
Pedal: 38 - PC 2
Set Input: (10 2 7)
Normal Form: (7 10 2)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 44
Pedal: 38 - PC 2
Set Input: (10 2 7)
Normal Form: (7 10 2)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 45
Pedal: 38 - PC 2
Set Input: (9 1 6)
Normal Form: (6 9 1)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 46
Pedal: 38 - PC 2
Set Input: (9 1 6)
Normal Form: (6 9 1)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 47
Pedal: 38 - PC 2
Set Input: (8 0 5)
Normal Form: (5 8 0)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 48
Pedal: 38 - PC 2
Set Input: (8 0 5)
Normal Form: (5 8 0)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

 266

Measure: 49
Pedal: 38 - PC 2
Set Input: (7 11 4)
Normal Form: (4 7 11)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 50
Pedal: 38 - PC 2
Set Input: (7 11 4)
Normal Form: (4 7 11)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 51
Pedal: 38 - PC 2
Set Input: (7 10 3)
Normal Form: (3 7 10)
T-Normal Form: (0 4 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 52
Pedal: 38 - PC 2
Set Input: (7 10 3)
Normal Form: (3 7 10)
T-Normal Form: (0 4 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 53
Pedal: 38 - PC 2
Set Input: (5 9 2)
Normal Form: (2 5 9)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 54
Pedal: 38 - PC 2
Set Input: (5 9 2)
Normal Form: (2 5 9)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 55
Pedal: 38 - PC 2
Set Input: (0 4 9)
Normal Form: (9 0 4)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 56

 267

Pedal: 38 - PC 2
Set Input: (5 8 11 2)
Normal Form: (2 5 8 11)
T-Normal Form: (0 3 6 9)
Prime Form: (0 3 6 9)
Interval Vector: (0 0 4 0 0 2)

Measure: 57
Pedal: 38 - PC 2
Set Input: (10 2 7)
Normal Form: (7 10 2)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 58
Pedal: 38 - PC 2
Set Input: (9 1 6)
Normal Form: (6 9 1)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 59
Pedal: 38 - PC 2
Set Input: (8 0 5)
Normal Form: (5 8 0)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 60
Pedal: 38 - PC 2
Set Input: (7 11 4)
Normal Form: (4 7 11)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 61
Pedal: 38 - PC 2
Set Input: (7 10 3)
Normal Form: (3 7 10)
T-Normal Form: (0 4 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 62
Pedal: 38 - PC 2
Set Input: (7 10 3)
Normal Form: (3 7 10)
T-Normal Form: (0 4 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 63
Pedal: 38 - PC 2
Set Input: (5 9 2)

 268

Normal Form: (2 5 9)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 64
Pedal: 38 - PC 2
Set Input: (5 9 2)
Normal Form: (2 5 9)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 65
Pedal: 38 - PC 2
Set Input: (5 9 2)
Normal Form: (2 5 9)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 66
Pedal: 38 - PC 2
Set Input: (5 9 2)
Normal Form: (2 5 9)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Example 6-16: Programmatic set theory analysis of FDL-1.

6.2.15. Plotting Vertical Reductions

As can be seen, the understanding of musical set theory principles are

paramount to understanding of how to represent musical data within a computer

program. The next step is to look a bit closer into the voice-leading principles of FDL-1,

but not from the vantage point of applying voice-leading rules set forth from CPP

principles, but its own governing principles. A small voice-leading chart that maps the

voice-leading principles of the entire composition can be accomplished by combining

the measure number with the pedal, and with the input set from the chord succession

listed in Example 6-16 as “Measure,” “Set Input,” and “Pedal.” By exporting these values

 269

as a CSV file, a plot showing the lines (edges) that connect the chord members (nodes)

can be shown in a readable, and compacted modus.

385. ; ----- plot vertical reductions ----- ;
386.
387. (defun adjust-range (set &optional (transposition 0))
388. "Unfolds PCC into octave diplacement if PC is repeated."
389. (if (null (cadr set)) ()
390. (if (null set) ()
391. (append
392. (if (< (car set) (cadr set))
393. (cons
394. (+ (car set) transposition)
395. (adjust-range (cdr set) transposition))
396. (append
397. (list (+ (car set) transposition))
398. (mapcar #'(lambda (x) (+ x 12 transposition)) (cdr set))))))))
399.
400. ; (adjust-range '(2 5 8 11 2))
401. ; => (2 5 8 11 14)
402.
403. (defun compressed-voice-leading (compressed-sets &optional (transposition

0))
404. "Build item for voice-leading chart."
405. (let ((set (cadadr compressed-sets)))
406. (list
407. (car compressed-sets)
408. (adjust-range
409. (cons
410. (mod (caadr compressed-sets) 12)
411. set) transposition))))
412.
413. ; (compressed-voice-leading (nth 18 *compressed-sets*))
414. ; => (19 (2 12 16 21))
415.
416. (defun voice-leading-chart (sets &optional (transposition 0))
417. "Builds a voice-leading chart."
418. (loop for i from 0 below (length sets)
419. collect (compressed-voice-leading (nth i sets) transposition)))
420.
421. ; (voice-leading-chart *compressed-sets*)
422. ; => ((1 (2 5 9 14)) (2 (2 5 9 14)) (3 (2 4 7 13)) ... (62 (2 7 10 15))

(63 (2 5 9 14)) ...)
423.
424. ; ----- Exporting voice-leading data to CSV ----- ;
425.
426. (defun csv-helper (data)
427. "Organizes Data for CSV dump."
428. (if (null data) nil
429. (cons
430. (cons (caar data) (cadar data))
431. (csv-helper (cdr data)))))
432.
433. ; (csv-helper (voice-leading-chart *compressed-sets* 60))
434. ; => ((1 62 65 69 74) (2 62 65 69 74) (3 62 64 67 73) ... (62 62 67 70

75) (63 62 65 69 74) ...)

 270

435.
436. (defun show-vlc (data)
437. "Dumps CSV output to screen."
438. (format t "~%~{~%~{~A~^,~}~}~%" data))
439.
440. ; (show-vlc (csv-helper (voice-leading-chart *compressed-sets* 0)))
441. ; =>
442. #|
443. 1,2,5,9,14
444. 2,2,5,9,14
445. 3,2,4,7,13
446. ...
447. 62,2,7,10,15
448. 63,2,5,9,14
449. ...
450. |#
451.

Example 6-17: Plotting compressed chord data.

In order to export the data that needs to be plotted, five different functions are

needed: (1) the adjust-range function, a subroutine (lines 387-398) that unfolds a

PCC into an octave displacement, if a PC is repeated; (2) the compressed-voice-

leading function, a subroutine (lines 403-411) that builds a chord representation from

the adjust-range subroutine of an individual measure for the voice-leading-

chart function; (3) the voice-leading-chart function (lines 416-419), which builds

a chart via the compressed-voice-leading subroutine by collecting compressed

vertical chord data from all measures; (4) the csv-helper subroutine (lines 426-431)

that re-organizes data built by the voice-leading-chart function to optimize a CSV

data dump; and (5) the show-vlc function (lines 436-438), which displays the CSV

data dump to the screen.

The main purpose of the adjust-range function (lines 387-398) is to make

sure that duplicated PCs are stacked into another register, e.g.: in PCC {2, 5, 9, 2} the

last pitch belongs to PC 2, but occurs somewhere else in the register, and here is part of

 271

the top voice outer shell. Therefore, 12 will be added to the last PC (2) in the PCC so

that PCC {2, 5, 9, 2} becomes {2, 5, 9, 14}. There is no need to transpose all of the PCC

data to MIDI PC 60, in order to view an appropriate chart, but the capability has been

provided to the function. The adjust-range function takes two arguments, (1) a PCC

or set, and (2) an optional Tx level, with a default of T0. The recursion is initiated in line

389, by checking if all members of the PCC have been considered, and if they have, the

recursion is terminated. The next condition checked, is whether the recursion is at the

end of the PCC named set, terminates if so, it appends the list with the outcome of

another condition (lines 391-392). The conditional if statement (line 392) compares the

first number (car) of the PCC (set), with the second number of the PCC (set).

When the first set (car set) member is smaller than the second set (cdar

set) member, the first (car) member of the set will be added to a transposition

number – if one exists (if no transposition number exists the T0 operation is performed),

and then will be added to the remaining set members by calling the adjust-range

function from the top. However, if the condition is not met (lines 396-398), then a list

containing the first (car) member of the set will be appended to the outcome of a

mapcar function, whose argument is provided by a lambda function that adds 12 to the

member of the set (and a Tx if so indicated, otherwise T0). The adjust-range

subroutine can be tested by providing the PCC {2, 5, 8, 11, 2}, and the outcome would

be {2, 5, 8, 11, 14}, as shown in lines 400-401 respectively.

The compressed-voice-leading function (lines 403-411) creates the data

for one measure of compressed musical data. The function takes two arguments, (1) a

 272

compressed set member, and (2) an optional transposition, if no Tx is provided, T0

is assigned as a default. The let function (line 405) assigns specific data from the

compressed-sets argument (namely the measure number, the root, and the chord

core) to the local variable set. From there, a new list is built (lines 406-411) by using

the measure number (car compressed-sets) and assigning it as a key value to a

list that combines the root (mod (caadr compressed-sets) 12) – mod 12 since

in the compression scheme the root is specified by its actual MIDI pitch designation in

order to be able to properly decompress the compressed chord, and the core of a chord

(set). Before the list is added as a value to the measure number key, the list is

passed (line 408) to the adjust-range function (see above). The compressed-

voice-leading subroutine can be tested (line 413) by passing a single measure from

the *compressed-sets* global variable – nth 18 selects m. 19 – as an argument.

The result (line 414) would be (19 (2 12 16 21)).

The voice-leading-chart function (lines 416-419) assembles the individual

data parts built with the compressed-voice-leading function. Two arguments need

to be provided to the function, (1) the compressed-sets, and (2) an optional

transposition, which defaults to T0 if none is provided. A loop macro is initiated

and counts with the iterator i through the length of the provided sets and collects

all 66 outcomes from the call to the compressed-voice-leading function into one

big list. Providing the *compressed-sets* global variable to the voice-leading-

chart function (line 421) results in a list (truncated) shown in line 422.

 273

Figure 6-13: Compressed chord voice-leading graph.

In order to represent the data generated as CSV data, the measure numbers

should be placed as the first member of the list containing the PCs. The task is handled

by the csv-helper subroutine function (lines 426-431), which takes the data

generated by a call to the (voice-leading-chart *compressed-sets*) function

as an argument, and builds a list by cons-ing the measure number into the PCs list

through a recursion that goes through the entire list, and is halted when the recursion

has come to the end of the list through an if condition. A test call to the csv-helper

subroutine with the outcome of a call to the voice-leading-chart function (supplied

with the *compressed-sets* global variable, and MIDI pitch 60) as an argument is

shown in lines 433-434. The following show-vlc function (lines 436-438) dumps all the

data received as a formatted CSV string, via the format function, to the screen (lines

443-449) in the REPL via the (show-vlc (csv-helper (voice-leading-chart

compressed-sets))) call (line 440). The generated CSV data can then be

exported to a CSV file, or a graphing utility. Once the data has been exported to a

graphing utility a compressed chord voice-leading graph is generated that provides a

PC
s

(+
 1

2)

0
2
4
6
8

10
12
14
16
18
20
22

Measures

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65

 274

general overview of voice-leading procedures in FDL-1 (Figure 6-13).

Even though Figure 6-13 provides a general overview on a macro scale of the

voice-leading procedures in FDL-1 from a PCC to PCC perspective, not all voice-leading

data has been accounted for. For example, in m. 21 a red line appears seemingly out of

nowhere, as if somehow some type of quantum physics principle was at play. However

fascinating the idea may be, this is not the case, since the red line actually belongs to

an entire strand of voice-leading procedures. For a ML algorithm to appropriately work,

all strands of voice-leading procedures have to be considered. Henceforth a need for

another reduction scheme emerges that accounts for all data strands, namely horizontal

reduction.

6.2.16. Horizontal Reduction and Voice-Leading Strands

As previous explained, the horizontal reduction creates a map of all possible

voice-leading procedures. The map consists of non-duplicated strands. The strands can

be generated with the help of one of the previously set variables, the *pitches-

music-set* (see Example 6-6 for its definition). There are two different outputs of the

pitches-music-set can have, (1) populated with PCs (Example 6-18) –

displaying PCs as they appear in each measure ordered from bottom to top without any

rhythmic, or durational values, and (2) populated with MIDI pitches (Example 6-19) –

displaying MIDI pitches in each measure from bottom to top.

((1 (2 5 9 2 5 9 2 5 9 2 5 9 2 5 9 2))
(2 (2 5 9 2 5 9 2 5 9 2 5 9 2 5 9 2))
(3 (2 4 7 1 4 7 1 4 7 1 4 7 1 4 7 1))…)

Example 6-18: PC content of *pitches-music-set*.

 275

((1 (38 41 45 50 53 57 62 65 69 74 77 81 86 89 93 98))
(2 (38 41 45 50 53 57 62 65 69 74 77 81 86 89 93 98))
(3 (38 40 43 49 52 55 61 64 67 73 76 79 85 88 91 97))…)

Example 6-19: MIDI pitch content of *pitches-music-set*.

Again, the *pitches-music-set* list is divided into a sub-list for each

measure that contains a key, the measure number, and the value, a list of PCs, or MIDI

pitches. The strands can be generated by taking the first item from a measures PCs

value list, and adding it the next measures first item in the PCs value list, until the last

measure is reached. As a result, the strand generated will contain at least 66 PCs.

452. ; ----- horizontal reduction ----- ;
453.
454. (defun create-strand (arp &optional (counter 0))
455. "Convert arpeggio member into melody."
456. (if (null arp) nil
457. (cons
458. (nth counter (car (mapcar #'cadr arp)))
459. (create-strand (cdr arp) counter))))
460.
461. ; (create-strand *pitches-music-set* 0)
462. ; bottom strand
463. ; => (2 2 2 2 2 ... 2)
464.
465. ; (create-strand *pitches-music-set* 1)
466. ; second note of arpeggio in strand
467. ; => (5 5 4 4 ... 5 5)
468.
469. ; (length (create-strand *pitches-music-set* 1))
470. ; number of notes in strand = measures
471. ; => 66
472.
473. ; (length (cadar *pitches-music-set*))
474. ; number of strands
475. ; => 16
476.
477. (defun create-strands (arp)
478. "Build all possible lines."
479. (loop for i from 0 below (length (car (mapcar #'cadr arp)))
480. collect (create-strand arp i)))
481.
482. ; (create-strands *pitches-music-set*)
483. ; list of 16 strands
484. ; => ((2 2 2 2 ...) (5 5 4 4 ...) ...)
485.
486. ; -- assign strands list to a variable -- ;
487. (setf *strands* (mapcar #'butlast (create-strands *pitches-music-set*)))
488. ; (length *strands*)
489. ; => 16

 276

490.

Example 6-20: Creating voice-leading strands.

In lines 454-459 a singular strand is created with the create-strand

subroutine function, which takes an arpeggio, and an optional counter as its

arguments. The function is a recursion and the recursion is terminated when the list of

arpeggios has reached its end (line 456). Otherwise, a list is built by taking the nth

value in the PCs value list, and adding it to next first (car) item in the next value list,

which is achieved by passing the second (cadr) item to a mapcar function. The

process is repeated by calling the create-strand function from the top with the

remaining arpeggio values, and an nth count. Testing the create-strand function is

accomplished by providing the global variable *pitches-music-set*, and the

number 0 – the first strand, i.e. the series of pedal Ds – as arguments (line 61). The

abbreviated result is shown in line 463. The results of another test case (line 465) are

displayed in line 466.

Since each strand consists of a considerable amount of numbers it becomes

difficult to discern if all members of a strand have been accounted for. However, since

there are 66 mm. in FDL-1, there should be 66 members contained in each strand.

Wrapping the create-strand function (with *pitches-music-set* and 1 provided

as arguments) inside a length function (line 469) as an argument puts any doubt to

rest, as the result is 66 (line 471). Further, it also needs to be determined how many

strands there should be. By providing the result of a cadar function with the

pitches-music-set argument to the length function as an argument (line 473),

it can be determined how many strands there should be, namely 16 (line 475).

 277

The create-strands function utilizes the create-strand subroutine and

takes an arpeggio as its argument (lines 477-480). The create-strand function is

placed into a loop macro that determines the length of the chord/arpeggios list

(*pitches-music-set*), and then counts through each value possible (in this case

0-65, indicated by the below key term) iteration (i), and collects the result of the

iterations (i) into a list. Effectively, the process creates a list of 16 strands that contain

66 PCs each. The create-strands function is called with the *pitches-music-

set* global variable as argument (line 482), and the (truncated) results are shown in

line 484 and Example 6-21. With the create-strands function properly working, the

results of the previously described function call – wrapped into a mapcar function that

displays each strand, except for the last member (#'butlast), since a nil value,

contained in some of the strands, may cause problem later on – can be bound to the

strands global variable (line 487).

((2
2 2) (5 5 4 4 5 5 7 7 5 5
10 10 8 8 4 4 5 5 0 0 11 11 10 10 9 9 8 8 7 7 7 7 5 5 4 4 5 5 7 7 5 5 10 10 9
9 8 8 7 7 7 7 5 5 0 11 10 9 8 7 7 7 5 5 5 5) (9 9 7 7 9 9 10 10 9 9 2 2 0 0 7
7 9 9 4 4 2 2 2 2 1 1 0 0 11 11 10 10 9 9 7 7 9 9 10 10 9 9 2 2 1 1 0 0 11 11
10 10 9 9 4 2 2 1 0 11 10 10 9 9 9 9) (2 2 1 1 2 2 4 4 2 2 7 7 5 5 1 1 2 2 9
9 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 2 2 4 4 2 2 7 7 6 6 5 5 4 4 3 3 2 2 9 8 7 6
5 4 3 3 2 2 2 2)…(2 2 1 1 2 2 4 4 2 2 7 7 5 5 1 1 2 2 9 9 2 2 7 7 6 6 5 5 4 4
3 3 2 2 1 1 2 2 4 4 2 2 7 7 6 6 5 5 4 4 3 3 2 2 9 2 7 6 5 4 3 3 2 2 2 NIL))

Example 6-21: Strands via the create-strands function.53

491. (defun reduce-strands (strands)
492. "Removes duplicate strands from the strands list."
493. (remove-duplicates (copy-seq strands) :test #'equal))
494.
495. ; -- select only unique strands -- ;
496. (setf *reduced-strands* (reduce-strands *strands*))
497. ; (length *reduced-strands*)

53 The last strand in Example 6-21 contains a NIL value, since the strand already ends before the
last measure.

 278

498. ; => 8
499.

Example 6-22: Generating unique strands.

Not all of the 16 produced strands are unique and therefore the strands

themselves can be further reduced to unique strands. The reduce-strands function

handles the task (line 491). The strands argument is required. The strands are

passed to the copy-seq function first (line 492) in order to avoid any destructive

behavior of the strands list. The result of the procedure becomes the argument of the

remove-duplicates function, which with the :test #’equal conditionals checks

whether any strand within the list is equal to another strand in the strands list. Line

496 shows how the results of the reduce-strands function supplied with the

strands global variable as argument are bound to the *reduced-strands* global

variable. When the *reduced-strands* are supplied as an argument to the length

function the result is 8, meaning that 8 of the 16 original strands are unique (line 497-

498).

With the newly created *reduced-strands*, which carry enough useful

information by themselves, a new vertical chord scheme can be created. Each new

vertical chord scheme will consist of eight members in a PCC. Two functions are

required for this process, (1) the build-reduced-chord subroutine that builds a

singular chord, and (2) the build-reduced-chords function that uses the build-

reduced-chord function to assemble the chord succession for the entire composition.

500. (defun build-reduced-chord (reduced-line &optional (counter 0))
501. "Re-assemble the smallest possible reduced chords."
502. (if (null reduced-line) nil
503. (cons
504. (nth counter (car reduced-line))

 279

505. (build-reduced-chord (cdr reduced-line) counter))))
506.
507. ; (build-reduced-chord *reduced-strands* 0)
508. ; => (2 2 5 9 2 5 9 2)
509.
510. (defun build-reduced-chords (lines m-count)
511. "Create a series of reduced chords, according to measure numbers."
512. (loop for i from 0 below (- m-count 1)
513. collect (cons (+ i 1) (list (build-reduced-chord lines i)))))
514.
515. ; (build-reduced-chords *reduced-strands* *measure-count*)
516. ; => ((1 (2 2 5 9 2 5 9 2)) ... (65 (2 2 5 9 2 5 9 2)))
517. (setf *pccs-from-strands* (build-reduced-chords *reduced-strands*

measure-count))
518.
519. ; building a usable CSV list
520. ; (show-vlc (csv-helper *pccs-from-strands*))
521.

Example 6-23: Re-assembling chord succession from vertical reduction.

In lines 500-505 the build-reduced-chord function creates a singular vertical

chord from the passed-in reduced-line argument. The optional counter argument,

set to 0 by default, keeps track of which measure number is being assembled within the

forthcoming build-reduced-chords function. A recursion is initiated with line 502.

The recursion assembles a list by taking the nth value of the first item (car) of the

reduced-line list, and adds it to the remaining items as the argument (cdr

reduced-line), along with the counter, for a call to the top of the build-

reduced-chord function. In lines 507-508 the function call (build-reduced-chord

reduced-strands 0) assembles the PCC {2, 2, 5, 9, 2, 5, 9, 2}.

Subsequently, the build-reduced-chords function (lines 510-513) utilizes the

build-reduced-chord function with the *reduced-strands* (renamed to lines

locally), and the *measure-count* (renamed to m-count locally) as arguments. A

for loop macro is initialized that iterates (i) from 0 below the m-count minus 1

(recall that earlier m. 66 was cut out since it is not part of the voice-leading strands). For

 280

each iteration i, a key/value list is assembled by collecting the current count (i.e.: the

measure number) (+ i 1) as key, and cons-ing a list as the value consisting of the

outcome of the build-reduced-chord function with the lines and the current count

(i) supplied as an argument. The function call in line 515 (build-reduced-chords

reduced-strands *measure-count*) produces the result shown in Example

6-24. In line 517 (Example 6-23) the results of the same function call are bound to the

pccs-from-strands global variable for later use.

((1 (2 2 5 9 2 5 9 2))
 (2 (2 2 5 9 2 5 9 2))
 (3 (2 1 4 7 1 4 7 1))
 (4 (2 1 4 7 1 4 7 1))
 (5 (2 2 5 9 2 5 9 2))
 (6 (2 2 5 9 2 5 9 2))
 (7 (2 4 7 10 4 7 10 4))
 (8 (2 4 7 10 4 7 10 4))
 (9 (2 2 5 9 2 5 9 2))
 (10 (2 2 5 9 2 5 9 2))
 (11 (2 7 10 2 7 10 2 7))
 (12 (2 7 10 2 7 10 2 7))
 (13 (2 5 8 0 5 8 0 5))
 (14 (2 5 8 0 5 8 0 5))
 (15 (2 1 4 7 1 4 7 1))
 (16 (2 1 4 7 1 4 7 1))
 (17 (2 2 5 9 2 5 9 2))
 (18 (2 2 5 9 2 5 9 2))
 (19 (2 9 0 4 9 0 4 9))
 (20 (2 9 0 4 9 0 4 9))
 (21 (2 8 11 2 5 8 11 2))
 (22 (2 8 11 2 5 8 11 2))
 (23 (2 7 10 2 7 10 2 7))
 (24 (2 7 10 2 7 10 2 7))
 …
 (65 (2 2 5 9 2 5 9 2))))

Example 6-24: One-to-one vertical chord reduction.

The list consists of individual PCCs, whose members each have a one-to-one

relationship with a preceding and ensuing PCC member. It follows that PCC {2, 2, 5, 9,

2, 5, 9, 2} in m. 2 moves to PCC {2, 1, 4, 7, 1, 4, 7, 1} in m. 3 via a (0 -1 -1 -2 -1 -1 -2 -1)

transformation. In the case of m. 2 to m. 3 it seems that the PCC could be further

 281

reduced; however between m. 22 an m. 23 the phantom voice has now been eliminated,

clearly illuminating the voice-leading path. Consequently, the function build-

reduced-chords function can be wrapped into the csv-helper function, which then

can be wrapped into the show-vlc function to produce an exportable CSV data format

for a graphics utility (line 520). The function call (show-vlc (csv-helper *pccs-

from-strands*)) produces the following CSV data list:

1,2,2,5,9,2,5,9,2
2,2,2,5,9,2,5,9,2
3,2,1,4,7,1,4,7,1
4,2,1,4,7,1,4,7,1
…
64,2,2,5,9,2,5,9,2
65,2,2,5,9,2,5,9,2

Example 6-25: Abbreviated CSV list of vertical one-to-one chord reduction.

For m. 66, the PCC {2, 2, 5, 2, 9, 5, 9, 2}, which looks exactly like the PCC from

m. 65, can be faithfully appended to the resulting list.

In Figure 6-14, a more detailed reduction emerges that also visualizes deviations

from the more general chord based graph in Figure 6-13, meaning that not just PCC to

PCC movement is shown, but also how individual PCs within the PCCs can move. PC 2

can also move into other directions besides to itself, as the light blue (the pedal), and

green strands show (both start on PC 2 in m. 1).54 However, the green strand that starts

on PC 2, also breaks off into a red strand, and a lighter green strand in m. 21, and in m.

56 (both red, and lighter green strands return to the original green strand in m. 23, and

m. 57 respectively). The yellow voice-leading strand that starts with PC 5 in m. 1, and

54 Note that the green strand only slopes below in Figure 6-14, because most register information

has been removed during the reduction process. In the music the line will be above the pedal on PC 2.
Additionally, since this strand does start at PC 2, it is actually the upper part of the shell of the PCC.

 282

exhibits similar behavior in m. 21 and m. 56, as compared to the green strand, where it

breaks off into a purple strand, which then returns back into the yellow strand in m. 23,

and m. 57 respectively. Furthermore, the orange strand that begins on PC 9 in m. 1,

veers into two possibilities (the second indicated by light blue) in m. 21 and m. 56, and

returns in m. 23, and m. 57 respectively as well.

Figure 6-14: One-to-one chord reduction graph.

Another observation is how the strands are related to each other.55 Aside from

the strand of pedals, seven relatable strands are produced. A pragmatic way of

comparing all the strands to each other is to apply a T0 operation to all existing non-

duplicate strands. The strands->zero recursive function (line 522-527) accomplishes

the mission. The function receives the strands as an argument.

522. (defun strands->zero (strands)
523. "Zero all strands."
524. (if (null strands) nil
525. (cons
526. (mapcar #'(lambda (x) (mod (- x (caar strands)) 12)) (car strands))
527. (strands->zero (cdr strands)))))
528.
529. ; (strands->zero *reduced-strands*)
530. ; => ((0 0 0 0 ...) (0 0 11 11 ...) ...)
531.

55 Arpeggiated strands will always show some type of relationship to one another.

PC
s

(m
od

 1
2

if
>

11
)

0
2
4
6
8

10
12
14
16

Measures

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65

 283

532. ; -- T0 Strands -- ;
533. (setf *zeroed-strands* (strands->zero *reduced-strands*))
534.
535. ; (build-reduced-chords *zeroed-strands* *measure-count*)
536. ; => ((1 (0 0 0 0 0 0 0 0)) (2 (0 ... 0)) (3 (0 11 11 10 11 11 10 11))

...)
537.
538. ; building a usable CSV list
539. ; (show-vlc (csv-helper (build-reduced-chords *zeroed-strands* *measure-

count*)))
540.

Example 6-26: Zeroed strands.

A conditional statement that checks whether any strands are left terminates the

recursion. Then, a new list is assembled via cons by passing the first strand ((car

strands)) to a mapcar function that uses a lambda function to determine what the

first PC of the strand is ((caar strands)), and subtracts all ensuing strand members

by the first PC of the aforementioned strand, which is wrapped into a mod 12 function

to ensure that only positive integers between 0-11 are listed (lines 524-526). The

remaining strands ((cdr strands)) are then passed back to the top of the function,

until no strands remain (line 527). The results of the operations are bound to the

zeroed-strands global variable through the setf function (line 533). The *zeroed-

strands* variable along with *measure-count* variable can be used as parameters for

the build-reduced-chords function, which generates a list of chords ordered by measure

numbers (line 534). The function call (show-vlc (csv-helper (build-reduced-

chords *zeroed-strands* *measure-count*))) in line 539 generates the

necessary CSV data for use by a graphics utility.

1,0,0,0,0,0,0,0,0
2,0,0,0,0,0,0,0,0
3,0,11,11,10,11,11,10,11
4,0,11,11,10,11,11,10,11
…
66,0,0,0,0,0,0,0,0

 284

Example 6-27: CSV formatted zeroed strands.

Figure 6-15 shows the resulting graph. The strands are very closely related to

each other and only deviate, or are transformed (asides from Tx) a few times: (1) mm. 3-

4, (2) mm. 7-8, (3) mm. 15-26, (4) mm. 21-22, (5) mm. 30-33, (6) mm. 35-36, (7) mm.

39-40, (8) mm. 50-52, (9) mm. 56-57, and (10) mm. 60-62.

Figure 6-15: Graphed zeroed strands.

Now that the importance of voice-leading in FDL-1 has been shown, both vertical

and horizontal reductions have been established in a sensible manner, and graphs of

the precise voice-leading procedures have been established, the next step is to map the

underlying voice-leading rules that govern the composition.

6.2.17. Using ML to Establish Rules

Rather than mapping the voice-leading principles manually from the data gained

through the vertical and horizontal reduction schemes, it is also possible to have a

program learn the voice-leading principles by placing them into a “state transition matrix”

as used in a Markov model. The STM is “a matrix of probabilities for moving from one

PC
s

0
2
4
6
8

10
12

Measures

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65

 285

state to” another “in a Markov chain.”56 It follows that for analysis a transition matrix can

be used to hold all the voice-leading principles of a given composition, and as a proof of

concept new compositions can be generated from these rules, by creating different

order Markov chains.57 If the probabilities are removed the matrix simply becomes a

semantic network of rules. If the probabilities are added as edges, between PCCs as

nodes, or between individual PCs as nodes, then semantic network of rules begins to

look very similar to an association network.

12. ;; ----- Declaring Global Variables ----- ;;
13.
14. (defparameter *stm* nil "State Transition Matrix")
15.
16. (defparameter *stm-pccs-strands* nil "STM of PCCs generated from

Strands")
17. (defparameter *stm-pedal-pccs* nil "STM of PCCs and pedals")
18. (defparameter *stm-core-pccs* nil "STM of PCCs without pedals")
19. (defparameter *stm-normal-pccs* nil "STM of PCCs in Normal Form")
20. (defparameter *stm-t-normal-pccs* nil "STM of PCCs in Transposed Normal

Form")
21. (defparameter *stm-prime-pccs* nil "STM of PCCs in Prime Form")
22. (defparameter *stm-pcs* nil "STM of inidividual PCs")
23.
24. (defparameter *semantic-network-pccs-strands* nil "Semantic Network of

PCCs from strands")
25. (defparameter *semantic-network-pedal-pccs* nil "Semantic Network of PCCs

and pedals")
26. (defparameter *semantic-network-core-pccs* nil "Semantic Networks of PCCs

without pedals")
27. (defparameter *semantic-network-normal-pccs* nil "Semantic Network of

PCCs in Normal Form")
28. (defparameter *semantic-network-t-normal-pccs* nil "Semantic Network of

PCCs in Transposed Normal Form")
29. (defparameter *semantic-network-prime-pccs* nil "Semantic Network of PCCs

in Prime Form")
30. (defparameter *semantic-network-strands* nil "Semantic Network of

56 "Macro with-Output-to-String", MIT
http://www.ai.mit.edu/projects/iiip/doc/CommonLISP/HyperSpec/Body/mac_with-output-to-string.html
(accessed October 10, 2014).

57 In this work, only the former will be used. Further, David Cope explains the use of Markov
chains in Hidden Structure, and the following Common Lisp examples are partially based on Cope’s Lisp
examples in Hidden Structure, but have been re-written to follow the functional programming paradigm.
"Function Terpri, Fresh-Line", MIT
http://www.ai.mit.edu/projects/iiip/doc/CommonLISP/HyperSpec/Body/fun_terpricm_fresh-line.html
(accessed October 10, 2014).

 286

inidividual PCs")
31.

Example 6-28: Global variables in Learn-Rules.lisp.

An additional script, or program has to be created named Learn-Rules.lisp.

The script will be used in conjunction with the Analysis-Prototype.lisp, and the

Set-Theory-Functions.lisp scripts.58 The Learn-Rules.lisp script opens by

declaring the global variables that will be used throughout the script (lines 12-30).59 The

variables are declared with the defparameter function, a name surrounded by

earmuffs (*), a nil, or empty value, and a documentation string (“Example String”) that

describes what they are used for.

32. ;; ----- Functions and Variable Assignments ----- ;;
33.
34. ; ----- State Transition Matrix ----- ;
35.
36. (defun rule->stm-helper (first-pc second-pc stm)
37. "Clean rule->stm helper."
38. (cons (list first-pc (list second-pc)) stm))
39.
40. (defun rule->stm (first-pc second-pc)
41. "Adds a rule to *stm*. Dirty."
42. (let ((stm *stm*))
43. (setf *stm* (rule->stm-helper first-pc second-pc stm))))
44.
45. ; (rule->stm '5 '4)
46. ; => ((5 (4)))
47.
48. (defun check->stm-helper (first-pc second-pc stm)
49. "Clean check->stm helper."
50. (substitute
51. (list
52. first-pc
53. (cons
54. second-pc
55. (cadr (assoc first-pc stm :test #'equal))))

58 The Analysis-Prototype.lisp script loads the Set-Theory-Functions.lisp script

automatically. The Learn-Rules.lisp script should be executed after the previous two scripts have
been executed.

59 The first 11 lines contain a “boiler plate,” or a large comment block that features the name of
the script, the author, contact email address, a statement of purpose of the script and what the script
does, and any to do items that may have to be completed.

 287

56. (assoc first-pc stm :test #'equal)
57. stm :test #'equal))
58.
59. (defun check->stm (first-pc second-pc)
60. "Checks if a pc is already in *stm*."
61. (let ((stm *stm*))
62. (setf *stm* (check->stm-helper first-pc second-pc stm))))
63.
64. ; (check->stm '5 '4)
65. ; => ((5 (4 4)))
66.
67. (defun pcs->stm-helper (pcs stm)
68. "Clean pcs->stm helper."
69. (cond ((null pcs) stm)
70. ((assoc (car pcs) stm :test #'equal)
71. (progn
72. (check->stm (car pcs) (cadr pcs))
73. (pcs->stm (cdr pcs))))
74. (t
75. (progn
76. (rule->stm (car pcs) (cadr pcs))
77. (pcs->stm (cdr pcs))))))
78.
79. (defun pcs->stm (pcs)
80. "Places pitches into *stm*. Dirty"
81. (pcs->stm-helper pcs *stm*))
82.
83. ; (pcs->stm *core-pccs*)
84. ; => (((7 10 3) ((5 9 2) (7 10 3) (5 9 2) (7 10 3) (5 9 2) (7 10

3))) ...)
85.
86. ; ----- Analyze Chord Successions ----- ;
87.
88. (defun analyze-voice-leading (pccs)
89. "Clear *stm*, and then create *stm* with chord succession rules and

probabilities."
90. (setf *stm* ())
91. (pcs->stm pccs))
92.
93. ; (analyze-voice-leading *pedal-pccs*)
94. ; => ... ((2 7 11 4) ((2 7 10 3) (2 7 10 3) (2 7 11 4) (2 7 10 3) (2 7 11

4))) ...
95. ; Probabilities
96. ; (2 7 11 4) => (2 7 10 3) -> 0.6
97. ; => (2 7 11 4) -> 0.4
98.

Example 6-29: Analyzing chord successions and voice-leading.

The main function is the analyze-voice-leading function (lines 88-91). The

function uses six subroutines: (1) rule->stm-helper (lines 36-38), a subroutine for

the rule->stm subroutine; (2) rule->stm (lines 40-43), a subroutine, for the pcs-

 288

>stm-helper subroutine; (3) check->stm-helper (lines 48-57), a subroutine for the

check->stm subroutine; (4) check->stm (lines 59-62), a subroutine for the pcs-

>stm-helper subroutine; (5) pcs->stm-helper (lines 67-77), a subroutine for the

pcs->stm function; and (6) the pcs->stm (lines 79-81) subroutine that is utilized

by the previous pcs->stm-helper in a recursive manner.

The rule->stm-helper subroutine is used by the rule->stm subroutine

(lines 40-43) to assign a rule to the stm. The rule->stm-helper (lines 36-38)

subroutine requires three arguments, (1) a first-pc, (2) a second-pc, (3) and the

STM. The function assembles an association list by cons-ing the first-pc with a

list consisting of the second-pc and the remainder of the stm. Calling the rule-

>stm function (line 45-46) with PC 5 and PC 4 as arguments, meaning PC 4 follows PC

5, creates the following stm: ((5 (4))).

The check->stm-helper subroutine is used within the check->stm

subroutine (lines 59-62) to assign a value to the *stm* global variable. The check-

>stm-helper subroutine (lines 48-57) needs three arguments, (1) one PC, (2) a

second PC, and (3) a STM. The values are passed to the built-in substitute function

that can substitute one list (lines 51-55) with another (line 56), its first two arguments,

based on whether or not the conditional :test #’equal is met. The first list (lines

51-55) is built by adding the first-pc as a key to a list that consists of a cons-ed list

made up of the second-pc and the second (cadr) part of a query (assoc) that checks

whether or not the first-pc is equal or not. The second list only consists of whether

or not the first-pc equals that of the key of a list to be substituted (line 56). When

 289

calling the check->stm function with PC 5 and PC 4 as arguments, the stm – which

was ((5 (4))) – checks whether or not PC 4 following PC 5 already existed as a rule

(line 62). PC 4 will be added to the list of pitches that follow PC 5, whether it exists or

not. The side effect of PC 4 being added to the already existing PC 4 would be that the

movement from PC 5 to PC 4 would gain in weight. Therefore, the STM would now read

((5 (4 4))). If the arguments provided to check->stm would be PC 5 and PC 3, then

the resulting STM would read ((5 (4 4 3))), meaning that the movement from PC 5

to PC 4 would be twice as likely as the movement from PC 5 to PC 3.

The pcs->stm-helper subroutine pulls the previously explained subroutines

together into one unified function (lines 67-77). The cond function initiates a recursion

(line 69). If there are no pcs within the stm, the t (true) statement of the cond function

is initiated and a progn function (a trigger that ensures the a block of functions are

processed in the order that they appear in) executes (1) the rule->stm function with

the occurring first-pc and second-pc as arguments, and (2) makes a call to the

pcs->stm function with the remaining list (cdr pcs), which in turn sends these

values back to the top of the pcs->stm-helper function. However, if there are already

pcs in the stm, then a query is made to check whether any of the keys already exist in

the association list, and the progn function executes (1) the check->stm subroutine

with the first-pc and the second-pc as arguments, and (2) the pcs->stm

subroutine with the remaining list of pcs, initiates the pcs->stm-helper function

anew (lines 70-73).

The analyze-voice-leading function takes a series of PCs or PCCs as

 290

arguments (lines 88-91) – here they are just called pccs. The first step is to clear the

stm global variable to ensure that no pre-existing rules exist, since otherwise new

rules would simply be appended to another rules set (line 90). Once the step is

complete, the pcs->stm function is called with the passed in pccs parameter. Example

6-30 shows an example pccs parameter. The parameter in Example 6-30 supplied to

the analyze-voice-leading function would then yield the STM in Example 6-31.60

The pccs parameter is a placeholder for different types of data sets that can be

established and processed with the analyze-voice-leading function.

((0 3 7) (0 3 7) (0 3 6) (0 3 6) (0 3 7) (0 3 7) (0 3 6) (0 3 6) (0 3 7) (0 3
7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 6) (0 3 6) (0 3 7) (0 3 7) (0 3 7) (0
3 7) (0 3 6 9) (0 3 6 9) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3
7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 6) (0 3 6) (0 3 7) (0 3 7) (0
3 6) (0 3 6) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7)
(0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 6 9) (0 3 7) (0
3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7))

Example 6-30: PCCS parameter.

 (
 ((0 3 6 9) ((0 3 7) (0 3 7) (0 3 6 9)))
 ((0 3 6) ((0 3 7) (0 3 6) (0 3 7) (0 3 6) (0 3 7) (0 3 6) (0 3 7) (0 3 6) (0
3 7) (0 3 6)))
 ((0 3 7) (NIL (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3
7) (0 3 7) (0 3 6 9) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7)
(0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 6) (0 3 7) (0 3
6) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0 3 7) (0
3 7) (0 3 7) (0 3 6 9) (0 3 7) (0 3 7) (0 3 7) (0 3 6) (0 3 7) (0 3 7) (0 3
7) (0 3 7) (0 3 7) (0 3 6) (0 3 7) (0 3 6) (0 3 7)))
)

Example 6-31: Chord-succession rules.

6.2.18. Generating Data Sets

Data sets can be generated with the help of existing data, i.e. previously bound

60 Each line that begins with a “((“ shows a new chord that is followed by a set of other chords that

follow the chord learned in the rule set.

 291

global variables in the Analysis-Prototype.lisp script. Therefore, the Analysis-

Prototype.lisp script will be amended.

541. ; ---- Preparing different sets for machine learning ---- ;
542.
543. (defun vertical-chords (sets)
544. "Builds a list with all vertical PCCs."
545. (if (null sets) nil
546. (cons
547. (cons
548. (mod (caadar sets) 12)
549. (car (cdadar sets)))
550. (vertical-chords (cdr sets)))))
551.
552. ; (vertical-chords *compressed-sets*)
553. ; => ((2 5 9 2) (2 5 9 2) (2 4 7 1) ... (2 7 10 3) (2 5 9 2) ...)
554.
555. ; -- assign vertical PCCs including pedals -- ;
556. (setf *pedal-pccs* (vertical-chords *compressed-sets*))
557.
558. (defun vertical-chords-no-pedal (sets)
559. "Builds a list with all vertical PCCs without pedal."
560. (if (null sets) nil
561. (cons
562. (car (cdadar sets))
563. (vertical-chords-no-pedal (cdr sets)))))
564.
565. ; (vertical-chords-no-pedal *compressed-sets*)
566. ; => ((5 9 2) (5 9 2) (4 7 1) ... (7 10 3) (5 9 2) ...)
567.
568. ; -- assign vertical PCCs without pedals -- ;
569. (setf *core-pccs* (vertical-chords-no-pedal *compressed-sets*))
570.
571. (defun vertical-chords-normal-form (sets)
572. "Builds a list with all vertical PCCs without pedal."
573. (if (null sets) nil
574. (cons
575. (normal-form (car (cdadar sets)))
576. (vertical-chords-normal-form (cdr sets)))))
577.
578. ; (vertical-chords-normal-form *compressed-sets*)
579. ; => ((2 5 9) (2 5 9) (1 4 7) ... (3 7 10) (2 5 9) ...)
580.
581. ; -- assign normal-form PCCs -- ;
582. (setf *normal-form-pccs* (vertical-chords-normal-form *compressed-sets*))
583.
584. (defun vertical-chords-t-normal-form (sets)
585. "Builds a list with all vertical PCCs without pedal."
586. (if (null sets) nil
587. (cons
588. (t-normal-form (normal-form (car (cdadar sets))))
589. (vertical-chords-t-normal-form (cdr sets)))))
590.
591. ; (vertical-chords-t-normal-form *compressed-sets*)
592. ; => ((0 3 7) (0 3 7) (0 3 6) ... (0 4 7) (0 3 7) ...)
593.

 292

594. ; -- assign t-normal-form PCCs -- ;
595. (setf *t-normal-form-pccs* (vertical-chords-t-normal-form *compressed-

sets*))
596.
597. (defun vertical-chords-prime-form (sets)
598. "Builds a list with all vertical PCCs without pedal."
599. (if (null sets) nil
600. (cons
601. (prime-form (car (cdadar sets)))
602. (vertical-chords-prime-form (cdr sets)))))
603.
604. ; (vertical-chords-prime-form *compressed-sets*)
605. ; => ((0 3 7) (0 3 7) (0 3 6) ... (0 3 7) (0 3 7) ...)
606.
607. ; -- assign prime-form PCCs -- ;
608. (setf *prime-form-pccs* (vertical-chords-prime-form *compressed-sets*))
609.

Example 6-32: Creating data sets in order to generate voice-leading rules.

To find chord succession rules, the data contained within the *compressed-

sets* global variable (recall section 6.2.12 above) can be re-used. The first data set

simply contains PCCs and is created with the vertical-chords function (lines 543-

550) that requires the (compressed) sets as its argument. A conditional if statement

checks when to stop the recursion (line 545). A list of lists is created in lines 546-549,

the main list being the data set, and the PCCs being the lists within that main list. One

compressed set is displayed as (1 (38 (5 9 2) 5)). In order to prepend the pedal

of a PCC to the PCC the MIDI pitch 38, which is selected from the compressed set via

the caadar function, needs to be modified with a mod 12 operation and prepended to

the PCC {5, 9, 2} – reached through the cdadar function nested within a car function

(lines 548-549). The remaining compressed sets are then passed back to the top of

the vertical-chords function. A test call to the vertical-chords function with the

compressed-sets global variable supplied as an argument is shown in lines 552-

553, and in line 556 the same function call with the same argument is bound to the

 293

pedal-pccs global variable. The vertical-chords-no-pedal function requires

the compressed sets as argument as well (lines 558-563). A recursion is initiated with

a conditional if statement in line 560. Subsequently, a list is assembled by selecting the

core of a compressed set, e.g.: {5, 9, 2} (line 562), via a nested cdadar function within

a car function, and the remaining, cdr, compressed sets are passed back to the

beginning of the recursion, or the top of the vertical-chords-no-pedal function as

an argument (line 563). The outcome of a call to the vertical-chords-no-pedal

function with the *compressed-sets* global variable supplied as an argument is

bound to the *core-pccs* global variable in line 569. All following functions will utilize

the core of the compressed sets, and the core will be assembled via the same cdadar

function that is nested within the car function.

The vertical-chords-normal-form function (lines 571-576) takes

compressed-sets as its argument in the form of the sets local variable. A

recursion is initialized, by checking whether all sets have been processed, if they have

the recursion ends, but if not, a new recursion begins (line 573). Taking the first

compressed set, or core – as previously described, and passing it to the normal-form

function (from the Set-Theory-Functions.lisp script) as an argument, assembles

a new list. A call to the vertical-chords-normal-form function passes the

remaining PCCs back to the top of the recursion (line 576). A (vertical-chords-

normal-form *compressed-sets*) function call is bound to the *normal-form-

pccs* global variable in line 582 (Example 6-33).

((2 5 9) (2 5 9) (1 4 7) (1 4 7) (2 5 9) (2 5 9) (4 7 10) (4 7 10) (2 5 9) (2
5 9) (7 10 2) (7 10 2) (5 8 0) (5 8 0) (1 4 7) (1 4 7) (2 5 9) (2 5 9) (9 0
4) (9 0 4) (2 5 8 11) (2 5 8 11) (7 10 2) (7 10 2) (6 9 1) (6 9 1) (5 8 0) (5

 294

8 0) (4 7 11) (4 7 11) (3 7 10) (3 7 10) (2 5 9) (2 5 9) (1 4 7) (1 4 7) (2 5
9) (2 5 9) (4 7 10) (4 7 10) (2 5 9) (2 5 9) (7 10 2) (7 10 2) (6 9 1) (6 9
1) (5 8 0) (5 8 0) (4 7 11) (4 7 11) (3 7 10) (3 7 10) (2 5 9) (2 5 9) (9 0
4) (2 5 8 11) (7 10 2) (6 9 1) (5 8 0) (4 7 11) (3 7 10) (3 7 10) (2 5 9) (2
5 9) (2 5 9) (2 5 9))

Example 6-33: Normal form PCCs data set of FDL-1.

The subsequent vertical-chords-t-normal-form (lines 583-588) function

operates exactly like the previous vertical-chord-normal-form function, except

that all PCCs are assembled into a list of t-normal form chords ((vertical-chords-

t-normal-form *compressed-sets*)), and assigned to the *t-normal-form-

pccs* global variable (line 595). Last, the vertical-chords-prime-form (lines

596-601) function operates exactly as the previous two functions except that the core

PCCs are passed to the prime-form function as an argument (line 601). The result of

a call to that function binds to the *prime-form-pccs* global variable (line 608). With

these operation five data sets have been created – (1) *pedal-pccs*, (2) *core-

pccs*, (3) *normal-form-pccs*, (4) *t-normal-form-pccs*, and (5) *prime-

form-pccs* – that now can be integrated into the Learn-Rules.lisp script.

6.2.19. ML Data Sets

The five data sets from the previous section (6.2.17), along with the data set from

Example 6-24, are used as parameters, or as pccs (Example 6-30), to the analyze-

voice-leading function from section 6.2.16 in Example 6-29. Next, the outcomes of

the function call with six different data sets are bound to six global variables in the

Learn-Rules.lisp script, as shown in Example 6-34. In line 98 the *stm-pccs-

strands* variable is bound to the outcome of a call to the analyze-voice-leading

 295

function. The function is supplied with the outcome of a mapcar and #'cadr functions

with the *pccs-from-strands* variable (the data set contained PCCs as values,

along with measure numbers as keys, here the measure numbers are filtered out with

the mapcar operation). Line 94 shows a truncated result, where as PCC {2, 3, 7, 10, 3,

7, 10, 3} is always followed by either PCC {2, 2, 5, 9, 2, 5, 9, 2} or PCC {2, 3, 7, 10, 3, 7,

10, 3}, three times each, out of six successions. Therefore, the probability that PCC {2,

3, 7, 10, 3, 7, 10, 3} is followed by PCC {2, 2, 5, 9, 2, 5, 9, 2} is 50%, and the probability

that it is followed by PCC {2, 3, 7, 10, 3, 7, 10, 3} is 50% as well (lines 95-97).

Assigning the *pedal-pccs* variable to the analyze-voice-leading

function (line 100) results in a STM shown in line 101. The abbreviated STM only shows

the first PCC of the series of PCCs contained within the *pedal-pccs* variable. PCC {2,

7, 10, 3} can either move to PCC {2, 5, 9, 2}, or PCC {2, 7, 10, 3}, i.e. itself. Overall,

PCC {2, 7, 10, 3} moves to PCC {2, 5, 9, 2} three times, and to itself three times. With

knowing how many times one PCC succeeds to another it becomes possible to assign

probabilities (lines 93-95), meaning that a movement to PCC {2, 7, 10, 3} occurs 3 out of

6 times, thus with a p of 0.5, whereas the motion to itself, or stasis, occurs 3 out of 6

times, thus with a p of 0.5.

93. ; (analyze-voice-leading (mapcar #'cadr *pccs-from-strands*))
94. ; => (((2 3 7 10 3 7 10 3) ((2 2 5 9 2 5 9 2) (2 3 7 10 3 7 10 3) (2 2 5

9 2 5 9 2) (2 3 7 10 3 7 10 3) (2 2 5 9 2 5 9 2) (2 3 7 10 3 7 10
3))) ...)

95. ; Probabilities
96. ; (2 3 7 10 3 7 10 3) => (2 2 5 9 2 5 9 2) -> 0.5
97. ; => (2 3 7 10 3 7 10 3) -> 0.5
98. (setf *stm-pccs-strands* (analyze-voice-leading (mapcar #'cadr *pccs-

from-strands*)))
99.
100. ; (analyze-voice-leading *pedal-pccs*)
101. ; => (((2 7 10 3) ((2 5 9 2) (2 7 10 3) (2 5 9 2) (2 7 10 3) (2 5 9 2) (2

7 10 3))) ...)
102. ; Probabilities

 296

103. ; (2 7 10 3) => (2 5 9 2) -> 0.5
104. ; => (2 7 10 2) -> 0.5
105. (setf *stm-pedal-pccs* (analyze-voice-leading *pedal-pccs*))
106.
107. ; (analyze-voice-leading *core-pccs*)
108. ; => (((7 10 3) ((5 9 2) (7 10 3) (5 9 2) (7 10 3) (5 9 2) (7 10

3))) ...)
109. ; Probabilities
110. ; (7 10 3) => (5 9 2) -> 0.5
111. ; => (7 10 3) -> 0.5
112. (setf *stm-core-pccs* (analyze-voice-leading *core-pccs*))
113.
114. ; (analyze-voice-leading *normal-form-pccs*)
115. ; => ... ((9 0 4) ((2 5 8 11) (2 5 8 11) (9 0 4))) ...
116. ; Probabilities
117. ; (9 0 4) => (2 5 8 11) -> 0.66
118. ; => (9 0 4) -> 0.33
119. (setf *stm-normal-pccs* (analyze-voice-leading *normal-form-pccs*))
120.
121. ; (analyze-voice-leading *t-normal-form-pccs*)
122. ; => ... ((2 5 9) (NIL (2 5 9) (2 5 9) (2 5 9) (9 0 4) (2 5 9) (7 10 2)

(2 5 9) (4 7 10) (2 5 9) (1 4 7) (2 5 9) (9 0 4) (2 5 9) (7 10 2) (2 5 9)
(4 7 10) (2 5 9) (1 4 7) (2 5 9))))

123. ; Probabilities
124. ; (2 5 9) => NIL -> 0.05
125. ; => (2 5 9) -> 0.55
126. ; => (9 0 4) -> 0.10
127. ; => (7 10 2) -> 0.10
128. ; => (4 7 10) -> 0.10
129. ; => (1 4 7) -> 0.10
130. (setf *stm-t-normal-pccs* (analyze-voice-leading *t-normal-form-pccs*))
131.
132. ; (analyze-voice-leading *prime-form-pccs*)
133. ; => (((0 3 6 9) ((0 3 7) (0 3 7) (0 3 6 9))) ...)
134. ; Probabilities
135. ; (0 3 6 9) => (0 3 7) -> 0.66
136. ; => (0 3 6 9) -> 0.33
137. (setf *stm-prime-pccs* (analyze-voice-leading *prime-form-pccs*))
138.

Example 6-34: Building STMs from chord successions.

In line 105 the outcome of a call to (analyze-voice-leading *pedal-

pccs*) is bound to the *stm-pedal-pccs* global variable. Lines 107-111 show the

same test procedure described, and the outcome of a call to (analyze-voice-

leading *core-pccs*) is bound to the *stm-core-pccs* global variable in line

112. Lines 114-119, lines 121-130, and lines 132-137 show the same procedure, but

with the *stm-normal-pccs*, the *stm-t-normal-pccs*, and the *stm-prime-

 297

pccs* global variables being bound respectively. All generated data contains

probabilities alongside learned chord succession rules. However, not always is it

necessary to show the chord succession rules with probabilities, especially if the chord

succession rules are to be graphed as semantic networks.

139. ; ----- Converting STMs to Semantic Networks ----- ;
140.
141. (defun chord-voice-leading (rules)
142. "Chord succession rules without probabilities."
143. (if (null rules) nil
144. (cons
145. (list
146. (caar rules)
147. (remove-duplicates (cadar rules) :test #'equalp))
148. (chord-voice-leading (cdr rules)))))
149.
150. ; - Assign Chord Succession Rules to Semantic Networks - ;
151.
152. ; (chord-voice-leading *stm-pccs-strands*)
153. ; => (((2 3 7 10 3 7 10 3) ((2 2 5 9 2 5 9 2) (2 3 7 10 3 7 10 3))) ...)
154. (setf *semantic-network-pccs-strands* (chord-voice-leading *stm-pccs-

strands*))
155.
156. ; (chord-voice-leading *stm-pedal-pccs*)
157. ; => (((2 7 10 3) ((2 5 9 2) (2 7 10 3))) ...)
158. (setf *semantic-network-pedal-pccs* (chord-voice-leading *stm-pedal-

pccs*))
159.
160. ; (chord-voice-leading *stm-core-pccs*)
161. ; => (((7 10 3) ((5 9 2) (7 10 3))) ...)
162. (setf *semantic-network-core-pccs* (chord-voice-leading *stm-core-pccs*))
163.
164. ; (chord-voice-leading *stm-normal-pccs*)
165. ; => (((3 7 10) ((2 5 9) (3 7 10))) ...)
166. (setf *semantic-network-normal-pccs* (chord-voice-leading *stm-normal-

pccs*))
167.
168. ; (chord-voice-leading *stm-t-normal-pccs*)
169. ; => (((0 4 7) ((0 3 7) (0 4 7))) ...)
170. (setf *semantic-network-t-normal-pccs* (chord-voice-leading *stm-t-

normal-pccs*))
171.
172. ; (chord-voice-leading *stm-prime-pccs*)
173. ; =>(((0 3 6 9) ((0 3 7) (0 3 6 9))) ...)
174. (setf *semantic-network-prime-pccs* (chord-voice-leading *stm-prime-

pccs*))
175.

Example 6-35: Converting STMs to semantic networks.

The chord-voice-leading function (lines 141-148) is used to bind the five

 298

generated global STM variables to the five semantic network global variables. The

function uses rules (one of the STMs) as an argument (line 141). A conditional if

statement initiates a recursion that checks whether or not the end of a rules set has

been reached in line 143. The recursion terminates if the end of a rules set has been

reached with nil, and returns a new rules set without probabilities. A list is cons-ed

(line 144-147) by taking the PCC of the beginning of each rules set attached to a

individual PCC, the key, and assigning it the PCCs it can potentially move to, which is

wrapped into a remove-duplicates function that :test-s whether or not any PCCs

moved to have already been included in the set with an #'equalp function. The

remaining rules set is passed back as a parameter to the top of the chord-voice-

leading function (line 148). Testing the (chord-voice-leading *stm-prime-

pccs*) function call (line 172), for example, results in the semantic network shown in

Example 6-36 that demonstrates the rules of how the set classes succeed each other.

(((0 3 6 9) ((0 3 7) (0 3 6 9)))
 ((0 3 6) ((0 3 7) (0 3 6)))
 ((0 3 7) (NIL (0 3 6 9) (0 3 6) (0 3 7))))

Example 6-36: Set class succession rules in FDL-1.

Thus, the rules are: (1) SC (0 3 6 9) => SC (0 3 7) or (0 3 6 9); (2) SC (0 3 6) =>

SC (0 3 7) or (0 3 6); and (3) SC (0 3 7) => NIL – i.e. the SC the piece ends on – or SC

(0 3 6 9), or (0 3 6), or (0 3 7). The results of the operation are assigned to the

semantic-network-prime-pccs global variable (line 174). Lines 152-170 show

test function call scenarios for the remaining five STMs, and show how outcomes of

calls to the chord-voice-leading function are bound to the *semantic-network-

pccs-strands*, the *semantic-network-pedal-pccs*, the *semantic-

 299

network-core-pccs*, the *semantic-network-normal-pccs*, and the

semantic-network-t-normal-pccs global variables correspondingly. Even

though the function is called the chord-voice-leading function, it really just builds sematic

networks of chord succession rules.

Now that different sets of chord succession rules have been collected in forms of

STMs and semantic networks, which represent harmonic background and middleground

information of FDL-1, actual voice-leading principles, by which each individual note in

the composition is guided, can be established by using the strands (Example 6-37)

collected in the Analysis-Prototype.lisp script during the horizontal reduction

process, representing foreground information of FDL-1.

((2
2 2)
(2 2 1 1 2 2 4 4 2 2 7 7 5 5 1 1 2 2 9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 2 2
4 4 2 2 7 7 6 6 5 5 4 4 3 3 2 2 9 8 7 6 5 4 3 3 2 2 2)
(5 5 4 4 5 5 7 7 5 5 10 10 8 8 4 4 5 5 0 0 11 11 10 10 9 9 8 8 7 7 7 7 5 5 4
4 5 5 7 7 5 5 10 10 9 9 8 8 7 7 7 7 5 5 0 11 10 9 8 7 7 7 5 5 5)
(9 9 7 7 9 9 10 10 9 9 2 2 0 0 7 7 9 9 4 4 2 2 2 2 1 1 0 0 11 11 10 10 9 9 7
7 9 9 10 10 9 9 2 2 1 1 0 0 11 11 10 10 9 9 4 2 2 1 0 11 10 10 9 9 9)
(2 2 1 1 2 2 4 4 2 2 7 7 5 5 1 1 2 2 9 9 5 5 7 7 6 6 5 5 4 4 3 3 2 2 1 1 2 2
4 4 2 2 7 7 6 6 5 5 4 4 3 3 2 2 9 5 7 6 5 4 3 3 2 2 2)
(5 5 4 4 5 5 7 7 5 5 10 10 8 8 4 4 5 5 0 0 8 8 10 10 9 9 8 8 7 7 7 7 5 5 4 4
5 5 7 7 5 5 10 10 9 9 8 8 7 7 7 7 5 5 0 8 10 9 8 7 7 7 5 5 5)
(9 9 7 7 9 9 10 10 9 9 2 2 0 0 7 7 9 9 4 4 11 11 2 2 1 1 0 0 11 11 10 10 9 9
7 7 9 9 10 10 9 9 2 2 1 1 0 0 11 11 10 10 9 9 4 11 2 1 0 11 10 10 9 9 9)
(2 2 1 1 2 2 4 4 2 2 7 7 5 5 1 1 2 2 9 9 2 2 7 7 6 6 5 5 4 4 3 3 2 2 1 1 2 2
4 4 2 2 7 7 6 6 5 5 4 4 3 3 2 2 9 2 7 6 5 4 3 3 2 2 2))

Example 6-37: *reduced-strands* from Example 6-22.

The strands in Example 6-37 are horizontal PCCs. The first strand consists of PC

2, and represents the pedal or PCC {2,

2,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2}. The second strand from the bottom up represents the first

note of the arpeggio that is not part of the pedal or PCC {2, 2, 1, 1, 2, 2, 4, 4, 2, 2, 7, 7,

 300

5, 5, 1, 1, 2, 2, 9, 9, 8, 8, 7, 7, 6, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 2, 2, 4, 4, 2, 2, 7, 7, 6, 6, 5,

5, 4, 4, 3, 3, 2, 2, 9, 8, 7, 6, 5, 4, 3, 3, 2, 2, 2}. All remaining strands are built from the

bottom up in the same fashion.

176. ; ----- Analyze PC Voice-leading Rules ----- ;
177.
178. ; *reduced-strands*
179. ; (nth 0 *reduced-strands*)
180. ; (analyze-voice-leading (nth 0 *reduced-strands*))
181.
182. (defun pc-voice-leading-rules (strands)
183. "Assemble list of voice-leading rules from strands."
184. (loop for i from 0 below (length strands)
185. collect (analyze-voice-leading (nth i strands))))
186.
187. ; (pc-voice-leading-rules *reduced-strands*)
188. ; =>
189. #|
190. (((2 (NIL 2

2 2)))
191. ((3 (2 3 2 3 2 3)) (6 (5 5 6 5 6)) (8 (7 7 8)) (9 (8 8 9)) (5 (4 4 5 4 5

1 5)) (7 (6 6 7 6 7 5 7)) (4 (3 3 4 2 4 3 4 2 4)) (1 (2 1 2 1 2 1)) (2
(NIL 2 2 9 2 7 2 4 2 1 2 9 2 7 2 4 2 1 2)))

192. ((9 (8 8 9 8 9)) (11 (10 10 11)) (0 (11 11 0)) (8 (7 7 8 7 8 4 8)) (10
(9 9 10 9 10 8 10)) (7 (5 7 7 5 7 7 7 5 7 5 7 7 7 5 7)) (4 (5 4 5 4 5 4))
(5 (NIL 5 5 0 5 10 5 7 5 4 5 0 5 10 5 7 5 4 5)))

193. ((11 (10 10 11 10 11)) (1 (0 0 1 0 1)) (4 (2 2 4)) (0 (11 11 0 11 0 7
0)) (2 (1 2 1 2 1 2 2 2 0 2)) (10 (9 10 9 10 9 10 9 10 9 10)) (7 (9 7 9 7
9 7)) (9 (NIL 9 9 4 9 2 9 10 9 7 9 4 9 2 9 10 9 7 9)))

194. ((3 (2 3 2 3 2 3)) (6 (5 5 6 5 6)) (9 (5 5 9)) (5 (4 7 4 5 4 5 7 5 1 5))
(7 (6 6 7 6 7 5 7)) (4 (3 3 4 2 4 3 4 2 4)) (1 (2 1 2 1 2 1)) (2 (NIL 2 2
9 2 7 2 4 2 1 2 9 2 7 2 4 2 1 2)))

195. ((9 (8 8 9 8 9)) (0 (8 8 0)) (8 (7 10 7 8 7 8 10 8 4 8)) (10 (9 9 10 9
10 8 10)) (7 (5 7 7 5 7 7 7 5 7 5 7 7 7 5 7)) (4 (5 4 5 4 5 4)) (5 (NIL 5
5 0 5 10 5 7 5 4 5 0 5 10 5 7 5 4 5)))

196. ((1 (0 0 1 0 1)) (11 (10 2 10 11 10 11 2 11)) (4 (11 11 4)) (0 (11 11 0
11 0 7 0)) (2 (1 1 2 1 2 0 2)) (10 (9 10 9 10 9 10 9 10 9 10)) (7 (9 7 9 7
9 7)) (9 (NIL 9 9 4 9 2 9 10 9 7 9 4 9 2 9 10 9 7 9)))

197. ((3 (2 3 2 3 2 3)) (6 (5 5 6 5 6)) (9 (2 2 9)) (5 (4 4 5 4 5 1 5)) (7 (6
6 7 6 7 5 7)) (4 (3 3 4 2 4 3 4 2 4)) (1 (2 1 2 1 2 1)) (2 (NIL 2 2 7 9 2
7 2 4 2 1 2 7 2 9 2 7 2 4 2 1 2))))

198. |#
199.
200. (defun sort-special (data &optional (sortp #'<))
201. "Ascendingly sorts numberically first and then alphabetically, or

other."
202. (let ((numbers (stable-sort (remove-if-not #'numberp (copy-seq data))

sortp))
203. (other (stable-sort (remove-if #'numberp (copy-seq data))
204. (if (equal sortp #'<) #'string< #'string>))))
205. (append
206. numbers
207. other)))
208.

 301

209. ; (sort-special '(0 A 9 7 4 1 C 2))
210. ; => (0 1 2 4 7 9 A C)
211.
212. (defun fuse (data)
213. "Fuses multiple rule strands into one rule strand."
214. (if (null data) nil
215. (append
216. (car data)
217. (fuse (cdr data)))))
218.
219. ; (fuse (pc-voice-leading-rules *reduced-strands*))
220. ; => ((2 (2)) (3 (2 3)) (6 (5 6)) ...)
221.
222. (defun pc-voice-leading (strands)
223. "Creates pitch voice-leading rules, with probabilities."
224. (loop for j from 0 to 11
225. collect (list j
226. (sort-special
227. (fuse
228. (loop for i from 0 to 11
229. collect (cadr (assoc j (nth i (pc-voice-leading-rules

strands))))))))))
230.
231. ; (pc-voice-leading *reduced-strands*)
232. ; =>
233. #|
234. ((0 (0 0 0 0 0 0 0 0 7 7 8 8 11 11 11 11 11 11 11 11))
235. (1 (0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2))
236. (2 (0 0 1 1 1 1 1 1 1 1 1 1 1 1 2

2
2
2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 7 7 7 7 7 7 7 7 9 9 9 9 9 9 NIL NIL NIL
NIL))

237. (3 (2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3))
238. (4 (2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 5 5 5 5 5 5 11 11))
239. (5 (0 0 0 0 1 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 7 7 7 7 7 7 10 10 10 10 NIL NIL))
240. (6 (5 5 5 5 5 5 5 5 5 6 6 6 6 6 6))
241. (7 (5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7

7 9 9 9 9 9 9))
242. (8 (4 4 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 10 10))
243. (9 (2 2 2 2 2 2 4 4 4 4 5 5 7 7 7 7 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 10 10 10 10 NIL NIL))
244. (10 (8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10))
245. (11 (2 2 10 10 10 10 10 10 10 10 11 11 11 11 11 11)))
246. |#
247. ; Probabilities
248. ; 0 => 0 -> 0.4
249. ; => 7 -> 0.2
250. ; => 8 -> 0.1
251. ; => 11 -> 0.3
252. (setf *stm-pcs* (pc-voice-leading *reduced-strands*))
253.
254. (defun pc-voice-leading-no-stats (rules)
255. "Voice-leading rules withour statistics."
256. (if (null rules) nil

 302

257. (cons
258. (list
259. (caar rules)
260. (sort-special (remove-duplicates (copy-seq (cadar rules)) :test

#'equalp)))
261. (pc-voice-leading-no-stats (cdr rules)))))
262.
263. ; (pc-voice-leading-no-stats *stm-pcs*)
264. ; =>
265. #|
266. ((0 (0 7 8 11))
267. (1 (0 1 2))
268. (2 (0 1 2 4 7 9 NIL))
269. (3 (2 3))
270. (4 (2 3 4 5 11))
271. (5 (0 1 4 5 7 10 NIL))
272. (6 (5 6))
273. (7 (5 6 7 9))
274. (8 (4 7 8 10))
275. (9 (2 4 5 7 8 9 10 NIL))
276. (10 (8 9 10))
277. (11 (2 10 11)))
278. |#
279. (setf *semantic-network-strands* (pc-voice-leading-no-stats *stm-pcs*))
280.

Example 6-38: Generating voice-leading rules for PCs.

In Example 6-38 – the comments section (line 178) – the *reduced-strands*

variable provides a reminder of what is contained within the data set (see Example

6-37). The voice-leading rules will be derived from a singular strand at a time, and each

singular strand may contain several PCs with several PC succession possibilities. To

view a singular strand (recall that there are 8 strands), the *reduced-strands*

variable can be supplied to the nth i function. The function call (nth 1 *reduced-

strands*) produces the second strand from the bottom up or PCC {2, 2, 1, 1, 2, 2, 4,

4, 2, 2, 7, 7, 5, 5, 1, 1, 2, 2, 9, 9, 8, 8, 7, 7, 6, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 2, 2, 4, 4, 2, 2,

7, 7, 6, 6, 5, 5, 4, 4, 3, 3, 2, 2, 9, 8, 7, 6, 5, 4, 3, 3, 2, 2, 2}. If the same function call is

provided as a parameter to the analyze-voice-leading function, then the

resulting rules read: (1) PC 3 can move to PC 2, or 3, or 2, or 3, or 2, or 3; (2) PC 6 =>

 303

PC 5, 5, 6, 5, 6; (3) PC 8 => PC 7, 7, 8; (4) PC 9 => PC 8, 8, 9; (5) PC 5 => PC 4, 4, 5,

4, 5, 1, 5; (6) PC 7 => PC 6, 6, 7, 6, 7, 5, 7; (7) PC 4 => PC 3, 3, 4, 2, 4, 3, 4, 2, 4; (8)

PC 1 => PC 2, 1, 2, 1, 2, 1; and (9) PC 2 => (nil), PC 2, 2, 9, 2, 7, 2, 4, 2, 1, 2, 9, 2, 7, 2,

4, 2, 1, 2.

All strands are processed with a for loop within the pc-voice-leading-

rules subroutine in lines 182-185. The loop determines the length of the passed in

strands, meaning how many strands there are, and loops through an analyze-

voice-leading function for each strand in the count, passed in as the i value for the

nth function parameter. A call to the (pc-voice-leading-rules *reduced-

strands*) subroutine (line 187) results in a collection of voice-leading rules, as

displayed in lines 190-197. The generated rules many times have repeating departing

PCs, and different destination PCs, meaning that all the rules are there, but they are

disjunct.

The fuse subroutine (lines 212-217) takes all disjointed rules (data) occurring in

the eight different strands and fuses the rules into just one strand, as shown in line 219-

220. Another subroutine is needed to sort a list of values that can contain alphanumeric

characters, i.e.: sort-special (lines 200-207). The sort-special subroutine takes data to

be sorted, and a sort direction predicate as its argument (if no sort-direction predicate is

provided ascending order will be automatically assigned). Two local variables are

declared with the let function, (1) holding numbers, and (2) holding other characters.

Each one of the variables is assigned a result of a stable-sort that either removes

all alphabetic characters, or all number characters respectively, and then sorts the data

 304

according to the passed in predicate sortp. Appending the other variable to the

numbers variable then assembles a new list. The function is necessary since the

Common Lisp stable-sort function can either sort a string or a number, but not both.

The (sort-special '(0 A 9 7 4 1 C 2)) subroutine call shows how a list with

mixed values can be sorted and displays the sorted list in line 210 – (0 1 2 4 7 9 A

C).

With both of the fuse, and the sort-special subroutines in place, the pc-

voice-leading function can assemble a list of rules with one departing PC as the key

and possible destination PCs as values (lines 222-229). The pc-voice-leading

function takes the strands as its argument, and assembles the desired list with two

nested for loops. The first loops counts (j) from 0 to 11 and assembles the key part of

the list. Sorting (sort-special, in case nil values occur) and fusing (fuse) the results

of a second loop that counts (i) from 0 to 11 and collects the results of a call to the

pc-voice-leading-rules function with the supplied strands parameter,

assembles the values associated with the same key into one values list. The result of

the operation is shown in lines 234-245. Considering PC 0 as key, the value shows

repeated PCs (0, 0, 0, 0, 0, 0, 0, 0, 7, 7, 8, 8, 11, 11, 11, 11, 11, 11, 11, 11). As was the

case previously, the repetition indicates the probability of how PC 0 moves to one of the

arrival PCs within the values list. Therefore PC 0 has a p of (1) 0.4 of moving to itself,

(2) 0.2 of moving to PC 7, (3) 0.1 p of moving to PC 8, and (4) a 0.3 p of moving to PC

11. In line 252 the results of the function call is bound to the *stm-pcs* global variable

data set.

 305

A semantic network shows a more generalized rule set of the PC voice-leading

procedures. The pc-voice-leading-no-stats function assembles a rules list by

removing the statistical information from the just generated *stm-pcs* data set. The

recursion is terminated with an if conditional (line 256), and goes through the key/value

pairs list, builds a list by adding the key (line 259) to the values list, generated by

removing duplicate PCs with the help of the #'equalp predicate (line 260). The

resulting semantic network is shown in lines 266-277 and Example 6-39, and is bound

to the global *semantic-network-strands* variable data set. PCs 2, 5, and 9 can

also move to nowhere, or the end, which corresponds to the chord succession rules in

which the piece must end on PCC {5, 9, 2}, or PCC {5, 9, 2} moves to oblivion.

((0 (0 7 8 11))
 (1 (0 1 2))
 (2 (0 1 2 4 7 9 NIL))
 (3 (2 3))
 (4 (2 3 4 5 11))
 (5 (0 1 4 5 7 10 NIL))
 (6 (5 6))
 (7 (5 6 7 9))
 (8 (4 7 8 10))
 (9 (2 4 5 7 8 9 10 NIL))
 (10 (8 9 10))
 (11 (2 10 11)))

Example 6-39: PC voice-leading rules in FDL-1.

6.2.20. Batch Analyzing Relationships

Before moving on and graphing the generated ML data sets, one of the data sets

can be used to find all transpositional and inversional relationships among PCS. The

stm-normal-pccs can be used to create the necessary PCSC. The process can be

found a little bit further down in the Learn-Rules.lisp script (line 486-502).

 306

486. (defun relations-zoom (pccs)
487. "Create a list of all occuring chords."
488. (if (null pccs) nil
489. (cons
490. (caar pccs)
491. (relations-zoom (cdr pccs)))))
492.
493. ; (relations-zoom *stm-normal-pccs*)
494.
495. (setf *pcsc* (relations-zoom *stm-normal-pccs*))
496. ; => ((3 7 10) (4 7 11) (6 9 1) (2 5 8 11) (9 0 4) (5 8 0) (7 10 2) (4 7

10) (1 4 7) (2 5 9))
497.
498. (setf *pcsc-t-relations* (relations *pcsc* 't))
499. ; => (((PCS (3 7 10) AND (3 7 10) (ARE TRANSPOSITIONALLY RELATED BY T

0))) …
500.
501. (setf *pcsc-i-relations* (relations *pcsc* 'i))
502. ; => (((PCS (3 7 10) AND (4 7 11) (ARE INVERSIONALLY RELATED BY T 2 I)) …
503.

Example 6-40: PCS relationships.

The *stm-normal-pcss* consists of a table that lists all originating and all

destination PCCs in normal form. All individual PCS can be extracted from the STM by

supplying it to the relations-zoom function (lines 486-491). The recursive

relations-zoom function assembles a list of all unique PCS into a PCSC. In line 495

the global *pcsc* variable is set to the outcome of the (setf *pcsc* (relations-

zoom *stm-normal-pccs*)) function call and the resulting PCSC is shown in line

496. Once the *pcsc* has been bound, both the *pcsc-t-relations*, and the

pcsc-i-relations global variables can be populated with calls to the relations

function from the Set-Theory-Functions.lisp script (see section 5.3.14), along

with their appropriate 't, or 'i arguments (line 498 & 501 respectively). In order to read

the results not in just one line in the REPL the *pcsc-t-relations*, and *pcsc-i-

relations* global variables should be passed to the print-relations function

from the Set-Theory-Function.lisp library. The following two examples (Example

 307

6-41 and Example 6-42) show the full listing of all transpositionally and inversionally

related PCS.61

(PCS (3 7 10) AND (3 7 10) (ARE TRANSPOSITIONALLY RELATED BY T 0))
(PCS (4 7 11) AND (4 7 11) (ARE TRANSPOSITIONALLY RELATED BY T 0))
(PCS (4 7 11) AND (6 9 1) (ARE TRANSPOSITIONALLY RELATED BY T 2))
(PCS (4 7 11) AND (9 0 4) (ARE TRANSPOSITIONALLY RELATED BY T 5))
(PCS (4 7 11) AND (5 8 0) (ARE TRANSPOSITIONALLY RELATED BY T 1))
(PCS (4 7 11) AND (7 10 2) (ARE TRANSPOSITIONALLY RELATED BY T 3))
(PCS (6 9 1) AND (4 7 11) (ARE TRANSPOSITIONALLY RELATED BY T 10))
(PCS (6 9 1) AND (6 9 1) (ARE TRANSPOSITIONALLY RELATED BY T 0))
(PCS (6 9 1) AND (9 0 4) (ARE TRANSPOSITIONALLY RELATED BY T 3))
(PCS (6 9 1) AND (5 8 0) (ARE TRANSPOSITIONALLY RELATED BY T 11))
(PCS (6 9 1) AND (7 10 2) (ARE TRANSPOSITIONALLY RELATED BY T 1))
(PCS (2 5 8 11) AND (2 5 8 11) (ARE TRANSPOSITIONALLY RELATED BY T 0))
(PCS (9 0 4) AND (4 7 11) (ARE TRANSPOSITIONALLY RELATED BY T 7))
(PCS (9 0 4) AND (6 9 1) (ARE TRANSPOSITIONALLY RELATED BY T 9))
(PCS (9 0 4) AND (9 0 4) (ARE TRANSPOSITIONALLY RELATED BY T 0))
(PCS (9 0 4) AND (5 8 0) (ARE TRANSPOSITIONALLY RELATED BY T 8))
(PCS (9 0 4) AND (7 10 2) (ARE TRANSPOSITIONALLY RELATED BY T 10))
(PCS (5 8 0) AND (4 7 11) (ARE TRANSPOSITIONALLY RELATED BY T 11))
(PCS (5 8 0) AND (6 9 1) (ARE TRANSPOSITIONALLY RELATED BY T 1))
(PCS (5 8 0) AND (9 0 4) (ARE TRANSPOSITIONALLY RELATED BY T 4))
(PCS (5 8 0) AND (5 8 0) (ARE TRANSPOSITIONALLY RELATED BY T 0))
(PCS (5 8 0) AND (7 10 2) (ARE TRANSPOSITIONALLY RELATED BY T 2))
(PCS (7 10 2) AND (4 7 11) (ARE TRANSPOSITIONALLY RELATED BY T 9))
(PCS (7 10 2) AND (6 9 1) (ARE TRANSPOSITIONALLY RELATED BY T 11))
(PCS (7 10 2) AND (9 0 4) (ARE TRANSPOSITIONALLY RELATED BY T 2))
(PCS (7 10 2) AND (5 8 0) (ARE TRANSPOSITIONALLY RELATED BY T 10))
(PCS (7 10 2) AND (7 10 2) (ARE TRANSPOSITIONALLY RELATED BY T 0))
(PCS (4 7 10) AND (4 7 10) (ARE TRANSPOSITIONALLY RELATED BY T 0))
(PCS (4 7 10) AND (1 4 7) (ARE TRANSPOSITIONALLY RELATED BY T 9))
(PCS (1 4 7) AND (4 7 10) (ARE TRANSPOSITIONALLY RELATED BY T 3))
(PCS (1 4 7) AND (1 4 7) (ARE TRANSPOSITIONALLY RELATED BY T 0))

Example 6-41: All transpositionally related PCS in FDL-1 at the REPL.

(PCS (3 7 10) AND (4 7 11) (ARE INVERSIONALLY RELATED BY T 2 I))
(PCS (3 7 10) AND (6 9 1) (ARE INVERSIONALLY RELATED BY T 4 I))
(PCS (3 7 10) AND (9 0 4) (ARE INVERSIONALLY RELATED BY T 7 I))
(PCS (3 7 10) AND (5 8 0) (ARE INVERSIONALLY RELATED BY T 3 I))
(PCS (3 7 10) AND (7 10 2) (ARE INVERSIONALLY RELATED BY T 5 I))
(PCS (4 7 11) AND (3 7 10) (ARE INVERSIONALLY RELATED BY T 2 I))
(PCS (6 9 1) AND (3 7 10) (ARE INVERSIONALLY RELATED BY T 4 I))
(PCS (2 5 8 11) AND (2 5 8 11) (ARE INVERSIONALLY RELATED BY T 1 I))
(PCS (9 0 4) AND (3 7 10) (ARE INVERSIONALLY RELATED BY T 7 I))
(PCS (5 8 0) AND (3 7 10) (ARE INVERSIONALLY RELATED BY T 3 I))
(PCS (7 10 2) AND (3 7 10) (ARE INVERSIONALLY RELATED BY T 5 I))
(PCS (4 7 10) AND (4 7 10) (ARE INVERSIONALLY RELATED BY T 2 I))
(PCS (4 7 10) AND (1 4 7) (ARE INVERSIONALLY RELATED BY T 11 I))
(PCS (1 4 7) AND (4 7 10) (ARE INVERSIONALLY RELATED BY T 11 I))

61 There is a break in convention in the examples: (1) each PCS is represented as (0 1 2),
rather than [0, 1, 2]; and (2) T 0 means T0, and T 1 I means T1I.

 308

(PCS (3 7 10) AND (5 8 0) (ARE INVERSIONALLY RELATED BY T 3 I))
(PCS (3 7 10) AND (7 10 2) (ARE INVERSIONALLY RELATED BY T 5 I))
(PCS (4 7 11) AND (3 7 10) (ARE INVERSIONALLY RELATED BY T 2 I))
(PCS (6 9 1) AND (3 7 10) (ARE INVERSIONALLY RELATED BY T 4 I))
(PCS (2 5 8 11) AND (2 5 8 11) (ARE INVERSIONALLY RELATED BY T 1 I))
(PCS (9 0 4) AND (3 7 10) (ARE INVERSIONALLY RELATED BY T 7 I))
(PCS (5 8 0) AND (3 7 10) (ARE INVERSIONALLY RELATED BY T 3 I))
(PCS (7 10 2) AND (3 7 10) (ARE INVERSIONALLY RELATED BY T 5 I))
(PCS (4 7 10) AND (4 7 10) (ARE INVERSIONALLY RELATED BY T 2 I))
(PCS (4 7 10) AND (1 4 7) (ARE INVERSIONALLY RELATED BY T 11 I))
(PCS (1 4 7) AND (4 7 10) (ARE INVERSIONALLY RELATED BY T 11 I))
(PCS (1 4 7) AND (1 4 7) (ARE INVERSIONALLY RELATED BY T 8 I))

Example 6-42: All inversionally related PCS in FDL-1 at the REPL.

6.2.21. Graphing Semantic Networks

The seven semantic network data sets created in 6.2.18 (*semantic-network-

pccs-strands*, *semantic-network-pedal-pccs*, *semantic-network-core-pccs*,

semantic-network-normal-pccs, *semantic-network-t-normal-pccs*, *semantic-

network-prime-pccs*, *semantic-network-strands*) can be translated into graphical

representations known as digraphs. The digraphs consist of nodes and edges, whereby

the nodes correspond to the PCCs, and PCs, and the edges represent succession

rules, and required transformations that underlie the voice-leading principles.62 The

Graphing-Voice-Leading.lisp script creates the digraphs, and depends on the Learn-

Rules.lisp script that in turn depends on the Analysis-Prototype.lisp, and the Set-Theory-

Functions.lisp scripts.

12. (defparameter *pc-nodes* nil "PCs nodes.")

62 The following digraph code examples are partially derived from code shown in Barski’s book

Land of Lisp. Cope, Hidden Structure: Music Analysis Using Computers, 252-274. Digraph code is written
into .dot files, which can be interpreted by software like the open-source software Graphviz. Barski, 114-
124. The following code utilizes Graphiz through Common Lisp. Stephen Rings defines a digraph, or
directed graph, as “a graph whose set E of edges consists of ordered pairs of elements from the Vertex V,
” while David Lewin refers to digraphs as “node/arrow system.” Rings, 224. Lewin, 63. "Graphviz - Graph
Visualization Software" http://www.graphviz.org/ (accessed May 7, 2014).

 309

13. (defparameter *pccs-strand-nodes* nil "PCCs nodes from strands.")
14. (defparameter *pedal-nodes* nil "Pedal nodes.")
15. (defparameter *core-nodes* nil "Core chord nodes.")
16. (defparameter *normal-nodes* nil "Normal form nodes.")
17. (defparameter *t-normal-nodes* nil "Contains the chords, or nodes.")
18. (defparameter *prime-nodes* nil "Prime chord nodes.")
19.
20. (defparameter *pc-voice-leading-edges* nil "PCs edges.")
21. (defparameter *pccs-strand-edges* nil "PCCs edges from strands.")
22. (defparameter *pedal-voice-leading-edges* nil "Pedal chords edges.")
23. (defparameter *core-voice-leading-edges* nil "Core chord voice-leading

edges.")
24. (defparameter *normal-form-voice-leading-edges* nil "Normal form edges.")
25. (defparameter *t-normal-voice-leading-edges* nil "T-normal form edges.")
26. (defparameter *prime-voice-leading-edges* nil "Contains Voice-Leading

Paths.")
27.
28. ;; ----- Functions & Variables Assignments ----- ;;
29.
30. (defun convert->nodes (pccs)
31. "Formats voicel leading data for nodes format."
32. (if (null pccs) nil
33. (cons
34. (caar pccs)
35. (convert->nodes (cdr pccs)))))
36.
37. ; (convert->nodes *semantic-network-strands*)
38. ; => (0 1 2 3 4 5 6 7 8 9 10 11)
39. (setf *pc-nodes* (convert->nodes *semantic-network-strands*))
40.
41. ; (convert->nodes *semantic-network-pccs-strands*)
42. ; => ((2 3 7 10 3 7 10 3) (2 4 7 11 4 7 11 4) (2 6 9 1 6 9 1 6) (2 8 11 2

5 8 11 2) (2 9 0 4 9 0 4 9) (2 5 8 0 5 8 0 5) (2 7 10 2 7 10 2 7) (2 4 7
10 4 7 10 4) (2 1 4 7 1 4 7 1) (2 2 5 9 2 5 9 2))

43. (setf *pccs-strand-nodes* (convert->nodes *semantic-network-pccs-
strands*))

44.
45. ; (convert->nodes *semantic-network-pedal-pccs*)
46. ; => ((2 7 10 3) (2 7 11 4) (2 9 1 6) (2 5 8 11 2) (2 0 4 9) (2 8 0 5) (2

10 2 7) (2 7 10 4) (2 4 7 1) (2 5 9 2))
47. (setf *pedal-nodes* (convert->nodes *semantic-network-pedal-pccs*))
48. (setf *core-nodes* (convert->nodes *semantic-network-core-pccs*))
49. (setf *normal-nodes* (convert->nodes *semantic-network-normal-pccs*))
50. (setf *t-normal-nodes* (convert->nodes *semantic-network-t-normal-pccs*))
51. (setf *prime-nodes* (convert->nodes *semantic-network-prime-pccs*))
52.
53. ;; -- ;;
54.
55. (defun convert->edges (pccs)
56. "Formats voice-leading data for edges data."
57. (if (null pccs) nil
58. (cons
59. (cons
60. (caar pccs)
61. (mapcar #'list (cadar pccs)))
62. (convert->edges (cdr pccs)))))
63.
64. ; (convert->edges *semantic-network-strands*)

 310

65. ; => ((0 (0) (7) (8) (11)) (1 (0) (1) (2)) ...)
66. (setf *pc-voice-leading-edges* (convert->edges *semantic-network-

strands*))
67.
68. ; (convert->edges *semantic-network-pccs-strands*)
69. ; => (((2 3 7 10 3 7 10 3) ((2 2 5 9 2 5 9 2)) ((2 3 7 10 3 7 10 3))) ...

)
70. (setf *pccs-strand-edges* (convert->edges *semantic-network-pccs-

strands*))
71.
72. ; (convert->edges *semantic-network-pedal-pccs*)
73. ; => (((2 7 10 3) ((2 5 9 2)) ((2 7 10 3))) ((2 7 11 4) ((2 7 10 3)) ((2

7 11 4))) ...)
74. (setf *pedal-voice-leading-edges* (convert->edges *semantic-network-

pedal-pccs*))
75. (setf *core-voice-leading-edges* (convert->edges *semantic-network-core-

pccs*))
76. (setf *normal-form-voice-leading-edges* (convert->edges *semantic-

network-normal-pccs*))
77. (setf *t-normal-voice-leading-edges* (convert->edges *semantic-network-t-

normal-pccs*))
78. (setf *prime-voice-leading-edges* (convert->edges *semantic-network-

prime-pccs*))
79.
80. ;; -- ;;
81.

Example 6-43: Declaring global variables and re-formatting data.

The Graphing-Voice-Leading.lisp script consists of a boilerplate from

lines 1-11. Lines 12-26 show global variables being declared, whereas the first seven

global variables will hold node values (PCs, and PCCs), and the next seven will hold

edge values (succession patterns, voice-leading paths or basic transformations). The

Graphviz program needs to have the nodes and edges formatted in a certain way. The

required data sets already exist, but need to be “massaged” in order to conform to the

requirements of creating .dot files with Graphviz.

The convert->nodes function (lines 30-35 - Example 6-43) converts the

learned voice-leading data into the required format through recursion. The argument

provided, will be one of the resulting voice-leading data sets created with the Learn-

Rules.lisp script. The recursion ends when the end of the voice-leading rules are

 311

reached, otherwise a new list is created by taking the first of the first, caar, PC or PCC,

and adding it to remaining PC or PCC by a call back to the top of the convert->nodes

function with aforementioned remaining PC or PCC. The rules list of the incoming

semantic-network-strands looks like the following example: ((0 (0 7 8

11)) (1 (0 1 2)) (2 (0 1 2 4 7 9)) (3 (2 3)) (4 (2 3 4 5 11)) (5

(0 1 4 5 7 10)) (6 (5 6)) (7 (5 6 7 9)) (8 (4 7 8 10)) (9 (2 4 5

7 8 9 10)) (10 (8 9 10)) (11 (2 10 11))). The convert->nodes function

(line 30-35) converts this list into the following format (line 38): (0 1 2 3 4 5 6 7 8

9 10 11), which is then bound to the *pc-nodes* parameter, as a global variable

(line 39). The following six global variable parameters are dynamically assigned via the

convert->nodes function in lines 43-51: (1) *pccs-strand-nodes* – consisting of

ten possible chord choices stacked as PCCs with eight members; (2) *pedal-nodes*

– containing all ten possible chord choices which are comprised of the pedal tone, and

the core of a PCC in ascending order (e.g.: (2 5 9 2)); (3) *core-nodes* –

consisting of all possible PCC cores in ascending order (e.g. (5 9 2)); (4) *normal-

nodes* – comprised of all possible PCC cores in normal form (e.g.: (2 5 9); (5) *t-

normal-nodes* – encompassing all possible chords in t-normal form (e.g.: (0 3

7); and (6) *prime-nodes* – including all possible chords in prime form.

The convert->edges function (lines 55-62) is a recursive function that takes a

voice-leading rules data set as its argument. After checking whether the end of the data

set was reached through a conditional statement, a list is combined by cons-ing a

cons-ed list consisting of a caar function result applied to the pccs local variable

argument, or the key, and a mapcar function that takes the value (from the key/value

 312

pair), consisting of a collection of PCs or PCCs, and places these individual values into

individual lists. The *semantic-network-strands* global variable is converted from

the following format, ((0 (0 7 8 11)) (1 (0 1 2)) (2 (0 1 2 4 7 9)) (3

(2 3)) (4 (2 3 4 5 11)) (5 (0 1 4 5 7 10)) (6 (5 6)) (7 (5 6 7

9)) (8 (4 7 8 10)) (9 (2 4 5 7 8 9 10)) (10 (8 9 10)) (11 (2 10

11))), to the subsequent format: ((0 (0) (7) (8) (11)) (1 (0) (1) (2))

(2 (0) (1) (2) (4) (7) (9)) (3 (2) (3)) (4 (2) (3) (4) (5) (11))

(5 (0) (1) (4) (5) (7) (10)) (6 (5) (6)) (7 (5) (6) (7) (9)) (8

(4) (7) (8) (10)) (9 (2) (4) (5) (7) (8) (9) (10)) (10 (8) (9)

(10)) (11 (2) (10) (11))). The result of the convert->edges function (line

65), supplied with the *semantic-network-strands* argument, is bound to the

pc-voice-leading-edges global variable. The convert->edges function binds

six more global variables holding edges (lines 70-78): (1) *pccs-strand-edges*, via

(convert->edges *semantic-network-pccs-strands*); (2) *pedal-voice-

leading-edges*, generated through (convert->edges *semantic-network-

pedal-pccs*); (3) *core-voice-leading-edges*, created by way of (convert-

>edges *semantic-network-core-pccs*); (4) *normal-form-voice-

leading-edges*, populated via (convert->edges *semantic-network-

normal-pccs*); (5) *t-normal-voice-leading-edges*, produced by means of

(convert->edges *semantic-network-t-normal-pccs*); and (6) *prime-

voice-leading-edges*, made thru (convert->edges *semantic-network-

prime-pccs*).

82. (defun nodes->dot (nodes)
83. "Converts node-data to .dot file - the graphviz extension."

 313

84. (mapc (lambda (node)
85. (fresh-line)
86. (princ "\"")
87. (princ node)
88. (princ "\"")
89. (princ "[label=\"")
90. (princ node)
91. (princ "\"];"))
92. nodes))
93.
94. ; (nodes->dot *pc-nodes*)
95. ; =>
96. #|
97. "0"[label="0"];
98. "1"[label="1"];
99. "2"[label="2"];
100. "3"[label="3"];
101. "4"[label="4"];
102. "5"[label="5"];
103. "6"[label="6"];
104. "7"[label="7"];
105. "8"[label="8"];
106. "9"[label="9"];
107. "10"[label="10"];
108. "11"[label="11"];
109. (0 1 2 3 4 5 6 7 8 9 10 11)
110. |#
111.
112. ; (nodes->dot *pedal-nodes*)
113. ; =>
114. #|
115. "(2 7 10 3)"[label="(2 7 10 3)"];
116. "(2 7 11 4)"[label="(2 7 11 4)"];
117. "(2 9 1 6)"[label="(2 9 1 6)"];
118. "(2 5 8 11 2)"[label="(2 5 8 11 2)"];
119. "(2 0 4 9)"[label="(2 0 4 9)"];
120. "(2 8 0 5)"[label="(2 8 0 5)"];
121. "(2 10 2 7)"[label="(2 10 2 7)"];
122. "(2 7 10 4)"[label="(2 7 10 4)"];
123. "(2 4 7 1)"[label="(2 4 7 1)"];
124. "(2 5 9 2)"[label="(2 5 9 2)"];
125. |#
126.

Example 6-44: Building the .dot file - nodes.

Example 6-44 shows how to generate the nodes component of the .dot document.

The .dot document is just a text file. The nodes->dot function (lines 82-92) takes the

nodes as an argument and writes the needed nodes data (the actual data file is written

later on to the .dot file). The mapc function – similar to the mapcar function, except the

result is a list, rather than the output of a mapped function – is used to map all the

 314

nodes and node labels contained in a rule set by use of a lambda function where node

is used as the argument against the nodes list (lines 84-92). The contents of the

lambda function are print statements (princ), new line statements ((fresh-line)),

and princ statements that write the node data and its corresponding labels that

organize what is to be printed to a .dot file. A call to the (nodes->dot *pc-nodes*)

function (line 94), for example, results in the outcome shown in lines 96-108, while a call

to the (nodes->dot *pedal-nodes*) function (line 112), results in the outcome

shown in lines 115-124.

127. (defun label-transformations (pcc-1 pcc-2)
128. "Labels the edges according to a transformational scheme."
129. (cond ((and (numberp pcc-1) (numberp pcc-2)) (- pcc-2 pcc-1))
130. ((and (listp pcc-1) (listp pcc-2)) (mapcar #'- pcc-2 pcc-1))
131. (t 'nada)))
132.
133. (defun edges->dot (edges &optional (trans 0))
134. "Builds possible edges .dot file."
135. (mapc (lambda (node)
136. (mapc (lambda (edge)
137. (fresh-line)
138. (princ "\"")
139. (princ (car node))
140. (princ "\"")
141. (princ "->")
142. (princ "\"")
143. (princ (car edge))
144. (princ "\"")
145. (princ "[label=\" ")
146. (if (eq trans 0)
147. (princ "")
148. (princ (label-transformations (car node) (car

edge))))
149. (princ " \"];"))
150. (cdr node)))
151. edges))
152.
153. ; (edges->dot *pc-voice-leading-edges* 1)
154. ; =>
155. #|
156. "0"->"0"[label=" 0 "];
157. "0"->"7"[label=" 7 "];
158. "0"->"8"[label=" 8 "];
159. ...
160. "11"->"2"[label=" -9 "];
161. "11"->"10"[label=" -1 "];
162. "11"->"11"[label=" 0 "];

 315

163. |#
164.
165. ; (edges->dot *pedal-voice-leading-edges* 1)
166. ; =>
167. #|
168. "(2 7 10 3)"->"(2 5 9 2)"[label=" (0 -2 -1 -1) "];
169. "(2 7 10 3)"->"(2 7 10 3)"[label=" (0 0 0 0) "];
170. "(2 7 11 4)"->"(2 7 10 3)"[label=" (0 0 -1 -1) "];
171. ...
172. "(2 5 9 2)"->"(2 7 10 4)"[label=" (0 2 1 2) "];
173. "(2 5 9 2)"->"(2 4 7 1)"[label=" (0 -1 -2 -1) "];
174. "(2 5 9 2)"->"(2 5 9 2)"[label=" (0 0 0 0) "];
175. |#
176.

Example 6-45: Building the .dot file - edges.

Thus far only the nodes have been prepared for printing, but the edges, or voice-

leading/succession lines, need to be also prepared to be able to be written to a .dot file,

which is the task of the edges->dot function in Example 6-45, lines 133-151. Since the

edges rules data is contained in a two dimensional key/value pair list, two nested mapc

functions are used to parse the edges data into a .dot file. The first mapc function uses

a lambda function to map the nodes (line 135), and the second mapc function uses a

lambda function to map the corresponding edges (lines 136-150). The fresh-line,

and princ functions are used to format the text string, and to insert the required .dot

language, populated with the node, and corresponding edge data. A label for each

edge is also created by a call to the label-transformations function (lines 127-

131), if basic transformations, or trans, has been set to 1, or true (lines 146-148). The

function calculates the distance between each PC or PCC thru subtraction. The cond

function within the label-transformations functions makes sure that either just a

number or a list can be calculated. The procedure creates labels that Tymoczko refers

 316

to as “pitch-class voice-leadings,” and are represented in a similar manner.63 Calling the

(edges->dot *pc-voice-leading-edges* 1) function (line 153) results in the

.dot formatted text data shown in lines 156-162, while a call to the (edges->dot

pedal-voice-leading-edges 1) function (line 165) results in .dot formatted text

data shown in lines 168-174.

177. (defun graph->dot (nodes edges)
178. "Fuses nodes->dot, and edges->dot into one .dot file."
179. (princ "digraph{")
180. (fresh-line)
181. (princ "node[fontsize=12,fontname=Helvetica]")
182. (fresh-line)
183. (princ

"edge[fontsize=10,fontname=Helvetica,arrowsize=0.75,arrowhead=normal,color
=gray,labelfloat=false]")

184. (fresh-line)
185. (nodes->dot nodes)
186. (edges->dot edges)
187. (fresh-line)
188. (princ "}"))
189.
190. ; (graph->dot *pc-nodes* *pc-voice-leading-edges*)
191. ; =>
192. #|
193. digraph{
194. node[fontsize=12,fontname=Helvetica]
195.

edge[fontsize=10,fontname=Helvetica,arrowsize=0.75,arrowhead=normal,color=
gray,labelfloat=false]

196. "0"[label="0"];
197. "1"[label="1"];
198. "2"[label="2"];
199. ...
200. "11"->"2"[label=" -9 "];
201. "11"->"10"[label=" -1 "];
202. "11"->"11"[label=" 0 "];
203. }
204. |#
205.
206. ; (graph->dot *pedal-nodes* *pedal-voice-leading-edges*)
207. ; =>
208. #|
209. digraph{
210. node[fontsize=12,fontname=Helvetica]
211.

edge[fontsize=10,fontname=Helvetica,arrowsize=0.75,arrowhead=normal,color=
gray,labelfloat=false]

212. "(2 7 10 3)"[label="(2 7 10 3)"];

63 Tymoczko, 41-45.

 317

213. "(2 7 11 4)"[label="(2 7 11 4)"];
214. "(2 9 1 6)"[label="(2 9 1 6)"];
215. ...
216. "(2 5 9 2)"->"(2 7 10 4)"[label=" (0 2 1 2) "];
217. "(2 5 9 2)"->"(2 4 7 1)"[label=" (0 -1 -2 -1) "];
218. "(2 5 9 2)"->"(2 5 9 2)"[label=" (0 0 0 0) "];
219. }
220. |#
221.

Example 6-46: Assembling the .dot file.

The graph->dot function takes the nodes, and edges data just created as its

arguments to combine the data into a single .dot file, including some needed header

information (lines 177-188). The same combination of fresh-line and princ

functions are used to write the .dot text data, this time including what type of .dot file, i.e.

digraph, is to be created, the header data (font size of nodes, shape of nodes, font size

of edges, color of edges, arrow types, etc.), and data from the (nodes->dot nodes),

and (edges->dot edges) functions. A call to the (graph->dot *pc-nodes*

pc-voice-leading-edges) function (line 190) results in the digraph (truncated)

shown in lines 193-203, and a call to the (graph->dot *pedal-nodes* *pedal-

voice-leading-edges*) function (line 206) results in the abbreviated digraph

shown in lines 209-219.

Two more steps are now needed to generate a digraph in a particular format

(Example 6-47): (1) a function (dot->pdf) that generates the .dot file, opens the dot

command of the Graphviz program at the command line, and converts the .dot source

file into a .pdf vector graphics file (lines 114-123), and (2) a function (graph->pdf) with

which to call the dot->pdf function with different parameters (lines 125-129).

222. (defun dot->pdf (file-name dot-data)
223. "turns dot file into an image file (here .pdf)."
224. (with-open-file (*standard-output*

 318

225. file-name
226. :direction :output
227. :if-exists :supersede
228. :if-does-not-exist :create)
229. (funcall dot-data))
230. (run-program "bash" '("-c" "/usr/local/bin/dot -Tpdf")
231. :input file-name
232. :output (concatenate 'string file-name ".pdf")))
233.
234. (defun graph->pdf (file-name nodes edges)
235. "creating the picture of the graph."
236. (dot->pdf file-name
237. (lambda ()
238. (graph->dot nodes edges))))
239.
240. ; (graph->pdf "~/your/path/pc-voice-leading-rev.dot" *pc-nodes* *pc-

voice-leading-edges*)
241. ; (graph->pdf ~/your/path/pccs-strands-voice-leading.dot" *pccs-strand-

nodes* *pccs-strand-edges*)
242. ; (graph->pdf "~/your/path/pedal-voice-leading.dot" *pedal-nodes* *pedal-

voice-leading-edges*)
243. ; (graph->pdf "~/your/path/core-voice-leading.dot" *core-nodes* *core-

voice-leading-edges*)
244. ; (graph->pdf "~/your/path/normal-form-succession.dot" *normal-nodes*

normal-form-voice-leading-edges)
245. ; (graph->pdf "~/your/path/t-normal-form-succession.dot" *t-normal-nodes*

t-normal-voice-leading-edges)
246. ; (graph->pdf "~/your/path/prime-form-voice-succession.dot" *prime-nodes*

prime-voice-leading-edges)
247.

Example 6-47: Generating a .pdf file from the .dot file at command line from Lisp.

The dot->pdf function (lines 222-232) opens a stream to which the outcome of

the graph->dot function can be written. The function takes a file-name, and the

dot-data as its arguments. The required stream is opened with the with-open-file

function, which consists of several key word parameters: (1) the name of the stream -

standard-output, (2) the file-name, (3) the :direction parameter set to

:output; the file is only being written to, not read, and (4) the :if-exists parameter

that is set to :supersede - meaning “if a file by that name already exists, just toss out

the old version.”64 Further, the with-open-file function also contains a function call,

64 Barski, 122.

 319

or funcall, to the dot-data to be inserted into the stream. The run-program

function (lines 230-232) is only native to the Clozure CL environment – meaning that for

other Common Lisp distributions like SBCL, CLisp, LispWorks, etc. a different built-in

function is required – and issues a bash command line command to the dot function,

including the required file output format (.pdf), with the file-name set to the :input

key word parameter, and a concatenate-d file-name for the .pdf file set to the

:output parameter.

The graph->pdf function (lines 234-238, Example) takes a file-name, the

nodes, and the edges as arguments, and calls the dot->pdf function with the file-

name, and a call to a lambda function that wraps a (graph->dot nodes edges)

function call, as arguments. The function can be called with differently set arguments to

create different types of digraphs, as is shown in lines 240-246.

In addition to building graphs of chord succession and voice-leading rules,

statistical information of what probabilities govern these rules will provide a better

picture of what a generative association network that aided in the composition of FDL-1

may have looked like. In the next section, the generation of probability tables will be

discussed.

6.2.22. Building Voice-leading Probability Tables

The Learn-Rules.lisp script features two more tasks, (1) creating voice-

leading probability tables – discussed in this section, and (2) creating chord succession

probability tables – discussed in the next section (6.2.22).

281. ;; -- display PC Voice-leading with probabilities -- ;;

 320

282.
283. (defun sum-non-probs (complement)
284. "Assigns 0.0 probabilities to complement PCs in a PCC."
285. (if (null complement) nil
286. (cons
287. (list (car complement) 0.0)
288. (sum-non-probs (cdr complement)))))
289.
290. ; (setf *pc-two* (cadr (nth 2 *stm-pcs*)))
291. ; => (0 0 1 1 1 1 1 1 1 1 1 1 1 1 2

2
2
2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 7 7 7 7 7 7 7 7 9 9 9 9 9 9 NIL NIL NIL
NIL)

292. ; (sum-non-probs (safe-sort (set-difference (chromatic-scale) (copy-seq
(remove-duplicates *pc-two*))) #'<))

293. ; => ((3 0.0) (5 0.0) (6 0.0) (8 0.0) (10 0.0) (11 0.0))
294.
295. (defun sum-probs (amount short-list long-list)
296. "Counts occurences of PC in sequence,
297. converts occurences to probabilities between 0-1,
298. and groups PC with probability."
299. (if (null short-list) nil
300. (cons
301. (list
302. (car short-list)
303. (float (/ (count (car short-list) long-list) amount)))
304. (sum-probs amount (cdr short-list) long-list))))
305.
306. ; (sum-probs (length *pc-two*) (copy-seq (remove-duplicates *pc-two*))

pc-two)
307. ; => ((0 0.014084507) (1 0.08450704) (2 0.73239434) (4 0.04225352) (7

0.056338027) (9 0.04225352) (NIL 0.028169014))
308.
309. (defun check-for-nil (mango &optional (nothing nil) (neg-one -1))
310. (if (null mango) nil
311. (cons
312. (list
313. (if (equal (caar mango) nothing) neg-one (caar mango))
314. (cadar mango))
315. (check-for-nil (cdr mango) nothing neg-one))))
316.
317. ; (check-for-nil '((3 0.0) (5 0.0) (6 0.0) (8 0.0) (10 0.0) (11 0.0) (0

0.014084507) (1 0.08450704) (2 0.73239434) (4 0.04225352) (7 0.056338027)
(9 0.04225352) (NIL 0.028169014)))

318. ; => ((3 0.0) (5 0.0) (6 0.0) (8 0.0) (10 0.0) (11 0.0) (0 0.014084507)
(1 0.08450704) (2 0.73239434) (4 0.04225352) (7 0.056338027) (9
0.04225352) (-1 0.028169014))

319.
320. (defun one-pc-stm->an (probs)
321. "Converts voice-leading probabilites of one PC."
322. (let* ((num-probs (length probs))
323. (no-dupes (copy-seq (remove-duplicates probs)))
324. (complement (safe-sort (set-difference (chromatic-scale) no-

dupes) #'<)))
325. (check-for-nil
326. (stable-sort
327. (copy-seq

 321

328. (check-for-nil
329. (append
330. (sum-non-probs complement)
331. (sum-probs num-probs no-dupes probs)))) #'< :key #'car) -1

nil)))
332.
333. ; (one-pc-stm->an *pc-two*)
334. ; => ((NIL 0.028169014) (0 0.014084507) (1 0.08450704) (2 0.73239434) (3

0.0) (4 0.04225352) (5 0.0) (6 0.0) (7 0.056338027) (8 0.0) (9 0.04225352)
(10 0.0) (11 0.0))

335.
336. (defun stm->an (stm)
337. "Convert a STM with readable probabilities."
338. (if (null stm) nil
339. (cons
340. (list
341. (caar stm)
342. (one-pc-stm->an (cadar stm)))
343. (stm->an (cdr stm)))))
344.
345. ; (stm->an *stm-pcs*)
346. ; =>
347. #|
348. ((0 ((0 0.4) (1 0.0) (2 0.0) (3 0.0) (4 0.0) (5 0.0) (6 0.0) (7 0.1) (8

0.1) (9 0.0) (10 0.0) (11 0.4)))
349. (1 ((0 0.21428572) (1 0.4642857) (2 0.32142857) (3 0.0) (4 0.0) (5 0.0)

(6 0.0) (7 0.0) (8 0.0) (9 0.0) (10 0.0) (11 0.0)))
350. (2 ((NIL 0.028169014) (0 0.014084507) (1 0.08450704) (2 0.73239434) (3

0.0) (4 0.04225352) (5 0.0) (6 0.0) (7 0.056338027) (8 0.0) (9 0.04225352)
(10 0.0) (11 0.0)))

351. (3 ((0 0.0) (1 0.0) (2 0.5) (3 0.5) (4 0.0) (5 0.0) (6 0.0) (7 0.0) (8
0.0) (9 0.0) (10 0.0) (11 0.0)))

352. (4 ((0 0.0) (1 0.0) (2 0.17777778) (3 0.2) (4 0.44444445) (5 0.13333334)
(6 0.0) (7 0.0) (8 0.0) (9 0.0) (10 0.0) (11 0.044444446)))

353. (5 ((NIL 0.032258064) (0 0.06451613) (1 0.048387095) (2 0.0) (3 0.0) (4
0.20967741) (5 0.48387095) (6 0.0) (7 0.09677419) (8 0.0) (9 0.0) (10
0.06451613) (11 0.0)))

354. (6 ((0 0.0) (1 0.0) (2 0.0) (3 0.0) (4 0.0) (5 0.6) (6 0.4) (7 0.0) (8
0.0) (9 0.0) (10 0.0) (11 0.0)))

355. (7 ((0 0.0) (1 0.0) (2 0.0) (3 0.0) (4 0.0) (5 0.20634921) (6
0.14285715) (7 0.5555556) (8 0.0) (9 0.0952381) (10 0.0) (11 0.0)))

356. (8 ((0 0.0) (1 0.0) (2 0.0) (3 0.0) (4 0.1) (5 0.0) (6 0.0) (7 0.4) (8
0.4) (9 0.0) (10 0.1) (11 0.0)))

357. (9 ((NIL 0.03508772) (0 0.0) (1 0.0) (2 0.10526316) (3 0.0) (4
0.07017544) (5 0.03508772) (6 0.0) (7 0.07017544) (8 0.14035088) (9
0.47368422) (10 0.07017544) (11 0.0)))

358. (10 ((0 0.0) (1 0.0) (2 0.0) (3 0.0) (4 0.0) (5 0.0) (6 0.0) (7 0.0) (8
0.05882353) (9 0.47058824) (10 0.47058824) (11 0.0)))

359. (11 ((0 0.0) (1 0.0) (2 0.125) (3 0.0) (4 0.0) (5 0.0) (6 0.0) (7 0.0)
(8 0.0) (9 0.0) (10 0.5) (11 0.375))))

360. |#
361.
362. (defun take-two (data)
363. "Recursion in recursion helper to csv-helper-stm."
364. (if (null data) nil
365. (cons
366. (cadar data)
367. (take-two (cdr data)))))

 322

368.
369. (defun csv-helper-stm (an)
370. "Organizes STM data for CSV dump."
371. (if (null an) nil
372. (cons
373. (take-two (cadar an))
374. (csv-helper-stm (cdr an)))))
375.
376. ; (csv-helper-stm (stm->an *stm-pcs*))
377.
378. (defun show-stm (an)
379. "Dumps CSV output to screen."
380. (format t "~%~{~%~{~A~^,~}~}~%" an))
381.
382. ; (show-stm (csv-helper-stm (stm->an *stm-pcs*)))
383. ; =>
384. #|
385. 0.4,0.0,0.0,0.0,0.0,0.0,0.0,0.1,0.1,0.0,0.0,0.4
386. 0.21428572,0.4642857,0.32142857,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
387. 0.028169014,0.014084507,0.08450704,0.73239434,0.0,0.04225352,0.0,0.0,0.05

6338027,0.0,0.04225352,0.0,0.0
388. 0.0,0.0,0.5,0.5,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
389. 0.0,0.0,0.17777778,0.2,0.44444445,0.13333334,0.0,0.0,0.0,0.0,0.0,0.044444

446
390. 0.032258064,0.06451613,0.048387095,0.0,0.0,0.20967741,0.48387095,0.0,0.09

677419,0.0,0.0,0.06451613,0.0
391. 0.0,0.0,0.0,0.0,0.0,0.6,0.4,0.0,0.0,0.0,0.0,0.0
392. 0.0,0.0,0.0,0.0,0.0,0.20634921,0.14285715,0.5555556,0.0,0.0952381,0.0,0.0
393. 0.0,0.0,0.0,0.0,0.1,0.0,0.0,0.4,0.4,0.0,0.1,0.0
394. 0.03508772,0.0,0.0,0.10526316,0.0,0.07017544,0.03508772,0.0,0.07017544,0.

14035088,0.47368422,0.07017544,0.0
395. 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.05882353,0.47058824,0.47058824,0.0
396. 0.0,0.0,0.125,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.5,0.375
397. |#
398.

Example 6-48: Voice-leading probabilities table.

In order to have a complete table that shows voice-leading probabilities from an

originating PC to a destination PC, non-probabilities need to be included. The sum-

non-probs subroutine (lines 283-288) accomplishes the task. Its argument is a

complement PCC, or the collection of pitches to which an originating PC cannot move.

The recursive subroutine constructs a key/value pair list by using one of the

complementary PCs from the PCC as key, and adds a 0.0 p as the value (lines 286-

288). The subroutine can be tested by first creating a new variable *pc-two*, line 290,

which is bound to the outcome of a call to the nth i function with the *stm-pcs*

 323

supplied as an argument, and selecting the second value (cadr) of the function call (the

result is shown in line 291). The *pc-two* value is first passed as an argument to the

copy-seq function in order to ensure that the original *pc-two* variable is not

destroyed in the ensuing operations. Then, all duplicate PCs are removed from the

values list, resulting in PCC {0, 1, 2, 4, 7, 9} and NIL. The values list is passed as the

second argument to the built-in set-difference function, along with the

chromatic-scale function from the Set-Theory-Functions.lisp library as first

argument, resulting in the complement PCC {11, 10, 8, 6, 5, 3}. To sort the complement

use the safe-sort function, supply the complement as its first argument, and the sort

predicate as its second argument (in this case #'<), which results in the list shown in

line 293, or ((3 0.0) (5 0.0) (6 0.0) (8 0.0) (10 0.0) (11 0.0)).

The recursive sum-probs subroutine counts the occurrences of a PC in a PCC,

and converts those occurrences to probabilities between 0 and 1, and groups the

probabilities to their corresponding PC. The subroutine uses three arguments, (1)

amount, or how many pitches there are in the destination value list, (2) a short-list

of pitches – a PCC without duplicates, and (3) a long-list of pitches – a PCC

including duplicate PCs. The new list is constructed by assigning occurring PCs from

the short-list as keys, and building the probability value by counting how many

times a PC from the short-list occurs in the long-list, dividing that amount by

the amount of the PCC with duplicate pitches and passing the result to the built-in

float function, to ensure that the result will not be displayed in the mathematically

more specific fractional value, but rather the more human readable floating point value.

 324

A test of the sum-probs subroutine is displayed in line 306, and the result is shown in

line 307, or ((0 0.014084507) (1 0.08450704) (2 0.73239434) (4

0.04225352) (7 0.056338027) (9 0.04225352) (NIL 0.028169014)).

The built-in stable-sort function throws an error if a supplied argument list

contains a NIL value. However, a list containing NIL values should also be sortable, for

readability and consistency reasons. Since all PCs consist of positive integers,

substituting a NIL value with -1 makes a list sortable without an error. When the sorting

function completes its task, the -1 value should then be converted back to a NIL value.

The aforementioned procedure is the purpose of the recursive check-for-nil

subroutine that can either convert a NIL value to -1, or vice versa, depending on

whether or not nil, or -1 was supplied as an argument (lines 309-315). A test call to the

subroutine, and a results set has been provided in lines 317-318.

The one-pc-stm->an subroutine (lines 320-331) combines the previous three

subroutines to create a values list for an individual PC, and takes the probabilities

(probs) of one PC key/value pair as its argument. Three local variables are declared

with the let* function in lines 322-324: (1) num-probs, containing the length of the PC

occurrences in the values list; (2) no-dupes, consisting of the PC occurrences in the

values list with all duplicates removed; and (3) complement, bound to the result of a

set-difference function supplied with the chromatic-scale function, and the

previously established no-dupes variable as arguments, which is sorted in ascending

order. The desired list is created by appending the result of the sum-non-probs

subroutine that was supplied with the complement argument, with the result of a call to

 325

the sum-probs subroutine that uses num-probs, no-dupes, and probs as

arguments (lines 329-331). The list is checked for NIL, and the matched NIL values are

substituted with -1 in line 328. Following the procedure, the sequence is copied in order

to avoid the destruction of the sequence (line 327), when the list is sorted (line 326) by

the first value (the originating PC) in ascending order (line 331). Once the list has been

sorted, all -1 values can be converted back to the original NIL values with the check-

for-nil subroutine (line 325), but this time with the first argument being -1, and the

second argument being NIL. When supplying the *pc-two* variable as an argument

to the one-pc-stm->an function a probabilities list, as shown in line 334, will be built.

However, so far only one originating PC key was matched with probabilities

values. Enter the stm->an function (line 336-343). The recursive function constructs a

key/value pair list of all PCs occurring as keys (line 341), with their corresponding

destination PCs and their corresponding probabilities (line 342), by calling the one-pc-

stm->an subroutine. When the stm->an function is called with the *stm-pcs*

argument the probabilities table shown in lines 348-359 is built. The following take-

two subroutine (lines 362-367), the csv-helper-stm subroutine (lines 369), and the

show-stm function (lines 378-380), create a CSV dump to the REPL (lines 385-396).

The task is accomplished through a series of nested subroutines as arguments to the

show-stm function (line 382). The dumped CSV data then can be converted to a

spreadsheet table.

6.2.23. Building Chord Succession Probability Tables

 326

With the PC voice-leading rules probabilities table built, attention will be turned to

building various chord, PCCs, normal form, and set class succession rule probabilities

tables.

399. ;; ----- PCCs STMs ----- ;;
400.
401. (setf *prime-one* '((0 3 6 9) ((0 3 7) (0 3 7) (0 3 6 9))))
402.
403. (defun count-list (comp pcc-list &optional (occur 0))
404. "Count a list in a list. Works like (COUNT)"
405. (if (null pcc-list) occur
406. (count-list comp (cdr pcc-list) (if (equal comp (car pcc-list)) (+

occur 1) (+ occur 0)))))
407.
408. (cadr *prime-one*)
409.
410. ; (count-list '(0 3 6 9) (cadr *prime-one*)) - (count-list '(0 3 7) (cadr

prime-one))
411. ; => 1
412.
413. (defun all-pccs-in-stm (stm)
414. "Finds all possible chords in a given STM."
415. (if (null stm) nil
416. (cons
417. (caar stm)
418. (all-pccs-in-stm (cdr stm)))))
419.
420. ; (all-pccs-in-stm *stm-prime-pccs*)
421. ; => ((0 3 6 9) (0 3 6) (0 3 7))
422.
423. (defun no-probs-pcc (complement)
424. "Checks which PCCs do not occur in a singular prime pairing."
425. (if (null complement) nil
426. (cons
427. (list (car complement) 0.0)
428. (no-probs-pcc (cdr complement)))))
429.
430. ; (no-probs-pcc (set-difference (all-pccs-in-stm *stm-prime-pccs*) (cadr

prime-one) :test #'equal))
431. ; => (((0 3 6) 0.0))
432.
433. (defun sum-probs-pcc (amount short-list long-list)
434. "Counts occurences of PCC in sequence,
435. converts occurences to probabilities between 0-1,
436. and groups PCCs with probability."
437. (if (null short-list) nil
438. (cons
439. (list
440. (car short-list)
441. (float (/ (count-list (car short-list) long-list) amount)))
442. (sum-probs-pcc amount (cdr short-list) long-list))))
443.
444. ; (sum-probs-pcc (length (cadr *prime-one*)) (remove-duplicates (copy-seq

(cadr *prime-one*)) :test #'equal) (cadr *prime-one*))

 327

445. ; => (((0 3 7) 0.6666667) ((0 3 6 9) 0.33333334))
446.
447. (defun one-pcc-stm->an (probs stm-pccs)
448. "Converts voice-leading probabilites of one PC."
449. (let* ((num-probs (length (cadr probs)))
450. (no-dupes (copy-seq (remove-duplicates (cadr probs) :test

#'equal)))
451. (long-list (cadr probs))
452. (complement (set-difference (all-pccs-in-stm stm-pccs) no-dupes

:test #'equal)))
453. (stable-sort
454. (copy-seq
455. (append
456. (no-probs-pcc complement)
457. (sum-probs-pcc num-probs no-dupes long-list))) #'< :key #'(lambda

(x) (reduce '+ (car x))))))
458.
459. ; (one-pcc-stm->an *prime-one* *stm-prime-pccs*)
460. ; => (((0 3 6) 0.0) ((0 3 7) 0.6666667) ((0 3 6 9) 0.33333334))
461.
462. (defun pcc-stm->an (stm &optional (static-stm stm))
463. "Convert a STM with readable probabilities."
464. (if (null stm) nil
465. (cons
466. (list
467. (caar stm)
468. (one-pcc-stm->an (car stm) static-stm))
469. (pcc-stm->an (cdr stm) static-stm))))
470.
471. ; (pcc-stm->an *stm-prime-pccs*)
472. ; =>
473. #|
474. (((0 3 6 9) (((0 3 6) 0.0) ((0 3 7) 0.6666667) ((0 3 6 9) 0.33333334)))
475. ((0 3 6) (((0 3 6) 0.5) ((0 3 7) 0.5) ((0 3 6 9) 0.0)))
476. ((0 3 7) ((NIL 0.018867925) ((0 3 6) 0.094339624) ((0 3 7) 0.8490566)

((0 3 6 9) 0.03773585))))
477. |#
478.
479. ; (pcc-stm->an *stm-pccs-strands*)
480. ; (pcc-stm->an *stm-pedal-pccs*)
481. ; (pcc-stm->an *stm-core-pccs*)
482. ; (pcc-stm->an *stm-normal-pccs*)
483. ; (pcc-stm->an *stm-t-normal-pccs*)
484. ; (pcc-stm->an *stm-prime-pccs*)
485.

Example 6-49: Chord succession probabilities tables.

In line 401 the test variable *prime-one* is bound to a rule set describing the set

class succession probabilities from an originating fully diminished 7th chord to either set

class (0 3 7) – twice, or set class (0 3 6 9) – once. Common Lisp’s built-in count

function can count how many times the same symbol or number occurs in a list.

 328

However, the function cannot count how many lists that are the same occur in another

list. The count-list subroutine (lines 403-406) takes two lists as an argument, (1) a

one-dimensional list (comp) to be found in (2) a longer, or two-dimensional list (pcc-

list). Further, count-list keeps track of a count (occur) of how many discrete

times comp occurs in a pcc-list during a recursion. If no items are left in the pcc-

list, or target list, the subroutine returns the number of times comp occurred (line

405). But, if there are still members left in the pcc-list, the comp list is passed back

to the count-list subroutine, along with the remainder of the pcc-list, and the

result of a condition that checks whether the current member that is being examined

from the pcc-list equals the comp value, as arguments. If the condition is true one is

added to the occur value, if not zero is added to the occur value (line 406). Making a

test call to the count-list subroutine with set class (0 3 6 9) as the comp argument

value, and the result of the cadr of *prime-one* as the pcc-list value – or the

SCC of ((0 3 7) (0 3 7) (0 3 6 9)), results in 1 (lines 408-409). If the test call to the count-

list subroutine included set class (0 3 7) as the comp argument value, and the cadr of

prime-one as the pcc-list argument value, then the result would have been 2.

The all-pccs-in-stm subroutine finds all possible PCCs in a given STM,

recursively (lines 413-418). The recursion is initiated as all previously discussed

recursions, and the result is a list of PCCs. A test call to the all-pccs-in-stm

subroutine (line 410), with the *stm-prime-pccs* supplied as an argument results in

the collection found in line 421. The no-probs-pcc subroutine (lines 423-428)

examines an entire PCC succession set, and determines which PCCs are non-target

 329

PCCs and assigns these PCCs a 0.0 p value, through a recursive procedure. The non-

target PCCs are just a complement that needs to be passed as an argument to the

subroutine. When calling the no-probs-pcc subroutine (line 430), the complement

argument is devised by passing the outcome of a call to the all-pccs-in-stm

function with a *stm-prime-pccs* as first argument, and a call to the cadr of

prime-one as the second argument to the built-in set-difference function along

with an equality test. The outcome would be a pairing that reads that set class (0 3 6)

has a 0.0 probability of occurring as a destination PCC (line 431).

In lines 433-442 the sum-probs-pcc subroutine counts all occurrences of a

PCC in a sequence of PCCs, converts the occurences to a probabilities value between

0-1, and groups the PCCs in question as key/value pairs with their appropriate p values

(lines 439-441). The subroutine requires three arguments: (1) the amount, or how many

PCCs are within a PCC sequence; (2) a short-list of non-duplicate PCCs; and (3) a

long-list of all occurring PCCs, including duplicates. The sum-probs-pcc

subroutine can be tested the following way (line 444): (1) the amount argument is

created by measuring the length of the cadr of *prime-one*, (2) the short-list

argument is generated by removing all duplicate PCCs, and (3) the long-list is

produced by simply providing the raw cadr of *prime-one*.65 The operation

determines that SC (0 3 6 9) can move to SC (0 3 7) with a p of 0.66, and that SC (0 3 6

9) can move to itself with a 0.33 p (line 445).

The one-pcc-stm->an subroutine takes two arguments, (1) a probabilities

65 Recall that *prime-one* holds ((0 3 6 9) ((0 3 7) (0 3 7) (0 3 6 9))), while
the cadr of *prime-one* holds ((0 3 7) (0 3 7) (0 3 6 9)).

 330

key/value pair list (probs) where the key is an originating PCC, and the value is a

destination PCC and its corresponding probability, and (2) a STM consisting of all

possible originating PCCs, and their possible destination PCCs (lines 447-457). The

subroutine unifies all principles from the test call to the sum-probs-pcc previously

described, except that this time four local variables are created via the let* function:

(1) num-probs holds the value required by the amount argument needed for the sum-

probs-pcc subroutine call (line 449); (2) the no-dupes value collects the value for the

short-list argument used in the sum-probs-pcc subroutine (line 450); (3) the

long-list variable holds the values required by the long-list argument for the

sum-probs-pcc subroutine (451); and (4) the complement holds the values that need

to be passed as an argument to the no-probs-pcc subroutine that are generated by a

call to the set-difference built-in function, where the first argument is created by a

call to the all-pccs-in-stm subroutine with a stm-pccs argument, and the second

argument is made via the previously assigned no-dupes local variable (452). The

outcome of the no-probs-pcc subroutine then is appended with the outcome of the

call to the sum-probs-pcc that in turn is copied in order to avoid destructive behavior

caused by the stable-sort function, which sorts the newly appended list in

ascending order according to the key PCCs (lines 453-457). The (one-pcc-stm->an

prime-one *stm-prime-pccs*) function test call (line 459) shows that SC (0 3 6

9) can move to SC (0 3 7) with a 0.66 p, to SC (0 3 6 9) with a 0.33 p, and to SC (0 3 6)

with a 0.0 p, meaning that the rule specifies that SC (0 3 6 9) never moves to SC (0 3 6)

- line 460.

 331

The recursive pcc-stm->an function (lines 462-469) unifies all previously

discussed subroutines in this section and builds a probabilities table that includes all

possible PCC to PCC successions, and their corresponding probabilities. The function

takes a stm as an argument, and creates an unaltered copy of the stm as an optional

argument, or static-stm, for comparison purposes in the ensuing recursion. The

table is built by assigning each occurring PCC as a key (line 467) to a succession rule

value along with probabilities that are being built with a call to the one-pcc-stm->an

subroutine with the current key of the recursion as the first argument, and the entire

static-stm as second argument (line 469). The (pcc-stm->an *stm-prime-

pccs*) test call results in the following rule set: (1) SC (0 3 6 9) => SC (0 3 7) – with a

0.66 p, or => SC (0 3 6 9) – with a 0.33 p, but never moves to SC (0 3 6); (2) SC (0 3 6)

=> SC (0 3 6) – with a 0.50 p, or => SC (0 3 7) – with a 0.50 p, but never moves to SC

(0 3 6 9); (3) SC (0 3 7) => NIL, meaning it is the PCC on which the piece will end – with

a 0.02 p, or => SC (0 3 6) – with a 0.1 p, or to SC (0 3 7) – with a 0.85 p, or => SC (0 3

6 9) – with a 0.03 p (lines 474-476). Lines 479-484 show different PCC succession

probability tables that can be generated.

With having learned the voice-leading, and chord succession rules, along with

their probabilities, the association nets that were used to compose FDL-1 can be

simulated, since the association nets are semantic nets in which nodes (PCs and PCCs)

are connected with edges that are weighed according to probabilities.

 332

6.2.24. Association Net Simulation

The framework of FDL-1 may be defined in terms of what different types SCs are

being used and how these SCs are used in reference to each other. In previous

sections it was discussed how the SC succession rules can be generated, and how they

can be represented as semantic networks. Furthermore, it was also shown how to

generate tables containing not only the basic rules of SC A moving to SC B, but also in

what frequency successions can occur, or the probabilities in which they occur.

Hypothetically the gained insights can be used to recompose another version of FDL-1

with a similar outcome. The framework generated through SC representation within

semantic networks, and probability tables, can be seen as being the “background,”

although not from a Schenkerian perspective, but a further abstracted level. The

redefinition of the term appropriately represents a composition that may exhibit triadic

characteristics, but may not follow the “tonal” rules from the CPP, and the Ursatz

concept.

Table 6-2: SC Succession probabilities and rules in FDL-1.

SC (0 3 6 9) (0 3 6) (0 3 7) End
(0 3 6 9) 0.33 0 0.67 0
(0 3 6) 0 0.50 0.50 0
(0 3 7) 0.04 0.09 0.85 0.02

Observing the SC succession rules in Table 6-2, it can be determined: (1) SC (0

3 6 9) => SC (0 3 6 9) – with a 0.33 p (the probabilities have been rounded), or => SC (0

3 7) – with a 0.68 p; (2) SC (0 3 6) => SC (0 3 6) – with a 0.50 p, or => SC (0 3 7) – with

 333

a 0.50 p; and (3) SC (0 3 7) => SC (0 3 6 9) – with a 0.04 p, or => SC (0 3 6) – with a

0.09 p, or => SC (0 3 7) with a 0.85 p, or => END – meaning that SC (0 3 7) is the last

SC of a composition – with a 0.02 p. The SCs in Table 6-2 become the nodes, and any

probabilities become edges in a semantic network, which visualizes the succession

rules (Figure 6-16). If all nodes were connected to each other with edges, and these

edges were labeled, or weighed, with the probability data an association network

emerges.

Figure 6-16: SC semantic network - FDL-1 background.

The central node in Figure 6-16 is SC (0 3 7), and tension can be created by a

combination of (1) moving to itself – with the least amount of tension, (2) moving to the

SC (0 3 6) node – with a higher degree of tension, (3) moving to the SC (0 3 6 9) node –

with the highest degree of tension, indicated through the change of cardinality in the SC,

since SC (0 3 6), and SC (0 3 6 9) belong to the same diminished family. All tension

SCs have to resolve to SC (0 3 7), and only SC (0 3 7) can be used to end the piece.

(0 3 6 9)

(0 3 7)

(0 3 6)

End

 334

Using SCs sometimes can obscure more traditional notions of major or minor

qualities held within PCCs, since PC (0 3 7) is as representation of a minor and a major

PCC simultaneously. Therefore it can be useful to flesh out the background with the

addition of PCST0s.

Table 6-3: PCST0 succession rules - FDL-1 background.

PCST0 [0 3 6 9] [0 3 6] [0 3 7] [0 4 7] End
[0 3 6 9] 0.33 0 0.67 0 0
[0 3 6] 0 0.50 0.50 0 0
[0 3 7] 0.04 0.11 0.77 0.06 0.02
[0 4 7] 0 0 0.50 0.50 0

As shown in Table 6-3, a PCST0 [0 3 6 9] – or a fully diminished tetrad – can

move to itself with a 0.33 p, or resolve to PCST0 [0 3 7] with a 0.67 p. PCST0 [0 3 6], or

diminished triad, can move to itself with a 0.50 p, or resolve to PCST0 [0 3 7] with a 0.50

p. Both types of diminished chord do not move to one another, or change cardinality.

PCST0 [0 3 7] – a minor triad – can move to PCST0 [0 3 6 9] with a 0.04 p, or to a

PCST0 [0 3 6] with a 0.11 p, or to a PCST0 [0 3 7] – itself – with a 0.77 p, or to a PCST0

[0 4 7] – a major triad – with a 0.06 p. Further, the composition can also end on PCST0

[0 3 7], which has a p of 0.02. PCST0 [0 4 7] – a major triad – can move to either PCST0

[0 3 7] – with a 0.50 p, or can move to PCST0 [0 4 7] – itself – with a 0.50 p. However,

PCST0 [0 4 7] never moves to a tension chord or PCST0 [0 3 6], or PCST0 [0 3 6 9], but

can only be approached from a PCST0 [0 3 7], and return to its originator. From a

tension perspective it can be placed in between a move from PCST0 [0 3 7] to itself, and

 335

PCST0 [0 3 6].

While a motion from PCST0 [0 3 7] to itself is the most common movement, the

motion from PCST0 [0 3 7] => PCST0 [0 3 6] is the second most common motion, while a

movement to PCST0 [0 4 7] is only slightly more common then to the tension PCST0 [0 3

6 9]. Since the motion to PCST0 [0 3 6 9] is the least common movement, excluding the

end, it can be concluded that a cardinality change creates the highest degree of tension,

and occurs at a structurally significant point of FDL-1. Further clarity can be gained by

observing a PCST0 semantic network (Figure 6-17).

Figure 6-17: PCST0 semantic network - FDL-1 background.

SC networks and PCST0 networks map onto each other, whereas the former are

more general, and the latter are slightly more specific in regards to more traditional

understandings of chord modalities. If the SC network represents the skeleton, then the

addition of a PCST0 network represents the cartilage of the harmonic background. A

middleground perspective, or perhaps the nervous system or muscular level, can be

[0 4 7]

[0 3 7]

[0 3 6 9]

[0 3 6]

End

 336

achieved through the addition of PCS succession rules, and their corresponding

probabilities (Table 6-4. PCS).

Observing the rules in Table 6-4 PCS [1, 4, 7] – {C#, E, G} and belonging to SC

(0 3 6) – can either move to itself with a p value of 0.50, or it can move to PCS [2, 5, 9] –

{D, F, A}, belonging to SC (0 3 7) – with a p value of 0.50 and the PC voice-leadings of

(1, 1, 2). This corresponds with the previous rule (Figure 6-16) that established SC (0 3

6) => (0 3 7). PCS [2, 5, 8, 11] – {D, F, Ab Cb}, belonging to SC (0 3 6 9) – can move to

itself with a p value of 0.33, or can move to PCS [7, 10, 2] – {G, Bb, D}, belonging to SC

(0 3 7) – with a p value of 0.67. The PC voice-leadings do not have one-to-one

relationship, nor does the fully diminished tetrad resolve to its successor in CPP fashion,

and therefore their nature will be discussed in connection with PCCs derived from voice-

leading strands.

337

Table 6-4: PCS succession rules - FDL-1 middleground.

PCS [1, 4, 7] [2, 5, 8, 11] [2, 5, 9] [3, 7, 10] [4, 7, 10] [4, 7, 11] [5, 8, 0] [6, 9, 1] [7, 10, 2] [9, 0, 4] End
[1, 4, 7] 0.50 0 0.50 0 0 0 0 0 0 0 0
[2, 5, 8, 11] 0 0.33 0 0 0 0 0 0 0.67 0 0
[2, 5, 9] 0.10 0 0.55 0 0.10 0 0 0 0.10 0.10 0.05
[3, 7, 10] 0 0 0.50 0.50 0 0 0 0 0 0 0
[4, 7, 10] 0 0 0.50 0 0.50 0 0 0 0 0 0
[4, 7, 11] 0 0 0 0.60 0 0.40 0 0 0 0 0
[5, 8, 0] 0.14 0 0 0 0 0.43 0.43 0 0 0 0
[6, 9, 1] 0 0 0 0 0 0 0.60 0.40 0 0 0
[7, 10, 2] 0 0 0 0 0 0 0.14 0.43 0.43 0 0

[9, 0, 4] 0 0.67 0 0 0 0 0 0 0 0.33 0

 338

PCS [2, 5, 9] can move to PCS [1, 4, 7] with a p value of 0.10 and PC voice-

leadings of (-1, -1, -2), a type of permutation of (1, 1, 2). PCS [2, 5, 9] can also move to

itself with a p value of 0.55, or to PCS [4, 7, 10] – belonging to SC (0 3 6) – with a p

value of 0.10, and PC voice-leadings of (2, 2, 1), a type of permutation of (1, 1, 2). PCS

[2, 5, 9] can move to both PCS [7, 10, 2], and PCS [9, 0, 4] – {G, Bb, D}, belonging to

SC (0 3 7), and {A, C, E}, also belonging to SC (0 3 7) respectively – with a p value of

0.10, whereas the PC voice-leadings – (5, 5, 5), or T5 for the former, and (-5, -5, -5), or

T-5 for the latter – are transpositionally related to each other, since all three PCS are

transpositionally related to one another. PCS [2, 5, 9] can also pursue the path to

silence, meaning it can be the last triad of the composition, which can be assigned with

a p value of 0.05. No other PCSs can be used as the last PCS.

PCS [3, 7, 10] – {Eb, G, Bb}, belonging to SC (0 3 7), or PCST0 [0 4 7] – can

either move to PCS [2, 5, 9], or itself with a 0.50 p value. The PC voice-leading

operation from PCS [3, 7, 10] to [2, 5, 9] reads (-1, -2, -1), a permutation of (-1, -1, -2).

PCS [4, 7, 10] – {E, G, Bb}, belonging to SC (0 3 6) – can move to itself with a 0.50 p

value, or to PCS [2, 5, 9] with a p value of 0.50 though a (-2, -2, -1) PC voice-leading

operation, the reverse of the PC voice-leading operation of (2, 2, 1). PCS [4, 7, 11] – {E,

G, B}, belonging to SC (0 3 7) – can move to itself with a p value of 0.40, but moves to

PCS [3, 7, 10] with a p value of 0.60, and the PC voice-leading operation of (-1, 0, -1).

PCS [5, 8, 0] – {F, Ab, C}, belonging to SC (0 3 7), or PCST0 [0 4 7] – can move to itself,

and PCS [4, 7, 11] with a p value of, where the PC voice-leading operation is (-1, -1, -1),

or T-1. However, PCS [5, 8, 0] can also move to PCS [1, 4, 7] with a 0.14 p-value, and a

 339

PC voice-leading operation of (-4, -4, -5), a clear variation of the earlier occurring PC

voice-leading operation of (-1, -1, -2) at T-3.

PCS [6, 9, 1] – {F#, A, C#}, belonging to SC (0 3 7) – can move to itself with a

0.40 p value, or to PCS [5, 8, 0] with a p value of 0.60, and a PC voice-leading operation

of (-1, -1, -1), or T-1. PCS [7, 10, 2] can move to itself, with a p value of 0.43, or can

move to PCS [6, 9, 1] with a 0.43 p value, and the PC voice-leading operation of (-1, -1,

-1), i.e. T-1, but can also move to PCS [5, 8, 0] via the PC voice-leading operation of (-2,

-2, -2), or T-2, with a p value of 0.14. Last, PCS [9, 0, 4] can move to PCS [2, 5, 8, 11]

with a 0.67 p value, or can move to itself with a p value of 0.33. Since there is a

cardinality change involved, triad to tetrad, a clearer PC voice-leading operation can be

determined by examining PCCs derived from voice-leading strands. Again, the PCSs

represent the nodes, and the probabilities represent the edges in the PCS semantic

network (Figure 6-18). The probabilities, or weighed edges, in conjunction create an

association network (with all 0 value edges omitted for clarity).

A PCC reduction can be devised by examining PCC succession rules generated

by building PCCs from voice-leading strands. With the procedure, ambiguities of PC

voice-leadings, especially in regards to cardinality changes from a triad to a tetrad, or

vice versa, can be cleared up, since a PCC succession may also include movement to

and from duplicate PCs. Example 6-24 shows the maximally reduced chords, where all

voice-leading procedures are accounted for through one-to-one relationships. Table 6-5

shows the chord succession rules generated by the procedure.

 340

Figure 6-18: PCS semantic network - FDL-1 middleground.

[3, 7, 10]

[2, 5, 9]

[4, 7, 11]

[6, 9, 1]

[5, 8, 0]

[2, 5, 8, 11]

[7, 10, 2]

[9, 0, 4]

[1, 4, 7]

[4, 7, 10]

End

341

Table 6-5: PCCs from strands succession rules - FDL-1 middleground.

PCCs from
Strands

{2, 1,
4, 7,
1, 4,
7, 1}

{2, 2,
5, 9,
2, 5,
9, 2}

{2, 3,
7, 10,
3, 7,

10, 3}

{2, 4,
7, 10,
4, 7,

10, 4}

{2, 4,
7, 11,
4, 7,

11, 4}

{2, 5,
8, 0,
5, 8,
0, 5}

{2, 6,
9, 1,
6, 9,
1, 6}

{2, 7,
10, 2,
7, 10,
2, 7}

{2, 8,
11, 2,
5, 8,

11, 2}

{2, 9,
0, 4,
9, 0,
4, 9}

End

{2, 1, 4, 7,
1, 4, 7, 1} 0.50 0.50 0 0 0 0 0 0 0 0 0

{2, 2, 5, 9,
2, 5, 9, 2} 0.11 0.53 0 0.11 0 0 0 0.11 0 0.11 0.05

{2, 3, 7, 10,
3, 7, 10, 3} 0 0.50 0.50 0 0 0 0 0 0 0 0

{2, 4, 7, 10,
4, 7, 10, 4} 0 0.50 0 0.50 0 0 0 0 0 0 0

{2, 4, 7, 11,
4, 7, 11, 4} 0 0 0.60 0 0.40 0 0 0 0 0 0

{2, 5, 8, 0,
5, 8, 0, 5} 0.14 0 0 0 0.43 0.43 0 0 0 0 0

{2, 6, 9, 1,
6, 9, 1, 6} 0 0 0 0 0 0.60 0.40 0 0 0 0

{2, 7, 10, 2,
7, 10, 2, 7} 0 0 0 0 0 0.14 0.43 0.43 0 0 0

{2, 8, 11, 2,
5, 8, 11, 2} 0 0 0 0 0 0 0 0.67 0.33 0 0

{2, 9, 0, 4,
9, 0, 4, 9} 0 0 0 0 0 0 0 0 0.67 0.33 0

 342

A brief examination of Table 6-5 leads to the conclusion that all PCC succession

rules, and probabilities are the same as the ones shown in Table 6-4. PCC {2, 1, 4, 7, 1,

4, 7, 1} – SC (0 3 6) – can either move to itself, or to PCC {2, 2, 5, 9, 2, 5, 9, 2} – SC (0

3 7) – with the PC voice-leading of (0, 1, 1, 2, 1, 1, 2), which mirrors the movement from

{C#, E, G} => {D, F, A}, but with the inclusion of the pedal tone D. Table 6-6 shows the

remaining PCC motions with their corresponding PC voice-leadings (motions of a PCC

to itself have been omitted, smaller sub-PCCs are in bold).

Table 6-6: PC voice-leading derived from reassembled PCCs.

PCC from Strand => Pitch Class Voice-leading

{2, 2, 5, 9, 2, 5, 9, 2}

{2, 1, 4, 7, 1, 4, 7, 1} (0, -1, -1, -2, -1, -1, -2, -1)
{2, 4, 7, 10, 4, 7, 10, 4} (0, 2, 2, 1, 2, 2, 1, 2)
{2, 7, 10, 2, 7, 10, 2, 7} (0, 5, 5, 5, 5, 5, 5, 5)

{2, 9, 0, 4, 9, 0, 4, 9} (0, -5, -5, -5, -5, -5, -5, -5)

{2, 3, 7, 10, 3, 7, 10, 3} {2, 2, 5, 9, 2, 5, 9, 2} (0, -1, -2, -1, -1, -2, -1, -1)
{2, 4, 7, 10, 4, 7, 10, 4} {2, 2, 5, 9, 2, 5, 9, 2} (0, -2, -2, -1, -2, -2, -1, -2)
{2, 4, 7, 11, 4, 7, 11, 4} {2, 3, 7, 10, 3, 7, 10, 3} (0, -1, 0, -1, -1, 0, -1, -1)

{2, 5, 8, 0, 5, 8, 0, 5}
{2, 1, 4, 7, 1, 4, 7, 1} (0, -4, -4, -5, -4, -4, -5, -4)

{2, 4, 7, 11, 4, 7, 11, 4} (0, -1, -1, -1, -1, -1, -1, -1)
{2, 6, 9, 1, 6, 9, 1, 6} {2, 5, 8, 0, 5, 8, 0, 5} (0, -1, -1, -1, -1, -1, -1, -1)

{2, 7, 10, 2, 7, 10, 2, 7}
{2, 5, 8, 0, 5, 8, 0, 5} (0, -2, -2, -2, -2, -2, -2, -2)
{2, 6, 9, 1, 6, 9, 1, 6} (0, -1, -1, -1, -1, -1, -1, -1)

{2, 8, 11, 2, 5, 8, 11, 2} {2, 7, 10, 2, 7, 10, 2, 7} (0, -1, -1, 0, 2, 2, -3, 5)
{2, 9, 0, 4, 9, 0, 4, 9} {2, 8, 11, 2, 5, 8, 11, 2} (0, -1, -1, -2, -4, -4, -5, 5)

All triadic sub-PCCs in Table 6-6 are in normal form (highlighted in bold),

whereas the troublesome tetrad appears as PCC {8, 11, 2, 5}, rather than [2, 5, 8, 11].

 343

All PCCs included the PC 2 pedal. Because additional vertical PCs have been added to

the triadic PCC that precede and follow the tetrad PCC, a precise PC voice-leading

procedure can be found, viz. PCC {8, 11, 2, 5} – or {G#, B, D, F}, belonging to SC (0 3 6

9) – is approached through PC voice-leading (-1, -1, -2, -4) from PCC {9, 0, 4, 9}, or {A,

C, E, A}, belonging to SC (0 3 7). PCC {8, 11, 2, 5} “resolves” to PCC {7, 10, 2, 7}, or {G,

Bb, D, G}, also belonging to SC (0 3 7) by applying the (-1, -1, 0, 2) PC voice-leading

procedure. Therefore, the cardinality change from a triad to a tetrad back to a triad has

been appropriately handled. With the information at hand a semantic network can be

created that includes PC voice-leading procedures taking cardinality changes into

account (Figure 6-19).

In Figure 6-19, all PCSs are enclosed within the square brackets, with PCs

separated by commas. If, in order to account for the cardinality change, a PC was

added to a PCS. The PCS becomes part of a PCC, enclosed with curly braces that

include the needed PC – {[9, 0, 4], 9}, and {[7, 10, 2], 7}. Since the PCS [2, 5, 8, 11] –

albeit a symmetrical PCC, belonging to SC (0 3 6 9) – has been rotated to PCC {8, 11,

2, 5}, thus permutated, it was enclosed in curly braces. Furthermore all PC voice-

leading numbers have been converted to the smallest possible value below six, ascend,

or descending (prefixed with a negative symbol). In PC voice-leading semantic network

PCS [2, 5, 9] plays a central role, since it is the tonic triad. The semantic network in

Figure 6-19 also maps on to the previously described networks in Figure 6-17, and

Figure 6-16.

 344

Figure 6-19: Semantic network - PC voice-leading - FDL-1 middleground.

With a precise middleground provided, attention will now be turned to the

[3, 7, 10] (0, 0, 0)

[2, 5, 9]

 (-1, -2, -1)

[4, 7, 11]

 (-1, 0, -1)

 (0, 0, 0)

[6, 9, 1] (0, 0, 0)

[5, 8, 0]

 (-1, -1, -1)

{8, 11, 2, 5} (0, 0, 0, 0)

{[7, 10, 2], 7}

 (-1, -1, 0, 2)

{[9, 0, 4], 9}

 (-1, -1, -2, -4)

 (0, 0, 0)

 (-1, -1, -1)

 (0, 0, 0)

[1, 4, 7]

 (-4, -4, -5)

 (-1, -1, -1)

 (-2, -2, -2)

 (0, 0, 0)

[4, 7, 10] (0, 0, 0)

 (-2, -2, -1)

 (0, 0, 0)

 (1, 1, 2)

 (-5, -5, -5)

 (5, 5, 5)

 (2, 2, 1)

 (-1, -1, -2)

 (0, 0, 0)

End

 345

foreground. The foreground shows all PC voice-leading procedures from individual PCs

to other PCs, rather than grouping PCs into PCCs. The PC voice-leading rules will be

able to map onto the PC voice-leading procedures shown in Figure 6-19. Further, the

PC voice-leading rules come along with their own particular probabilities from which a

foreground level association network can be drawn.

Table 6-7: PC voice-leading rules - FDL-1 foreground.

PC 0 1 2 3 4 5 6 7 8 9 10 11 End

0 0.40 0 0 0 0 0 0 0.10 0.10 0 0 0.40 0

1 0.21 0.46 0.32 0 0 0 0 0 0 0 0 0 0

2 0.01 0.08 0.73 0 0.04 0 0 0.06 0 0.04 0 0 0.03

3 0 0 0.5 0.50 0 0 0 0 0 0 0 0 0

4 0 0 0.18 0.20 0.44 0.13 0 0 0 0 0 0.04 0

5 0.06 0.05 0 0 0.21 0.48 0 0.10 0 0 0.06 0 0.03

6 0 0 0 0 0 0.6 0.40 0 0 0 0 0 0

7 0 0 0 0 0 0.21 0.14 0.56 0 0.10 0 0 0

8 0 0 0 0 0.10 0 0 0.40 0.40 0 0.10 0 0

9 0 0 0.11 0 0.07 0.04 0 0.07 0.14 0.47 0.07 0 0.04

10 0 0 0 0 0 0 0 0 0.06 0.47 0.47 0 0

11 0 0 0.13 0 0 0 0 0 0 0 0.50 0.38 0

Evaluating Table 6-7, all PCs at a minimum move to at least one other PC, or to

themselves, creating either a sense of stasis, or a sense of tension through elongated

repetitions. PCs 2, 5, and 9 have the most moving-to possibilities, whereas PC 9 has

the most. Further, the same PCs can be used to end the piece, which substantiates the

claim that FDL-1 must end with PCS [2, 5, 9]. Figure 6-20 shows the resulting network.

 346

Figure 6-20: Semantic network PC voice-leading rules - FDL-1 foreground.

0
 0

7

 7

8

 -4

11

 -11

 -1

 0

2

 1

 -2

 -1

 0

4

 2

 5

9

 -5

End

3

 -1

 0

 -2

 -1

 0

5

 1

 -5

 -5

 -4

 -1

 0

 2

10

 5

6

 -1

 0
 -2

 -1

 0

 2

 -4

 -1

 0

 2

 5

 -5

 -4

 -2

 -1

 0

 1

 -2

 -1

 0

 3

 -1

 0

 347

In this section it was shown how to display PC voice-leading, and PCC

succession rules. A most basic framework was introduced by creating a SC probability

table alongside a SC semantic network, as a background. Adding PCST0s probabilities,

and their corresponding semantic networks further elaborated the background. A

middleground level was established by considering PCS succession rules, and

probabilities, alongside semantic networks as well. The middleground was further given

substance by including PC voice-leading procedures, and examples of how cardinality

changes of PCCs were handled. Last, PC voice-leading rules, along with their

corresponding probabilities were established. At the same time a semantic network of

the PC voice-leading procedures was ascertained. The voice-leading rules, chord

succession rules, probabilities, and semantic networks all act as components of the

information acquired by the association network, and correspond to the cornerstone of

FDL-1. The following section features remarks on how this type of analysis can be

expanded to postulate whether what type of source material was used by Cope to train

the association network.

6.3. Future Analyses Directions

The main purpose of this study is to trace algorithmic thought. This section shows

how to “spin-out” the previous parts of code and analyses in a more modular fashion,

and points to the applicability of the code examples towards “Big Data” corpus studies.

What could be pieces that served as source materials for the composition of

FDL-1? Cope provides the hint that Emily “uses Emmy’s output to create music in new

 348

styles.”700 Connecting this thought with the fact that FDL-1 is reminiscent of the style

brisé, the source material can be further narrowed down. Several pieces from the WPC

fall into that category: (1) Prelude 15 in G Major (Figure 6-21); (2) Prelude 26 in C Minor

(Figure 6-22); and (3) Prelude 44 in A Minor (Figure 6-23). The preludes have direct

lineage to other Bach preludes that fall within the same parameters, and thus serve as

source material by proxy, for example: (1) The Well-Tempered Clavier, Book 1 - Prelude

#1 In C Major, BWV 846b (Figure 6-24); (2) The Well-Tempered Clavier, Book 1 -

Prelude #2 In C Minor, BWV 847 (Figure 6-25); (3) Praeambulum in C Major, BWV 924

(Figure 6-26); (4) Prelude, BWV 999 (Figure 6-27); and (5) Suite for Cello I in G major,

Prelude, BWV 1007 (Figure 6-28) - since Cope is a cello player. Another candidate from

the style brisé category would be Sonata for piano (in the style of Beethoven): Part 2

(Figure 6-29), which draws upon both BWV 846b (Figure 6-24) and Beethoven’s Sonata

No.14 'Moonlight' I. Adagio sostenuto (Figure 6-30), and consequently these two piece

serve as source materials by proxy as well. However, other pieces are also possible.

The following nine figures (Figure 6-21 - Figure 6-30) show the first few measures of the

nine pieces posited.

In the ensuing section some parts of the Analysis-Prototype.lisp script

will be modularized, by taking a closer look at WPC Prelude 26 in C Minor.

700 Cope, Tinman Too: A Life Explored, 475. Cope specifies, Emily uses a “well-selected” corpus,

or database, of Emmy’s output. Cope, "The Well-Programmed Clavier: Style in Computer Music
Composition," 20.

 349

Figure 6-21: WPC Prelude 15 in G Major (mm. 1-20).

Figure 6-22: WPC Prelude 26 in C Minor (mm. 1-6).

541 2 3

107 86 9

14 151211 13

19 2016 17 18

21 3

654

 350

Figure 6-23: WPC Prelude 44 in A Minor (mm. 1-15).

Figure 6-24: WTC Prelude 1 in C Major (mm. 1-8).

521

42

3 4

42

106 7 98

14 151211 13

21

3 4 5

86 7

 351

Figure 6-25: WTC Prelude in C Minor (mm. 1-6).

Figure 6-26: Praeambulum, BWV 924 (mm. 1-6).

1 2

43

65

1 2

43

65

 352

Figure 6-27: Prelude, BWV 999 (mm. 1-12).

Figure 6-28: Prelude, BWV 1007 (mm. 1-8).

31 2

43
43

64 5

87 9

1210 11

1 2

3 4

65

87

 353

Figure 6-29: Andante sostenuto - After Beethoven (mm. 1-16).

Figure 6-30: Adagio sostenuto - Sonata 14 - Beethoven (mm. 1-6).

3

3 3

2 5

42

1 4

42

10876 9

13 1412 1611 15

21

3 3 3 3

3

654

8

 354

6.3.1. An Analysis Script

In the previous section algorithms were introduced to aid in the analytical

process. These algorithms can be re-used in the analysis of Prelude 26. Rather than

copying and pasting the algorithms, they will be re-used in a separate new file, called an

analysis script. In the analysis script different previously established algorithms can be

accessed via their corresponding functions, altered, or others can be added. Previous

algorithms are loaded as reference file into the analysis script, which is called

Analysis-WPC-Prelude-26.lisp.

1. (defparameter *this-path* (directory-namestring *load-truename*)
2. "Holds path of this file.")
3.
4. (defun library-loader (lib-path &optional file-name)
5. "Creates relative paths."
6. (load (concatenate 'string *this-path* lib-path file-name)))
7.

Example 6-50: First items in an analysis script.

The very top of the script has to include one global variable and one subroutine:

(1) *this-path* (lines 1-2) – a variable that is assigned the scripts path information,

thru the built-in directory-namestring function with the built-in *load-truename*

variable supplied as an argument, in order to create new relative paths, and (2) the

library-loader function (lines 4-6) that takes a relative directory followed by a

forward slash “/”, and the file-name – with its corresponding extension – as its

argument, in order to build paths to libraries that are required by the script. Below the

top section the required libraries are loaded (for now, since other libraries can be loaded

on an “as needed” basis):

8. ;; ----- Enter Needed Libraries ----- ;;
9.
10. (library-loader "Library/" "Utilities.lisp")

 355

11. (library-loader "Library/" "MIDI-Input.lisp")
12. (library-loader "Library/" "Pitch-Count.lisp")
13. (library-loader "Library/" "Pitch-Space-Range.lisp")
14. (library-loader "Library/" "Histograms.lisp")
15. (library-loader "Library/" "Score-Navigation.lisp")
16. (library-loader "Library/" "Set-Theory-Functions.lisp")
17. (library-loader "Library/" "Chord-Compression.lisp")
18. (library-loader "Library/" "Learn-Rules.lisp")
19. (library-loader "Library/" "Graphing-Voice-Leading.lisp")
20.

Example 6-51: Loading desired libraries into an analysis script.

21. ;; ----- The Analysis Script ----- ;;
22.
23. ; ----- Score ----- ;
24.
25. (setf *score* (load-midi (concatenate 'string *this-path* "Scores/" "wpc-

prelude-26.mid")))
26.

Example 6-52: Loading a score into an analysis script.

After the required libraries have been loaded, the actual analysis script can

begin. The first item to load and bind to the variable *score* is the score that is to be

analyzed.701 The variable name can be anything, but for the sake of writing self

documenting code the global variable, signified by the “*” earmuffs as being global,

score has been chosen. Once the global variable has been set and activated by

placing the cursor flush after the last parenthesis of the line, and entering command E,

when in OS X, in the Clozure CL environment, the following event notation will flash by

in the REPL for the entire composition (truncated to only five events, the first three, and

the last two):

((0 36 125 2 90) (125 39 125 2 90) (250 43 125 2 90)
…
(500000 60 4000 2 90) (500000 48 4000 2 90))

701 Since currently there is only a MIDI library, only MIDI scores can be loaded. However, in future

versions other score formats, such, as MusicXML, LilyPond, .krn files, etc., should be able to be loaded
into an analysis script as well.

 356

Example 6-53: Content of the *score* variable in an analysis script.

6.3.2. Pitch Data Analysis

As was previously shown, the pitch data analysis group consists of a pitch count,

the definition of pitch space through ranges, the pitch space histogram, and the pitch

class histogram. The count-pitches function from the Pitch-Count.lisp library

can be used to count the pitches in the composition by assigning the result of the

function with the supplied *score* argument (Example 6-54, line 31). The value of the

pitch-count variable indicates that there are 1,110 pitch class events in Prelude 26.

27. ; ----- Statistics ----- ;
28.
29. (setf *pitch-count* (count-pitches *score*)))
30.

Example 6-54: Assigning a pitch count.

31. (setf *pitch-space* (find-ambitus *score*))
32.

Example 6-55: Finding the pitch space range.

Another statistic is the range of pitches occurring in a composition. To find the

range of pitches the find-ambitus function can be used from the Pitch-Space-

Range.lisp library. The argument to the function is the *score*. The result of the

find-ambitus function is assigned to the *pitch-space* variable. When calling the

pitch-space variable up in the REPL the following chart is produced:

Lowest Note: 31 (PC7)
Highest Note: 87 (PC3)
Range: 56 Semitones

Example 6-56: Ambitus information of Prelude 26.

Comparing the pitch space range to FDL-1 from Example 6-3, one can observe

 357

that Prelude 26 occupies a considerable less amount of pitch space (56 semitones, as

opposed to 83 semitones), but the number combines both of the piano parts. Measuring

the pitch space of the first piano part in FDL-1 only, then the pitch space occupies 71

semitones, 1 octave less then both piano parts, and 15 semitones more than the piano

in Prelude 26. Clearly, from the pitch space range alone no conclusive result can be

reached, whether FDL-1 has its genesis in Prelude 26.

33. (setf *ps-histogram* (create-ps-histogram *score*))
34. (show *ps-histogram*)
35. (order-by-midi *ps-histogram* #'<)
36. (order-by-count *ps-histogram* #'>)
37. (save *ps-histogram* "Data/Prelude-26-Pitch-Space-Histogram-MIDI.csv")
38.

Example 6-57: Adding the *ps-histogram* to the analysis script.

Even though, Cope indicates that Prelude 26 is in the key of C Minor, it is

nonetheless interesting to observe the pitch distribution via a pitch space histogram,

and a pitch class histogram. To create a pitch space histogram the functions from the

Pitch-Space-Histogram.lisp library are being used within the analysis script

(Example 6-57, Lines 35-39). The results of the function call to (create-ps-

histogram *score*) are assigned in the analysis script to the *ps-histogram*

global variable (Line 35). The *ps-histogram* variable is a fixed variable, and should

not be changed to a different name since the actual name of this variable is being used

as-is by two functions in the Pitch-Space-Histogram.lisp library.702 Once the

variable has been initialized, calling the *ps-histogram* variable from the REPL results

in the following plot pair list:

702 At another point the behavior should be changed since it violates functional programming

principles.

 358

((31 1) (32 1) (33 0) (34 1) (35 6) (36 12) (37 0) (38 7) (39 6) (40 2) (41
5) (42 2) (43 12) (44 7) (45 2) (46 3) (47 11) (48 38) (49 0) (50 22) (51 23)
(52 2) (53 13) (54 4) (55 28) (56 24) (57 4) (58 13) (59 9) (60 43) (61 0)
(62 35) (63 58) (64 4) (65 50) (66 12) (67 73) (68 53) (69 14) (70 52) (71
29) (72 124) (73 4) (74 59) (75 96) (76 6) (77 43) (78 12) (79 39) (80 16)
(81 3) (82 5) (83 7) (84 10) (85 0) (86 4) (87 1))

Example 6-58: *ps-histogram* plot pair list.

Figure 6-31: MIDI pitch histogram from CSV.

The plot pair list can be displayed at the REPL in a human readable format by

calling the (show *ps-histogram*) function, and including the function call in the

analysis script. Further, the data within the histogram can be sorted by count, or by MIDI

pitch with (1) the (order-by-count *ps-histogram* #'>), and (2) the (order-

by-midi *ps-histogram* #'<) function respectively. Finally, all data can be

printed to a CSV file from which a histogram can be plotted (e.g.: (save *ps-

histogram* "Data/Prelude-26-Pitch-Space-Histogram-MIDI.csv") –

Figure 6-31 and Figure 6-32), or an ASCII histogram can be printed to the screen in the

Pi
tc

h
Co

un
t

MIDI Pitches

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

1
4

0

10
753

16

39

12

43

6

96

59

4

124

29

52

14

53

73

12

50

4

58

35

0

43

9
13

4

24
28

4

13

2

2322

0

38

11

32
7

12

2
5

2
67

0

12
6

1011

 359

REPL by using (lo-fi-histogram *ps-histogram* 2) – where 2 means 1/2

scale, if the (library-loader "Library/" "Lo-Fi-Histogram.lisp") was

specified.

Figure 6-32: Histogram of note count from CSV.

Missing pitches from pitch space are 33, 37, 49, 61, and 85 in Figure 6-31. The

most frequently appearing pitch is 72, the second most frequent 75, and the third most

frequent 67. The pattern shows a C Minor key center, with the most frequent pitches

being part of a C Minor triad, while also consisting of a strong scale degree 5 -> 1

motion, or 67 -> 72, emphasizing a tonic/dominant relationship. Observing Figure 6-32,

the fourth frequent pitch is 74, or scale degree 2, further underlining the presence of a

dominant chord, along with the leading tone still being in the top 15: 71. Minor keys also

include the use of the minor dominant, represented through the frequency of pitches 70,

and 58, which also gives rise to a C Aeolian inflection, inherited by proxy through EMI’s

Pi
tc

h
Co

un
t

MIDI Pitches

72 75 67 74 63 68 70 65 60 77 79 48 62 71 55 56 51 50 80 69 53 58 36 43 66 78 47 84 59 38 44 83 35 39 76 41 82 54 57 64 73 86 46 81 40 42 45 52 31 32 34 87 33 37 49 61 85

0000011112222334444455666777910111212121213131416
222324

2829
35

3839
4343

505253
5859

73

96

124

 360

compositional process, not untypical of baroque music. Pitches that are not represented

in the pitch space have been marked with 0, rather than removing them altogether from

the histogram. While 33 belongs to PC 9, pitches 49, 61, and 85 all belong to PC 1,

while 73 (PC 1) actually does appear 4 times in the composition. Examining a PC

histogram can provide further insight into how PCs are being used in Prelude 26.

The procedure of adding the required functions to produce a PC histogram for the

analysis script is similar to that of adding a pitch space histogram (Example 6-59, Lines

41-45). The outcome of the (build-pc-histogram *score*) function is assigned

to the *pc-histogram* variable. Again, as was the case with the *ps-histogram*

variable, the variable is a fixed variable meaning only the *pc-histogram* name

space should be used (both the (order-by-midi *pc-histogram* #'<) function,

and the (order-by-count *pc-histogram* #'>) function, rewrite the sorted

values to the *pc-histogram* variable). The (show *pc-histogram*) function

displays a value pair representation at the REPL. The (lo-fi-histogram *pc-

histogram* 4) function displays an ASCII version of the *pc-histogram* to the REPL.

39. (setf *pc-histogram* (build-pc-histogram *score*))
40. (order-by-midi *pc-histogram* #'<)
41. (order-by-count *pc-histogram* #'>)
42. (show *pc-histogram*)
43. (lo-fi-histogram *pc-histogram* 4)
44.

Example 6-59: Integrating the *pc-histogram* into the analysis script.

0 ** 227
1 * 4
2 ******************************* 127
3 ** 184
4 *** 14
5 *************************** 111
6 ******* 30
7 ************************************** 153
8 ************************* 101

 361

9 *****- 23
10 ****************** 74
11 *************** 62

Example 6-60: ASCII PC histogram ordered by PCs.

0 ** 227
3 ** 184
7 ************************************** 153
2 ******************************* 127
5 *************************** 111
8 ************************* 101
10 ****************** 74
11 *************** 62
6 ******* 30
9 ***** 23
4 *** 14
1 * 4

Example 6-61: ASCII PC histogram ordered by PC count.

Both of the PC histograms (Example 6-60, Example 6-61) show the pitch center

being around PC 0, and that the key of C Minor in fact is prevalent – PCs 0, 3, and 7

have been used statistically most frequently. Both examples also accurately represent

the presence of both the dominant PCC {2, 5, 7, 11} and the minor dominant PCC {2, 5,

7, 10}. Other PCC combinations derived from statistical use further underline C minor

characteristics.

6.3.3. Clustered Histograms

The next issue arising is how the histograms of WPC Prelude 26 relate to the

histograms of 1. Prelude. Two steps are needed: (1) transposition, and (2) data

normalization. Either the pitch data of WPC Prelude 26 is transposed to the same key of

1. Prelude, or vice versa. Since this study is on FDL-1, the pitch material of WPC

Prelude 26, will be transposed from C Minor up to D Minor by two half steps. The data

normalization is achieved by dividing the individual pitch count values, of both the pitch

 362

space histogram, and the PC histogram, by the pitch count of its corresponding

composition, in order to achieve data representation between 0 and 1. Which means, for

example, that if there are 227 occurrences of PC 0 (after T2 PC 2) in Prelude 26, these

manifestations will be divided by the *pitch-count*, or 1,110, which results in ca. 0.2045.

In the analysis script six new variables are defined, in order to create a

normalized, transposed, and clustered histogram: (1) *prelude-26-wpc* – holds all

the MIDI data of Prelude 26 (essentially the same values as the *score* variable, but

separated for clarity’s sake), (2) *prelude-01-fdl* – holds all the MIDI data of FDL-

1, (3) *pitch-count-26* – holds the counted PCs number of Prelude 26, (4)

pitch-count-01 – holds the counted PCs number of FDL-1, (5) *pc-

histogram-26* – holds the key/value pairs for the histogram generated through

Prelude 26’s PCs data, and (6) *pc-histogram-01* – holds the key/value pairs for

the histogram that corresponds to FDL-1.

1. (defun normalize-histogram (pchg pc-count &optional (transposition 0))
2. "Normalize data through transposition and division."
3. (if (null pchg) nil
4. (cons
5. (list
6. (mod (+ (caar pchg) transposition) 12)
7. (float (/ (cadar pchg) pc-count)))
8. (normalize-histogram (cdr pchg) pc-count transposition))))
9.
10. (defun clustered-histogram (hist-1 pc-count-1 trans-1 hist-2 pc-count-2

trans-2)
11. "Creates a clustered histogram."
12. (let ((norm-hist-1 (stable-sort (copy-list (normalize-histogram hist-1

pc-count-1 trans-1)) #'< :key #'car))
13. (norm-hist-2 (stable-sort (copy-list (normalize-histogram hist-2

pc-count-2 trans-2)) #'< :key #'car)))
14. (labels ((combine-data (a b)
15. (if (null a) nil
16. (cons
17. (list (caar a)
18. (cadar a)
19. (cadar b))
20. (combine-data (cdr a) (cdr b))))))
21. (combine-data norm-hist-1 norm-hist-2))))

 363

22.
23. (setf *clustered-histogram* (clustered-histogram *pc-histogram-01*

pitch-count-01 0 *pc-histogram-26* *pitch-count-26* 2))
24.
25. (defun save (psh file-name)
26. "Saves histogram to a .csv file."
27. (with-open-file (csv
28. (concatenate 'string *this-path* file-name)
29. :direction :output
30. :if-exists :supersede)
31. (format csv "~%~a,~a,~a~{~%~{~A~^,~}~}~%" 'PC 'Prelude-1-FDL

'Prelude-26-WPC psh)))
32.
33. (save *clustered-histogram* "Data/Preludes-Combined-PC-Histogram-P1-FDL-

P26-WPC.csv")

Example 6-62: Building a clustered histogram of two compositions.

Once these variables have been set, the normalization process can start. The

normalization process requires the definition of another function called normalize-

histogram (Example 6-62, line 1-8). Rather than defining this function in the analysis

script, the function will be defined in the Histograms.lisp library, so that it may be reused

at another point. The recursive function takes two arguments, (1) a PC histogram, (2)

and a count of the PCs. An if condition checks whether the end of a histogram has

been reached; if not, a new list is constructed by normalizing the key (the PC data) to a

desired transposition level with mod 12 applied, and combining it with a

normalized value, which is constructed by taking the count value from the histogram,

and dividing it by the pc-count value.

The normalize-histogram function is used as a subroutine within the

clustered-histogram function (lines 10-21). The function creates a clustered

histogram from normalized, and transposed data from two different histograms. Six

arguments need to be provided: (1) the PC histogram of the first composition, (2) the PC

count of the first composition, (3) the desired transposition level of the first composition,

 364

(4) the PC histogram of the second composition, (5) the PC count of the second

composition, and (6) the desired transposition level of the second composition. Two

local variables are created at the top of the clustered-histogram function via the let

function (lines 11-13): (1) norm-hist-1 – containing the outcome of a call to the

normalize-histogram function with the first compositions histogram, PC count, and

transposition level supplied as arguments, and (2) norm-hist-2 – also containing a

call to the normalize-histogram function, with the same arguments that were

provided to the norm-hist-1 local variable, but this time derived from the second

composition.

After the declaration of the local variables, a local recursive function is defined

thru the label function. The function (lines 14-20) is called combine-data, and

recursively combines the data from the first, and second normalized histograms, here

called a, and b. An if statement is used to check when to stop the recursion (line 15).

However, if there is still histogram data to be processed, then a key/value list is created

by taking the first item from the first histogram, the key, making it the key again, and

assign the normalized values from the first, and second histograms to that key. Leftover

data is passed back to the top of the local combine-data function. In line 21, the local

variables norm-hist-1, and norm-hist-2 are passed to the local combine-data

function. The outcome of the (clustered-histogram *pc-histogram-01*

pitch-count-01 0 *pc-histogram-26* *pitch-count-26* 2) function

call is then assigned to the global variable *clustered-histogram*:

((0 0.042571306 0.06666667) (1 0.0553427 0.055855855) (2 0.18390805
0.2045045) (3 0.035759896 0.0036036037) (4 0.09706258 0.114414416) (5
0.13580246 0.16576576) (6 0.021285653 0.012612613) (7 0.12941678 0.1) (8

 365

0.040017027 0.027027028) (9 0.14899957 0.13783784) (10 0.07577693 0.09099099)
(11 0.034057047 0.02072072))

Example 6-63: Clustered histogram represented in a key/value pair list.

Figure 6-33: Clustered histogram of FDL-1, and WPC Prelude 26.

The *clustered-histogram* variable can be assigned as argument, along

with a path, to the save function (line 33), which creates a CSV file that can be

processed into a graphical representation of a clustered histogram for FDL-1, and WPC

Prelude 26 (Figure 6-33). Observing the PCs in Figure 6-33, one can notice, with the

exception of PC 3, that the majority of the PCs of both compositions are within an

acceptable range of each other, with one caveat: sometimes a PC occurs more

frequently in FDL-1, and sometimes a PC occurs more frequently in WPC Prelude 26.

The main emphasis still remains to be on PCC {2, 5, 9}, a D Minor triad, meaning that

centrality is maintained on PC 2.

PCs

0 1 2 3 4 5 6 7 8 9 10 11

0.021

0.091

0.138

0.027

0.1

0.013

0.166

0.114

0.004

0.205

0.056
0.067

0.034

0.076

0.149

0.04

0.129

0.021

0.136

0.097

0.036

0.184

0.055
0.043

FDL 1. Prelude WPC Prelude 26

 366

6.3.4. Quick Chord Labeling of WPC Prelude 26

By adding a few lines to the analysis script (Analysis-WPC-Prelude-

26.lisp) all chords can be instantly labeled in WPC Prelude 26 (Example 6-64). All

functions and their use have been previously explained in the Analysis-

Prototype.lisp script. Only the first 21 measures will be analyzed, since the “spin-

out” figure resembles FDL-1 the most during those measures (see the complete score in

the A.4. Appendix).

34. ; ----- Time Signature ----- ;
35. (setf *time-signature* '(4 quarter))
36.
37. ; ----- Count Measures ----- ;
38. (setf *measure-count* (measure-count *score* (car *time-signature*)

(second (assoc (second *time-signature*) *note-values*))))
39.
40. ; ----- Creating a measured music set ----- ;
41. (setf *music-set* (measure-numbers *score* *measure-count*))
42.
43. ; ----- Selecting a range of music ----- ;
44. (setf *selected-music-set* (select-measures '(1 21) *music-set*))
45.
46. ; ----- Selecting only PCs from music set ----- ;
47. (setf *pitches-music-set* (display-pitches-only *selected-music-set*

'pc))
48.
49. ; ----- Horizontal Voice-Leading Strands ----- ;
50. ; ----- All ----- ;
51. (setf *strands* (create-strands *pitches-music-set*))
52. ; ----- Reduced ----- ;
53. (setf *reduced-strands* (remove-duplicates *strands* :test #'equal))
54. ; ----- Build Vertical Chords from Reduced Strands ----- ;
55. (setf *vertical-chords-from-strands* (build-reduced-chords *reduced-

strands* 22))
56.
57. (defun label-chord (sets)
58. "Labeling chords."
59. (let ((set (cadr sets)))
60. (with-output-to-string (stream)
61. (terpri stream)
62. (princ "Measure: " stream) (princ (car sets) stream)
63. (fresh-line stream)
64. (princ "Set Input: " stream) (princ set stream)
65. (fresh-line stream)
66. (princ "Normal Form: " stream) (princ (normal-form set) stream)
67. (fresh-line stream)
68. (princ "T-Normal Form: " stream) (princ (t-normal-form set)

stream)
69. (fresh-line stream)

 367

70. (princ "Prime Form: " stream) (princ (prime-form set) stream)
71. (fresh-line stream)
72. (princ "Interval Vector: " stream) (princ (interval-vector set)

stream)
73. (fresh-line stream))))
74.
75. (setf *analysis-detail* (label-all-chords *vertical-chords-from-

strands*))

Example 6-64: Label PCCs in WPC Prelude 26.

After the *analysis-detail* has been bound, the global variable can be recalled at

the REPL, and the following PCC labels result (Example 6-65). Observing the SCs, it

becomes immediately clear that WPC Prelude 26 uses the majority of similar SCs as

FDL-1.

Measure: 1
Set Input: (0 3 7 0 3 7 0 3 0 3 7 0)
Normal Form: (0 3 7)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 2
Set Input: (0 5 8 0 2 5 8 2 8 2 5 2)
Normal Form: (0 2 5 8)
T-Normal Form: (0 2 5 8)
Prime Form: (0 2 5 8)
Interval Vector: (0 1 2 1 1 1)

Measure: 3
Set Input: (11 2 7 11 2 7 11 2 11 2 7 2)
Normal Form: (7 11 2)
T-Normal Form: (0 4 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 4
Set Input: (0 3 7 0 3 7 0 3 0 3 7 0)
Normal Form: (0 3 7)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 5
Set Input: (0 3 8 0 3 8 0 3 0 3 8 3)
Normal Form: (8 0 3)
T-Normal Form: (0 4 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 6

 368

Set Input: (0 2 6 9 0 2 6 9 9 0 6 2)
Normal Form: (6 9 0 2)
T-Normal Form: (0 3 6 8)
Prime Form: (0 2 5 8)
Interval Vector: (0 1 2 1 1 1)

Measure: 7
Set Input: (11 2 7 11 2 7 11 2 11 2 7 2)
Normal Form: (7 11 2)
T-Normal Form: (0 4 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 8
Set Input: (10 4 7 0 4 7 10 4 10 4 7 0)
Normal Form: (4 7 10 0)
T-Normal Form: (0 3 6 8)
Prime Form: (0 2 5 8)
Interval Vector: (0 1 2 1 1 1)

Measure: 9
Set Input: (8 5 8 0 5 8 0 5 0 5 8 0)
Normal Form: (5 8 0)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 10
Set Input: (7 3 7 0 3 7 0 3 0 3 7 0)
Normal Form: (0 3 7)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 11
Set Input: (11 2 7 11 2 7 11 2 11 2 7 11)
Normal Form: (7 11 2)
T-Normal Form: (0 4 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 12
Set Input: (0 3 7 0 3 7 0 3 0 3 7 0)
Normal Form: (0 3 7)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 13
Set Input: (0 5 8 0 2 5 8 2 0 5 8 0)
Normal Form: (0 2 5 8)
T-Normal Form: (0 2 5 8)
Prime Form: (0 2 5 8)
Interval Vector: (0 1 2 1 1 1)

Measure: 14
Set Input: (0 5 8 11 2 8 11 5 11 2 8 11)
Normal Form: (11 0 2 5 8)

 369

T-Normal Form: (0 1 3 6 9)
Prime Form: (0 1 3 6 9)
Interval Vector: (1 1 4 1 1 2)

Measure: 15
Set Input: (0 4 7 10 4 7 10 4 10 4 7 10)
Normal Form: (4 7 10 0)
T-Normal Form: (0 3 6 8)
Prime Form: (0 2 5 8)
Interval Vector: (0 1 2 1 1 1)

Measure: 16
Set Input: (0 5 8 0 5 8 0 5 0 5 8 0)
Normal Form: (5 8 0)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 17
Set Input: (0 6 9 0 6 9 0 6 0 6 9 0)
Normal Form: (6 9 0)
T-Normal Form: (0 3 6)
Prime Form: (0 3 6)
Interval Vector: (0 0 2 0 0 1)

Measure: 18
Set Input: (11 2 8 11 2 8 11 2 11 2 8 11)
Normal Form: (8 11 2)
T-Normal Form: (0 3 6)
Prime Form: (0 3 6)
Interval Vector: (0 0 2 0 0 1)

Measure: 19
Set Input: (11 2 7 11 2 7 11 2 11 2 7 11)
Normal Form: (7 11 2)
T-Normal Form: (0 4 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 20
Set Input: (0 3 7 0 3 7 0 3 0 3 7 0)
Normal Form: (0 3 7)
T-Normal Form: (0 3 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Measure: 21
Set Input: (11 2 7 11 2 7 11 2 11 2 7 11)
Normal Form: (7 11 2)
T-Normal Form: (0 4 7)
Prime Form: (0 3 7)
Interval Vector: (0 0 1 1 1 0)

Example 6-65: PCCs labels of WPC Prelude 26.

By creating an analysis script, conducting a pitch data analysis, creating

 370

clustered histograms, and labeling PCCs in WPC Prelude 26 it can be concluded that

this prelude was used as a ML data source for FDL-1. The next step would include

establishing PCC succession, and voice-leading rules, along with their probabilities.

With that information semantic network graphs could be generated and compared to the

graphs generated for FDL-1. Furthermore, these methods can be expanded, and all the

modularized functions can contribute to analyzing all nine posited source piece of FDL-1

as a corpus at once.

 371

CHAPTER 7

CONCLUSION

The dissertation first defined what constitutes to an algorithm, and what

algorithmic thought is from an orthodox computer science perspective. Furthermore, the

treatise has shown that algorithmic practice in music can historically be traced back at

least to antiquity, and each historical period has at least one representation of

algorithmic practice.1 Algorithmic practice can be part of the compositional process, but

can also be part of the analytical and music theoretical process. Both practices form a

symbiotic relationship. However that does not mean that all music is necessarily

algorithmic in character. But even if music is not algorithmic in character, algorithmic

processes still can be used to explain and analyze music.

With the advent of lambda calculus and computing during the twentieth century,

which continues through the twenty-first century, algorithmic processes can be

represented as computer code (which is a linguistic representation of mathematical

code). Musical code, representing musical information, almost instantly became part of

computing after WWII. Research into AI led to research into the very nature of human

thought through cognitive science. Musical thought is part of human thought and was

immediately integrated into AI research. The term of “AI” research in the meantime had

become rather unpopular through doomsday scenario narratives, since human beings

1 Perhaps, it can be traced back even further, but older written records do not exist. It can,

however, be postulated that from a cognitive perspective algorithmic thought can be traced back to the
emergence of human intelligence altogether.

 372

would like to think of themselves as being on top of the food chain, and from a

survivalist perspective reject transhumanism. However, all aspects of modern life

actually make use of AI technology, which can be recognized through veiled terms like:

problem solving, knowledge representation, planning, learning, natural language

processing, perception, motion and manipulation, social intelligence, creativity, etc.

Algorithmic thought is one of the basic building blocks of AI, and all computationally

devised AI can be algorithmically represented.

The chapter on David Cope described Cope’s narrative of how he became

involved with algorithmic composition and his algorithmic thought process from the early

1980s until now. Cope seems to like to create lore around how he uses algorithmic

practices to analyze music and to compose music. It seems as if Cope, who is a self

admitted “Trekkie,” consider himself part of a science fiction narrative, perhaps in the

same way as a Klingon opera is a musical representation of science fiction narrative.2

One could claim that Cope is a “science fiction” composer; the same way that Chopin is

a “Romantic” composer. However, the section also described Cope’s evolution of trying

to compose with established music theory rules as algorithmic procedures, to actually

programming learning algorithms that learn, or create their own rules based on analyzed

works, rather than what music theorist’s had established as the rules of how music

works.

Additionally, while working through David Cope’s code representations of

algorithmic principles, an important aspect of programming came to light. Code itself

2 Cope, Tinman Tre: A Life Explored, 499-500.

 373

can become obsolete within only five years. One of the single most important problems

with any type of discourse dealing with computer technology is the problem of

obsolescence. The programming language may be or become outdated, or have fallen

into disfavor over other programming languages, due to trends, fads, or just clever

marketing schemes. The hardware may be or become outdated and aforementioned

software may not run on any currently available hardware, due to the industry practice

of planned obsolescence.3 Any work that is affected by obsolescence is by many to be

considered ephemeral in nature.4

Common Lisp is the programming language of choice for David Cope. It is clear

that Cope learned this programming language in the late 1970s and early 1980s, and

that Lisp was one of the few programming languages that already existed and had

acquired a certain degree of longevity, since it was developed in the late 1950s. There

are currently not too many programmers still embracing Lisp. Even Voyager 1, the

spaceship that just recently had left our solar system, was initially programmed in Lisp,

3 “The concept of planned obsolescence was first put forward by Bernard London in 1932, as a
proposed solution to the Great Depression.” Garnet Hertz and Jussi Parikka, "Zombie Media: Circuit
Bending Media Archaeology into an Art Method," Leonardo 45, no. 5 (2012): 425.

4 Francis T. Marchese, "Conserving Digital Art for Deep Time," Leonardo 44, no. 4 (2011): 302.
Perla Innocenti, "Preventing Digital Casualties: An Interdisciplinary Research for Preserving Digital Art,"
Leonardo 45, no. 5 (2012). Ron Kuivila and David Behrman, "Composing with Shifting Sand: A
Conversation between Ron Kuivila and David Behrman on Electronic Music and the Ephemerality of
Technology," Leonardo Music Journal 8, no. Ghosts and Monsters: Technology and Personality in
Contemporary Music (1998). Jon Ippolito, "Ten Myths of Internet Art," Leonardo 35, no. 5 (2002): 486-
487. Curtis Roads and Morton Subotnick, "Interview with Morton Subotnick," Computer Music Journal 12,
no. 1 (1988): 14. Stan Link, "The Work of Reproduction in the Mechanical Aging of an Art: Listening to
Noise," Computer Music Journal 25, no. 1 (2001): 37. Richard Rinehart, "The Media Art Notation System:
Documenting and Preserving Digital/Media Art," Leonardo 40, no. 2 (2007): 181. Adriana P. Cuervo,
"Preserving the Electroacoustic Music Legacy: A Case Study of the Sal-Mar Contruction at the University
of Illinois," Notes, no. September (2011): 37, 47. Hertz and Parikka, however, argue that due to an
ecological footprint that obsolescence can never be fully achieved if devices still exist, even if it has been
“consumed” completely. Hertz and Parikka, "Zombie Media: Circuit Bending Media Archaeology into an
Art Method," 429.

 374

but was later re-programmed in another programming language.5

However, the code that holds the algorithms themselves does not become

obsolete, rather only the code that implements code in its surroundings. If code used

any type of GUI (its surroundings), it tended to become obsolete at a more rapid pace,

since the entire computer industry is based on continual improvement of the user

experience, or “planned obsolescence” as mentioned above. If, however, code

remained free from GUI elements, and was kept only in a text-based environment, it

was still partially functioning. For example, Cope’s ATN code, which did not feature any

GUI elements, in Computers and Musical Style – from 1991 no less (Appendix B.4. p.

404) – worked with only a handful of tweaks, while other code from Cope’s Computer

Models of Musical Creativity – from 2005 – was completely unworkable, due to the

algorithmic functions of the code not being properly separated from all GUI aspects of

the code.6

Common Lisp was chosen for this works, (1) because David Cope used Common

Lisp, (2) because Cope’s creative process was influenced by the programming

language he used, and (3) because the reader needs to be taken out of her/his comfort

zone in order to learn to think through algorithmic problems from the most elemental

5 Ron Garrett, "Lisping at Jpl" http://www.flownet.com/gat/jpl-lisp.html (accessed 01.30.2014).

6 Both music21 and Humdrum are non-GUI based music analysis systems, whereas the former is
a text based environment, consists of a large collection of functions, and objects that are to be used in
Python (a modern object-oriented programming language, preferred by programmers to prototype
software) and its corresponding REPL named IDLE, and the latter consists of a series of very small shell
scripts, or scripts written in C++ or C, which can be used at the command line. However, any program
that can be run at the command line can automatically be run in Python’s IDLE REPL, or the Common
Lisp’s REPL, as was shown in this work when Graphviz was invoked from the command line within
Common Lisp code to generate graphic representations of semantic networks.

 375

level (most people with programming experience will resort to use libraries to solve

problems, but not solve problems themselves). In the future the work can continue to

flourish in (1) Common Lisp, (2) Clojure, a very recent Lisp dialect, which can utilize

entire Java libraries,7 (3) JavaScript, for quick web based and MaxMSP integration, (4)

Python, a favorite language used for prototyping, especially in regards to machine

learning,8 or (5) R a statistical programming language, also favored amongst machine

learning programmers.9

The algorithmic analysis chapter discussed what kind of computer based music

analysis systems exist, and gave a very basic overview of what can be achieved with

these platforms. Furthermore, the chapter postulated how music theory principles from

set theory can directly be applied to algorithms, and how these can be programmed.

The chapter treated the subject from a pedagogical perspective. Rather than using pre-

written software to analyze set theory principles the algorithmic music practitioner

should know how to program these principles.

The analysis chapter discussed how to integrate all previously discussed

algorithmic techniques, brought in some additional techniques, and unified these

techniques into one complete analysis of FDL-1. Of these additional techniques two new

7 "Clojure" http://clojure.org/ (accessed November 2, 2014). Akhil Wali, Clojure for Machine

Learning (Birmingham, U. K.: Packt Publishing, 2014).

8 "Scikit-Learn" http://scikit-learn.org/stable/ (accessed November 2, 2014); "Mlpy - Machine
Learning Python" http://mlpy.sourceforge.net/ (accessed November 2, 2014). "Pybrain"
http://www.pybrain.org/ (accessed November 2, 2014).

9 "The R Project for Statistical Computing" http://www.r-project.org/ (accessed November 2,
2014). Drew Conway and John Myles White, Machine Learning for Hackers (Sebastopol: O'Reilly, 2012).
Brett Lantz, Machine Learning with R (Birmingham, U. K.: Packt Publishing, 2013).

 376

methods were created, (1) a chord compression notation scheme, and (2) deriving

vertical chords from horizontal voice-leading strands. The techniques were not designed

to replace any existing analytical techniques, but rather add additional analytical

perspectives. In the process, key finding algorithms, histograms, various tables, chord

labels, set theory, voice-leading procedures, probability tables, and machine learning

techniques were utilized, to create semantic networks or knowledge representations of

FDL-1. The combination of the probability tables and the semantic networks created a

representation of how Cope’s association networks could hypothetically have looked

like, after the Emily Howell program had learned Cope’s carefully selected corpus.10

In sum, the work has taken the reader through a brief history of algorithmic

practice in music, and examples of how to express these algorithms in a programming

language have been provided. The beginning of the work featured very simple

algorithms of easily identifiable algorithmic music practices, which were substantiated

with a thorough literature review, where these practices have previously been

considered as algorithmic practices. The end of the work featured more complex

algorithmic expressions that involved machine learning, and how to apply all the

algorithms presented in this study in a meaningful manner toward an analytical project.

The application of these algorithms was closely tied to FDL-1, where the composition

itself was used as the progenitor of the algorithms that were needed to create an

10 A few parameters that have to do with the actual learning process have been omitted. The

omitted parameters involved affirmation and negation of associations created by the association network.
It should also be noted that the establishment of semantic networks of voice-leading, and chord
succession rules is not enough to re-create an actual algorithmic composition; formal aspects also need
to be considered.

 377

expressive analysis. In essence this work represents a tutorial on how to think

algorithmically through musical problems, and how to realize algorithmic solutions

through actual programming code expressed in Common Lisp, rather than through

mathematical representations of algorithms, or pseudo code, in hope that the

algorithmic procedures can be used in other programming languages.11

In the age of “Big Data,” knowing the basic algorithms to analyze music will

become part of every music scholar’s skill set, either as an end user of one of the

established software platforms, or as a creator to push the envelope forward in what is

possible with computational music analysis/theory.12 Since “Big Data” includes access

to almost seemingly unlimited scores, chord succession rules, voice-leading

procedures, dynamic variations, rhythmic studies, timbre studies etc. can be studied on

a large-scale basis. In other areas of information research, machine learning techniques

have become an essential necessity just to be able to process the sheer amount of data

that exists. This study showed how to use one machine learning technique within a

music theoretical context with one composition. Many other machine learning

techniques exist to handle “big data,” and could be tailored for music theory, and

11 Coming from a language perspective the study of Common Lisp, with its close relationship to
lambda calculus, equals the study of Latin or ancient Greek, especially in regards to its role within the
computer music field. From a music perspective the study of Common Lisp in association with algorithmic
composition, or more generally computer music composition, is equivalent to the study of sixteenth
century counterpoint, in order to understand sixteenth century music.

12 According to David Huron “Big Data” has been a direct result of the interconnectedness of
researchers through the internet, where data keeps constantly accumulating by (1) “many people working
collaboratively” – Wikipedia, (2) “many people providing a large market that encourages corporate-
initiated data aggregation (e.g., iTunes, Google, Amazon.com),“ (3) the “Human Genome Project…–
making Big Data a compelling interest among researchers and granting agencies,” and (4) “expansion of
score-based materials (e.g., International Music Score Library Project), as well as various audio and MIDI
formats.” David Huron, "On the Virtuous and the Vexations in an Age of Big Data," Music Perception: An
Interdisciplinary Journal 31, no. 1 (2013): 4.

 378

analysis projects. All functions in this study can be adapted and applied to a large

corpus of compositions, or even several corpora.13

13 “Corpus,” and “corpora” are terms borrowed from NLP, or natural language processing

practices. James Pustejovsky and Amber Stubbs, Natural Language Annotation for Machine Learning
(Sebastopol: O'Reilly, 2013), 5-20.

 379

APPENDIX A

SCORES

 380

A.1. Ma fin est mon commencement

542 3

8

Tenor

Cantus

Triplum
8

1

98 10

8

6

8

7

12 14 15

8

8

11 13

1917 18 2016

8

8

23 24 252221

8

8

 381

Ma fin est mon commencement
29 30

8

8

26 2827

3332 35

8

8

31 34

3837

8

8

4036 39

 382

A.2. BWV 1087: Verschiedene Canones über die ersten acht Fundamental-Noten
vorheriger Arie

 383

A.3. From Darkness, Light: I. Prelude - Emily Howell (David Cope)

2

ff

ff

= 1121 3

654

87 9

 384

From Darkness, Light - I. Prelude

!

!

"

!

"#

!

12

$

$

!

"

!

"

$!

!

$!

! !

!

!

%

!
&

%

$

$

!

! !

!$

!

!'
!

!'

!

!

$

#
'!

!

'!

! !

!'
!

!'

!

!

$

#
'!

!

'!

!

$
#

"

!&

"

!&

!

!

!

$

!

!

$

!

%

!
&

%

$

!$

!

! !

!$!

!

!

!

!

"

!&

"

!&

!

!

!

!

!

!

! %

& !

%

!
"

!

"

!

!

!

!

! (

10

)

(

(

!

!

!

!

!

! "

!

"
!

!

!

!

"

!

"

$!

!

$!

! $!

! !&

"

!&

!

!

!

!

"$

!

!

$

!

!'
!

!'

"

!

"

'#

!

!'
#

!

!

11

!

#

"

!&

"

!&

!

!

* !

!*

!

!

!*

!

%

!&

%*

!

!

!*!

!

!

!

$
$

15

!

"

!

"

!

!
"

!

"

!

!

!

!

$ *

!

!

*

!

!

!
!$

$!

!

!

"

!

"

!

$!

!

& !

"

& !

"$
!

!
'#

!

!'
#

*

!

!

!'

*

#

$

!
'!

!

*

"

!

"#

!

14

!

!'
!

!'

$

!

!!

$

"

!

"

!

$

!

!

!

!

$

!

!!

"

!

"

%

&
!

%

!

!

!

! (

13

(

(

)
!

!'#

!

!'
#

$

$

!

!

%

!

!

$

$

!

!

$

&
!

%

!

!

!

!

!

'!

!
'

$!

!'#

!

!'
#

$

!

!

$

!

"

!&

"

!

!

!

!

!

!

!

!&

"

!

"#

!

18

'!

!

'
!

!

!

!

!

!

!
"

!

!

!

!

!

!

!

!

!

"

!&

"

!&

!

!

!

!'#

!

!'#

!

%

!&

%

!

!'#

!

'#

!

!

!

!
'

!

!'

!

!

!

"

!&

"

!&"

!

!

!
!

!

!

!

!

%

!&

%

!

!

!

!

"

!&

"

!&

!

!*

!

!

*
!

!*

!

%

!&

%*

!

!

* !

! !

#

"

!

"

!

!

! (

16

)

(

(

!

!

*
!
"

!

"

!

!

!

!*

!

!

!

!

!

!

!

"#

!

17

!

!

!

!

!
"

!

"

!

!

!

!
'#

!

!'
#

*

* !

!

!'
!

!'

*
"

!

 385

From Darkness, Light - I. Prelude

!

"

"

"

#

!

"

"

#"

"

#

"

"

$

!

"

"

! "

"

#

"

"

"

"

"

"%&

"

"%
&

"

"
#&

"

21

"

"%
"

"%

#

"

&

"

"

!

"

"%
"

"%"

#

"

"
! "

"

"

""$

"

"

"

"

! "

"%&

"

"%
&

"

'

"
$

'

!

"

'

"
$

'

"

"

"

"

"

"

"

"%
"

"%

"

"%&

"

"%
&

#

"

#

"

"

!

! (

19

)

(

("$

"

"

"

"

"

"

#

"$

#

"

"

#

"$

#

"$"

"

"

"

"

"

"

"

"

'

"
$

'

"

"

"

"

"

"

"

#

"

#&

"

20

#

"

"

"

#

"

"

"

"
!

!

24

"

& #

"

!

#

"

#

"

!

"

"

"

"!

"

"'

"
$

'

"

"

!

!

"

"

!

"

"

"

"

!

!

%"

"
%"

%"

"

& %"

"!

!

&
!

%"

"
%"

"

"

"

& %"

"!

!

&
% !

!
!

&

"$

#

"$ "

"

"

" #!

"

"

!

'

$
"

'

"

"

"

!

!

"

"

! "

"!

"

"

"

"!

$ "

#

$ "

#

!

!

"

"

"

"

"

"

'

$
"

'

"
#

"

#

" "

"

22

(!

!

(

(

)

"

"

!"

"

"

"

!"

"

#

"

#

"
!

"

#

"

#

!

"

"

"

"!

! "

"

$ "

#

"

"

!"

"

$ "

#!

"

"
"

"%
"

"%

"

"%&

"

"%
&

!

"

"

23

"

"

#

#&

"

" "

"

"

"

!

#

"

#
"

!

!

"

" !

"

"

!"

#

$ "

#!

$

*

%"

"
%"

"

**

*

&
%*

*

!

"

"

"

"

"

"

27

"

& #

"

#

*
"

"

*

*

#

"

#
"

*

"
"

"

*"

"

*

* "

"

*

*

"

"

"

"

!

&
%"

"

& %"

"!"

"

"

'

$
"

'

!
#

"

#

&

%"

"
%"

"*

&
%"

"

& %"

*

*

"

*"

"
26

"

& #

"

#

* %"

"
%"

"

*

*

*
#

*"

"

*

$ "

#

$ "

25

(!

!

(

(

)
*

"

"

*

*

'

$
"

'

"

*"

"

* "

"*

"

"

* "

"*

$ "

#

$ "

#

*

*

"

"

"

"

& %"

"

*

*

"

"

*

*

'

$
"

'

"

*

*

"

"

* #

"

#
"

"

" *

"

"

*

"

* *

* "

"

"

"

*

"

 386

From Darkness, Light - I. Prelude

!

!

!

!

!"
!

!"

!

!

#

$
!

!

!

!

#%

!

29

$

#

!&

#

!&

!

!

&

!

'

!
& !

'

%

!

!"
%

!!

!

$

'

!

!"
!

!

!

'

!&

'
!

!
"!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!
#

!

#
"

!

!

#

!&

#

!&

!

!

!

!

!
!

!

30#

!

#

!

!
#

!

#

!

!

!

!

!

!

!

!"%

!

!"
%

!

! (

28

)

(

(

#

!

#%

!

!"
!

!"

!

!$

!

!

$

!

#

$!

!

!

!$

!

! '

$

#

!&

#

!&

%!

!

!

!
%
"!

!

% "!

!

! !

!
!

$

$

#!

$

$

$

#

!

#%

!

32

$

%
"!

!!$

!

!"%

$

!

!"
!

!"

$

$

$!

!!

$

$

!

!

$

$

#

!&

#

!&

$

$

!

!

!

!$

!

!

$

!

$
!
#

!

#

!

!

$
!
#

$

!

!

$

$

!

!

$

!

#

$

!

!

#

!

#

!
$

!

!

$$!

!

!

$

!

'

!&

'

$

!$

#

!&

#$

!

!

$!

$

!

!!&

$!

!

!

!

'

!&

'!

!

!

!

!

!
#

!

#

#

!&

#

!&

!

!

!

! %!

!

(

31

)

(

(

!

!

!

!"%

!

!

!
"

!

!"
!"%

$

!

!"%

!

!

!

! $

$ "
%

$

$!

!$

!

!

$

!

'

!&

'

$

$

!

!

$

$

!

!

33

!

!!

!

!

$

$

"!

!
"!

!

% #

!

#

$

% "!

!

% "!

!

*

"!

!

"
!

!

!
'

& !

'

!
!

!

!

!!

!

*

!

!

!

*
#

!

!

!

! !

#

!

##
!

*

35

!

% #

!

#

!

!

!!

!!

*

!
#

!

#

!

!

!

&

"
!

!"

*

!& !

#

& !

#

!

!!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

*

'

!&

'

*
#

! *

!

!
"

!

! %

!

!
%
"!

(

*

%!

!

#

!

!

!!

!
(

(

)
34

!
!

!*

#
!

& *!

!

!

#

!

!

!

!*

*

'

& !

'

!

*& !

#

& !

#

!

!*

!

!

* "!

!
"!

!

*

36

!

% #

!

#
*

!

!

% "
!

!

!

!

"

*

%

 387

From Darkness, Light - I. Prelude

!

!

"

!

"#

!

39

"

$

!

!

$

$

!

!

$!

!

!
"

!

!

%

!&

%

!

!

!

!

!

!

!
'

!

!'

!

!'#

!

!'#

!

!'
!

!'

!

!$

!

!'#

!

!'
#

$

#"

!&

$!

!

!

!

!

!$

"

!&

!

%

!&

%

!

!$

!

!

$!

!

!

!

!

"

!&

"

!&

!

!

!

!

!

!

!

%

!&

%

!
"

!

"

!

!

!

!

! (

37

)

(

("

!

!

!

!

!

!

!

!
"

!

!
"

!

"

!

!

!

!

!

!

!

&

"

!&

!

!

!

!

!

!

"

!

!

!
'

!

!'

!

!'#

!

!'#

!

"

!

"#

!

38

"

!

"

'!

41

!

#

#
'!

!

'!

!

$!

!

!

!

!
'!

!$

!

!

!

!

!

!

& !

"

& !

"

!

!

!

!

"

!

"
!

!

!

!

!$

!

!

$

!

!

$

"

!

"
!

!

!

!

!

!

!

$!

!

!

!

%

& !

%

!

$

!

!

!

!$

$

$

"

!&

"

!&

!

!

!

!'#

!

!'#

!

%

!&

%

#

!

!
'

!

!'

!

!

!

!

!

! (

40

)

(

(

!

!

!

!

!

!

"

!&

"

!&# '!

!

'!

!

!

!

'!

!

'
!

!

!

!

!

!

%

& !

%

!

!

!

!

!

!

"

!

"

"

!

"
!

!

!

42

!

"

!

"

'!

!

#

!

!$

!

!

'!
#

!
'!

!
44

!

"

!

"

$

'!

!

$ "

!&

"

!& $

!

!

$!

!

!

"

$
!

!$

!

"

!$

!

!

!

!

!

$

!

"

!

"

!

!

!

!

!

!

!

!

$

!

!

$

"

!

"

!

!

%

!
&

%

!

!

$!

!

!

!

$

$

$ "

!&

"

!&

$

!

!

!

!$ *

*

!

!!

!*

!

!

!

%

!
&

%

*

*

"

!&

"

!&

* !

!

*

!

!

**

*

#

*

43

(!

!

(

(

)

#

*

*

*

!

!'#

!

!'

!

!'
!

!'

*

*

*'!

!
'!

!

"

!

"#

!

45

$$

!

!

!

%

!
&

%

!

!'#

!

!'
#

!

!

$

"

!

"

!
*

!

!

*

!

!

*

*

*

!

!

!

!

!

*!

*

 388

From Darkness, Light - I. Prelude

!

"

"

"

"

"

"

"

$

"

$!

"

"

""

"

!

!

"!

"

$

"

$ "

"

% &"

"!

!

"

"

"

"&
"

"&
%

!

"

"

!

"

"

"

'

"
#

'

"

"
"

"!

"

"
"

"

"

'

"
#

"

!

"

"
!

$

"

$

"

!

!

"

"&
"

"&

$

"

$%

"

48

"

"

!

'

!

"

"&%

"

"&
%

(

(

"

" $

"

$

"
(

"

"

""

"

(

"

"(

"

$

"

$

("

"

("

"

(

(

"

"

"

"

!"

"

!

!

)

46

*

)

)

%

"

"

$

"

$

"

$

"

$!

"

(

(

(

&"

"
&"

%
&"

"

% &"

"

(

(

(

&

!
(

47

"

"

% $

"

$

!
(

"

"

(

"

"

(

((

"

"

(

("

"

(

"

'

"
#

'

"

"

"

"

"

""

"
&"

"

&
%

50

"

% $

"

$

&
"

"

"

$

#

"

"

""

"

"

"

$

"

$
"

"

$

"

""

"

$

"

$
"

"

"

"

"

"

"

"

"

"

"

$

"

$

"
'

"

'

"

"

"
"

"

% &"

""

"

"

$

"

$"

"

"

"

"

"

'

"

'

"

!

!

"

"

!

"

"!

!

"

$

"

"!

$

"#

"

"!

!

"

"

%

!

!

!

!)

49

*

)

)

!

!

!

"

"&%

"

"&
%

!

&"

"
&"

!

!

"

"

51

"

% $

"

$

"

"

" "

%
&"

"

% &"

&"

"
&"

"

"

"

!

'

!

"

"

"#

'

!

!

!

"

"

!
$

"

$
"

!

!

"

"

&"

"
&"

"

!

!

!

!

"

"!

$

"

$%

"

53 $$

&

"

"

"

"

54

"

% $

"

%

&
""

$
"

#& ""

"

"

&%

"

"&%

"

"

"

'

"#

'

"

" "

" "

"
"

$

"

$
"

"

"

"

"

"

$

"

$
"

"

"

"$

"#

$

"#

"

"

"

!

!

"

"

!

"

"!

"

$

"

$

#

'

! "

"

"

"!

"

"

"

'

"

!

!
"

"!

"

"

!

!

!

!)

52

*

)

)

!

"

"

! !

"

"

!

"

"

!
"

$

"

$

"

"

"

"

"

"&%
"

"
"

"

"

"

"
$

"

$

&
"

"

"
"

!

"

!

"

'

"#
!

"

"&%

"

"

""&
%

"

"

"

"&%

'

 389

From Darkness, Light - I. Prelude

57

!
!

!"

!

!

"

#
$!

!

$!

%

!

%
!

!$
!

!$
"& !

%

& !

%"

!

!

"

!

!
"

%

!

%

!

"

!

!!

!

!

!

!

!

%

!

%

!
"

!

!

"

"

!

!

" !

!

!

!

!

!

'

&
!

'

!

!

!

!"

!

!

"

& !

%

& !

%

!

!

!

!"!

!'

&
!

'

!

!

!

#
$!

!

$!

!

!

!

!

!

!

!

%

!

%

!

!

!

(

56

!

%

!

%!

!
(

(

)
55

#

$!

!
$!

!

#
$!

!

$!

"

$!

!
$!

!

'

&
!

'

!

!

!"

!"

!

!

"

!

!

!

!

!

!

!

%

!

%

!

!

!

!

& !

%

%

& !

* *

*

* *

*

$!

!
$!

!

*

!

'

!
&

'

* *

#
$!

!

$!

!!

!*

"

"

!

%

!

% #
$!

!

!

!

!$#

!

%

!

%#

!

59

!

!

!

!

!

!

"

%

!

%

!

*

!

!

*

*

*

!

!*

!

!

*

!

!

*!

! !

!

*

!

!

*

!

!

** !

!

*

%

!&

%

!&

* !

!

*

!

'

!&

'%

$!

!

!

!!

!

!

!

!

!
!

!

!

%

$

!

!

!

!

!
!

#

%

!

%

!

! (

58

)

(

(

%

!&

%

!& !

!!

!

!

!!

!

"!

!

'

&
!

'

!

" !

!

!

!

& !

%

& !

"

!

!

" %

$!

!
$!

!
60

!

%

!

%

"

"

!

!

"

#
$!

!

$!

!

"

!
%

!

%

"

!

!

"

"

!

!

!

!

$!

!
%

!

%

!
"

!

!

"

"

!

!

"

"

!

'

!&

'

"

"

!

!

"

!

!"

!

!&

%

!&

"

!

!"

%

! " !

!"

!

!

%

!&

!

!

%

!& !

!

!

!

!

!

!

!

!

!
$

!

!$$!

!
#!&

'

"

!

!

!

'

!

!$#

!

!$#

!

!

"

%

!

%#

!

63

!
%

!

%

" !

!

!

" !

!

"

"

!

"

!

!

"

"

!

!

"

!

!

#
$!

!

$!

!

"

!

!

(

(

)
61

(

!

!

!
%!

!

"

"

!

%"

"

"

%

!

%#

!

62
"

!

!

"

"
$#

!

!$
#

" "

"

"

!

!$
!

!$

"

!

!

"

!

!"

& !

%

& !

%

"

"

!

!

"

"

!

'

!&

'!

!"

 390

From Darkness, Light - I. Prelude

!

!

"

!

"#

!

65

!

!

!

!

!

!

!

!$#

!

!$#

!

!
$

!

!$

!!!
"

!

"

!

!

!

!

!

% !

"

% !

"

!

!

! !

!

!
"

!

"

!

!

!

!

"

!%

"

!%

!

!

&&&&
$

%

&&&$%

&$
#

&$

66

!

!
$

!

!$

'

(
64

'

!

)

!%

)

!

!
'

!

!$#

!

!$#

!

!"

!

"

!

!

!

!
!

)

!%

) !

!!

!

!

!

!

!

!

 391

A.4. Prelude 26 in C Minor from the Well-Programmed Clavier - Emmy (David Cope)

21 3

654

97 8

1210 11

1413 15

 392

The Well-Programmed Clavier - Prelude 26

18

!

"

!!# !

!#

"

!
$!

%

&!# !$!

%

&# !!

!!!#

!# !

"

!
!

!
!!!!

!!!

"
!

"

'''(

''')
16

!
!!! !# !$!

!# !$!

17

!

"
&

%

!

!

!

"

!

21! ! &

#
%!

!
!

!
"

!

20"

!
#

!

#
!

"

!

"!

! ! !!

"!
!

!# !!

!! # &

%'''(

''')
19

! !
&

% !
!

!

!!

!
! ! !#

!

!!

!
**

!
!

25

+

*
!
*24

+

*
!
* *!!!

#

26

+

*
!
* !!*!!!

*
!

*

!
!

!
!
*!

*
*

+

! *!22

('''

) '''" *
!

*

!
!

!!

*
!

*

!
!
*!

!
*

*
!! *

!

23

+

*

!$!

*

!
#

!
*!

*

*
!

*

!
!
* 30

+

**
!

#
*
!

!#
!

*

*
!$

31

+

*
$

*
!

*!!$!

*
!

*

!
!
* 28

+

**
!

!

'''(

''')
27

!!!*

+#

29

+

*
!
*

*
! !!!

!
*!!!

*

!

!

*!
*!

!
*!

*

35

+

*
!
* # !!!

!
*

*
!! # *

!
! !

#
*

+

36

*
!

!
! ! *!!

*

!!# *
!*

!

'''(

''')
32

#
33

+

*
!

!

*

* !* # !

+

!

*

!

*

!
!
*

!
*

*

! 34

+

*

!!! !

$ *
!

$!
*#

*
!

*
!

!
* 40

+

**
! *

!
*
!

$!
*# *

!

41

+

*
!
*

*
!!

$

!
*
!

*
!

!
* 38

+

*
!
*

'''(

''')
37

!!!

+

* 39

+

*
!
*

*
! !!!

!
*!!!
*
!

 393

The Well-Programmed Clavier - Prelude 26

!
"

" "# "
!
"

!
"!

!
"

!
" 45

$
!

" "
!

!
"

!
"46

$

!
"
!

"
!"""

"
!

!
"

!
" "43

$
!

$
!

"
%%%&

' %%%

42

! "
!"""

44

$
!

"
! !"""

!
"

"
!""

!
"

"

49

$
! """ !"

!
"

!
"

"
!

"
!"! "

"
!"""

!
"

!
"

" "
!!

$
!
"

!
" 50

$
! ""51

$
!

!
"

"
!"

%%%'

%%%&
47

" "
!

!
"

!

" "

"

48

$
! "

!
"! " !
"

!
"

""" !
!
"

!
" " !

"
"
!
"
!

"53

$
!

"
!

!
"

!
"

$
!54

$
!

"
"

"
!""" "

!
"
!

" " " !
"

%%%'

%%%&
52

" !
"

55

!
"

"
!""

"
!

!
"! !

"
!
$

56"

$

" !
"

!""
!
"

!
"

!
"

!
" 60

$
!

"
!

"
!

!
"

!

61

$
!

"
"

"
!"""

"
!

!
"

!
" "58

$
!

$
!57

& %%%
' %%%
"

!""" 59

$
!

"
!

"
!"""

!
"

"
!""

!
"

" !
"
"
!!

" " " 65

$
!

"
!" "

!
!
"

"
!
"

!
"

"
!

!
" !

$

64

"
!"""

!
"

"
!""""

$
!

"

66

$
!

%%%'
%%%&

62

$ "!
"
!

!
"

"
!"63

$
!

!
"

"
!"

!
"

!
"

" !
$

70" "
!!

!"
"
! " " ""

!
"
!
" "

"
!""

!
"

69

$
!

$
!

"
! "

!"
"!
!

"
!

68 "
$

" !
""

! "

%%%'
%%%&

67

% !
"

" !
"
!
$

71

"
"
!
"
!

!" "

!
"

#
"
!

"# " " !
"

" " " !
"

!
"
!

$

74!
$
"# " " !

"
!
$

73!
"#
"
!
"
!

" " ""
!
!
"
!

$

76 !
"' %%%

& %%%72

& !
"
"
! !
"" "!

"
!

$

75

!
" "

!
" "

!
!
"

 394

The Well-Programmed Clavier - Prelude 26

! "
!

!! "

"

!

"

!

"

!

"

! 81

#

"
!
"

!

"

#

" ! ! 78

#

"
! !"

!!

"

!

!
""

"

! !79

#

"

$$$%

$$$&
77

! "

!
!
"!!! 80

#

"
!
"

!
"!!!!

"!
" !!

"

!

!
"! !! "

"
!

"
!

"
!

"
! 85

#
"

!
"

!
"

"
!

"

86

#
"

!
!

!
"!!!

!
"

"
!

"
! !83

#

"

#

"

$$$%

$$$&
82

" !
"!!! 84

#
"

!
"

!
"!!!

"
!

!
"!!

"
!

!
"'! !!

"

!
!
"

"
!

"

! 91

#

"
!
"

!
!
"

"
#

88

#

"! "
!
"

"
!!

"
! !

!
"

"
! !!89

#

"

$$$%

$$$&
87

"
!

!
"!!! 90

#

"
!
"

!
"' !!!

"

!
!
"!

"
!

"
!
"

#

94"
!
!

"

!

" "

!"
!$
!

"

!$! !! "
!
!

"

"

#

! ! ! ! !!

"

"
!
"

#

93 ! "
!
!

"

"

#

96 !' !

$$$%

$$$&
92

$!

"

"
!'

!$! ! "
!

"
!
"

#

95 !

"

"
!$

!

"

' ! ! !"
!
"

#

101 !

"

"

#

"
!

$ "
!

! !

"

"
!
"

#

100!

"

!

" !
!

"

!

"

! "$!!

"

"
!
"

#

99! "
!
!

"

! "
!

97

& $$$

% $$$
$

! ! !!

"

"
!

! ! "
!
!

"

98 ! !

#

"
'

! !
"$" !!! "

"
!

"
!

!
"! ! !$ "

#

105

"
!

' !
"!! !

"

106

#

"
!

!

'$

104

#

""
!$ "

!
"

!! !$!$

!
"102

& $$$%
$$$% "!

"
$!$! "

!$
!
"
!"

#

!
"
!$
"

#

103

"

!

"
!

 395

The Well-Programmed Clavier - Prelude 26

!
" !
"
!
#

" !
"$
"
!

$
!

" "" !
"$

109 "" " !
"%
"
!

! "

%#

"$ ""
!

108

#
!

"
!

!
"

!
" 111

#
!

"
!

$$$&

$$$'
107

! "
!"""

"
!

!
"

"
!
#

110 ! ""
!
" "

!
"!

"

"
!"

!"
"
!

!
"!

"
!

#
"

113 ! """ " "!
"

!

#

114

#

!"

!
""

!

""

"
!

"
!"""

"
!

!
"

!
"

$$$&

$$$'
112

" "

!
"
! !

"
"
!" 116

#

!
"
!

!
"115

#

! ""

"

!

"
"
!""

!
"

"
!$ "" 120

#

!
"
!

!
"

!
"

!

"
"
!121

#

!
"
!

!
" """

!
"

!
"

"
! 118

#

!
"
! !

"
$$$&

$$$'
117

"""

#

!
"
!

!
" "119

#

!$"""

!
"

"
!

" "
! !
!
"!

" "

"
!!

#

123 "" 126

##

###
"
!" !

"
" 124

#

!

#

! !
"
"
! !

!
!
"" "

122

' $$$
& $$$
$ "

"
!""

"
!""

!
"

!
"!

#

125

"
"

 396

A.5. BWV 846b - Prelude 1 in C Major from the Well-Tempered Clavier - J. S. Bach

21

3 4 5

86 7

11
9

10

14
12

13

1715
16

 397

The Well-Tempered Clavier, Book 1 - Prelude 1

! "#
!! ! $

%&

20

! $
%& ! "
#!' ! !

!
! !#! !

!
!
!

! " "#
! ! !

!
!! ! $%& !! "#

! ! !
!

! ! $
%&

(
)

18

! ! ! !
$
%&

19$
%& !

! !!!
!

!!
! "

!
#! !

! !%! $
!
!

* ! "#
!!

&
! $

%
&

22

&
! !

!
!

"
! $
%

! !
!

!! ! #! !! !
!" ' ! "## !

%
! ! $

%&

23

!
!(

)

21

" !$!
!
!! ! $

%
&"

!
& !

!
!
' ! ! !

!
!#!"!

26

&

!
%
$

!
!!!# "!

!#"!&%
$!!

!
!! !!!

!&%
$!!! !!!# "!&%

$!!! !!!# "!&%
$24

(
)
#

!
!!!# "!

!!#"!
!!!

!
!!!!

!

25

&%
$

!! ! !
!

!$
%&

!
!

! ! $
%&"#

! ! !
!
!

! "#+
!

$
%&

29

! $
%& ! "

#+
! !
!
! !

& ! "
#! !

* ! ! ! $%
!

)
(

27

! !
!
! !! ! !

$
%&

28

! "#
! ! !

! ! "#'
! ! !

!

! ! !%& ! "#
! ! !

!
! ! !

$
%&! "#

! ! !
!

! $
%
&

32

! ! ! !
$
%
&! "#

! !' !
!

! ! !
$
%&! "#

! ! !
!

!
30

(
)$! "#

! ! !
!

$!
!
!

! "#
! !

$
%&

31

! !

! ! !! !
&&

$
%
&

34

! ! ! !
!

$
%
&

!
!
! !

! "#
! ! ! ! ! ,! ! ! !

"

)

33

(% ,,

,,

35!

!

!

! "#
! ! ! !

&&

!

 398

APPENDIX B

CODE EXAMPLES

 399

B.1. Glassworks Input Code

being selected to the thousands of a cycle; i.e., pitch 1 with a frequency

of 441.036, pitch 2, a frequency of 439.879, etc.). The result of playing

these small sounds over a continuous period of time is the illusion of a

single identifiable pitch with a very unique timbre. See Figures4 and 5.

21 Ju 1 197S

PRECEDE I
F'UNC GLAi!J
NPTI)(•25U
INST VIBF'M HIP1 HIP2 8iP3 HIP4 HjR5 HiP7 HIPS,

. TIN1 TIN2 TINJ TIN!! TIN6 TINSI
PLHI
REVERB 122,3771
•

Paae 2•t

HIP1 122,1&61
P2 ,3,,e6t5
!I ',16 11 3/, ,3, .,1116/5 ·,iii6, ',3t7 ,3, ,lil6AS ,16, ,31'! ,3,.e61
P3 SUBR
P4 HoVE/27 ,5, ,5tie ,5,',3t21il ,3, ',:S/7 ilo ,lil11
P5 F'll
P6
P7 ,811
PS
1'9 ,'1!11
P1@ HOVE/64 91!,23941
PU
P12 ,e31

2,11
PH ·r11
Pl!l ;i I
P16 il
P17 fl
P18 Bl
P1? "1"1
END I

HiP2 139,5!371
P2 1 ,1!14, 'j e61
PJ SUBR
P4 HOVE/21 ,01J
1'5 F'21
"'• ;u P7 .·e:s1
PS 4!
P9 ';821
P1e HOVE/9S 1152B,Bi
P1i
P12 ,e31
1'13 ·• 761
P14 F'21
P15 i1
1'16
1'17 'II
PU 'II
1'19 "1"1
END I
HIP3 146,1891

figure 4:

An example of input data for two instruments involved in the section of the tape using the
release of 'complex sounds' into the performance area. Note the number of controllable
parameters (19) and the necessary reference to subroutines (pitch vocabulary of 33 note
just intonation).

13 Jul

IPfliNT
TIC5

I PRINT
TyC4

I PRINT
·riC7

I PRINT
TIC3

I PRINT
·r jC1

I PRINT
TyC6

I PRINT
·ric2

I PRINT
TjC'J

I PRINT
TyCB

I PRINT
'T yC4

l'PR !NT
fiC3

I PRINT
TyC7

I PRINT
'TyC1

1978 9te5

P1J< TIC2
1!,926 0.11!34 1294 .,8 01121'! F"l

3,651!1
" ··

Ill ', 701il r;. l,l'lllllll
0,£101' 0,01illl! 1 ',051

P1J< Tic5 J3
1278 ',:i 01120 11!,927 iii ',ij33 F"1

3,649 l'l.iii69 Ill', 71:10 F"2 e,lllB0
PJ', l!leB 1',11llll8

P1J< T!C4
1262 ', i 011211J 0,9 3 " 6 F"1

3,647 0,069 Ill ', 71/JB F"2 lll,lll01'l
e,llllll0 1',11H'JS

P11< TIC7 ;$4_
1292 ',4 0ii20 0,937 0,033 F"1

.3 ,645 Ill .• e·. 10e r2
e,001!1 0 d'l011! 1',B45

plJ< TtcJ 35
01i2e e,94? 1265,5 F"1

3,642 1'!.068 e ', 71/JB r2 1!1,00111
G!,lllG!III 0.e0Qi 1',131!1

P11< TIC1 34
IIJ,948 0Jt211l F"1

3,642 0 68 lll ',7fHl F"2 1!1,000
e,011llll 0.Qj0i;i 1 ', 14S

P11< TIC6 34
l/l,957 1268,0 F"1

3,638 Ill', 71/JB F"2 r.l,lll00
lll,011JID 1 ',11l13

P11< TIC2 35
01121'! 0,958 e ·. 1246,? F'1

3,631! 0.068 0', 700 F"2 "'·"'"'0 1!1,01!11!1 lll.000 1 ',123
P1J< Tlc5

0 01120 0.959 1255,1 F"1
3,631! 0.068 e ·. 71DIIl r2 B,lil00
1'!,000 0.i;j0i;i 1,126

Pli< Tlc6 .
0ti20 0,961/J 0.036 1275,5 F"1

3,636 Ill ', 700 8,001!1
e ',01'l0 0 .11011! 1',033

P1l< TIC4 34
0,969 ' 1281', 8 F'1 '

3,634 f/J .• IIl6!! e ', 100 r:! 0,01'!1'!
e ',lllelll 0.001'] 1 ',105

P1l< TicJ
1242.,2 0;12"' 0,969 F"1

3,634 0.068 Ill ', 700 F"2 i!,elll0
1!1,£101!1 0.000 1 '. 153

P11< rtc7
1277,3 0ti20 0,978 0,11!38 F"1

3,631!1 Ill ', 701il F"2 lll,01'l0
l'l,0elll 0,000 1', e55

figure 5:

An example of printed output (digital information just before
it is output to the DAC and/or digital synthesizer). Note the
begin time of each note (first number after TIC reference;

Paae 1-21

. 2,eelll. f,iiieiii. e:m3i
4,1'llil9 1'!,101'! lll,0Biil

. 2,11l0lil • . . • s6·, ?se
4,e12 e,lll011l e,B01!1 e,ee0 e,ellllil

f,iiii0 . e'.03i • sf. is2
4',11l35 "''· 0011l "' ',110e l'l,BU

. • . f,iiil0 • • si ',4e2
4,046 e,000 e,01'l0 0,00e

2,00" . f,Qilie . "''.03i •
4',e19 e,000 e.eme "·""'"

. 2,e0111 . . f,iiif0 . ,
4,081'! lll,G!00 lil,l'lllll!l l'l,lilBI'l l'l,lilBe

. 2,eelll • . f,Qie0 . e',l'l32 ,
4,113 e,000 e,lllle e.0BIIJ 0,e01'l

f,iu0 . • sa·. 113 2,B01il
4,114 1!1,000 0,0e0 0,1ill!l0

. 2,00" . . f,0i0 .
4,117 B,0011l e,BIIll!l 1!1,1!11!10 0,0BB

. 2,0e111 .
4,11S B,0011l 0,BIIJB B,011llll 1'l,ee0

2,1!11!1"
4:,152 e ',000

. f.iiill0
0,1il0lil

'
"'. 1!11!10

•
lll,BU

f.0ai • 032 • sf, 396
4,1'.5B Ill ', 000 e ',eia e,l'll'll!l a,eu

2,1!10111 f,iilliii • . ,
4,181 e'.0ii0 e.ua e,eu e,eu

i.e., .926 followed by .927 etc.) and durations (the very next
number shown: .034 - 34 thousands of a second) in this
section of a complex tone.

Obviously the structure of each single tiny pitch cannot be separately

suggesting months of labor per second of sound. Therefore,

a type of stochastic procedure was employed allowing the computer to

select randomly within a very defined parametric control the variables of
4

 400

B.2. Glassworks Output Code

being selected to the thousands of a cycle; i.e., pitch 1 with a frequency

of 441.036, pitch 2, a frequency of 439.879, etc.). The result of playing

these small sounds over a continuous period of time is the illusion of a

single identifiable pitch with a very unique timbre. See Figures4 and 5.

21 Ju 1 197S

PRECEDE I
F'UNC GLAi!J
NPTI)(•25U
INST VIBF'M HIP1 HIP2 8iP3 HIP4 HjR5 HiP7 HIPS,

. TIN1 TIN2 TINJ TIN!! TIN6 TINSI
PLHI
REVERB 122,3771
•

Paae 2•t

HIP1 122,1&61
P2 ,3,,e6t5
!I ',16 11 3/, ,3, .,1116/5 ·,iii6, ',3t7 ,3, ,lil6AS ,16, ,31'! ,3,.e61
P3 SUBR
P4 HoVE/27 ,5, ,5tie ,5,',3t21il ,3, ',:S/7 ilo ,lil11
P5 F'll
P6
P7 ,811
PS
1'9 ,'1!11
P1@ HOVE/64 91!,23941
PU
P12 ,e31

2,11
PH ·r11
Pl!l ;i I
P16 il
P17 fl
P18 Bl
P1? "1"1
END I

HiP2 139,5!371
P2 1 ,1!14, 'j e61
PJ SUBR
P4 HOVE/21 ,01J
1'5 F'21
"'• ;u P7 .·e:s1
PS 4!
P9 ';821
P1e HOVE/9S 1152B,Bi
P1i
P12 ,e31
1'13 ·• 761
P14 F'21
P15 i1
1'16
1'17 'II
PU 'II
1'19 "1"1
END I
HIP3 146,1891

figure 4:

An example of input data for two instruments involved in the section of the tape using the
release of 'complex sounds' into the performance area. Note the number of controllable
parameters (19) and the necessary reference to subroutines (pitch vocabulary of 33 note
just intonation).

13 Jul

IPfliNT
TIC5

I PRINT
TyC4

I PRINT
·riC7

I PRINT
TIC3

I PRINT
·r jC1

I PRINT
TyC6

I PRINT
·ric2

I PRINT
TjC'J

I PRINT
TyCB

I PRINT
'T yC4

l'PR !NT
fiC3

I PRINT
TyC7

I PRINT
'TyC1

1978 9te5

P1J< TIC2
1!,926 0.11!34 1294 .,8 01121'! F"l

3,651!1
" ··

Ill ', 701il r;. l,l'lllllll
0,£101' 0,01illl! 1 ',051

P1J< Tic5 J3
1278 ',:i 01120 11!,927 iii ',ij33 F"1

3,649 l'l.iii69 Ill', 71:10 F"2 e,lllB0
PJ', l!leB 1',11llll8

P1J< T!C4
1262 ', i 011211J 0,9 3 " 6 F"1

3,647 0,069 Ill ', 71/JB F"2 lll,lll01'l
e,llllll0 1',11H'JS

P11< TIC7 ;$4_
1292 ',4 0ii20 0,937 0,033 F"1

.3 ,645 Ill .• e·. 10e r2
e,001!1 0 d'l011! 1',B45

plJ< TtcJ 35
01i2e e,94? 1265,5 F"1

3,642 1'!.068 e ', 71/JB r2 1!1,00111
G!,lllG!III 0.e0Qi 1',131!1

P11< TIC1 34
IIJ,948 0Jt211l F"1

3,642 0 68 lll ',7fHl F"2 1!1,000
e,011llll 0.Qj0i;i 1 ', 14S

P11< TIC6 34
l/l,957 1268,0 F"1

3,638 Ill', 71/JB F"2 r.l,lll00
lll,011JID 1 ',11l13

P11< TIC2 35
01121'! 0,958 e ·. 1246,? F'1

3,631! 0.068 0', 700 F"2 "'·"'"'0 1!1,01!11!1 lll.000 1 ',123
P1J< Tlc5

0 01120 0.959 1255,1 F"1
3,631! 0.068 e ·. 71DIIl r2 B,lil00
1'!,000 0.i;j0i;i 1,126

Pli< Tlc6 .
0ti20 0,961/J 0.036 1275,5 F"1

3,636 Ill ', 700 8,001!1
e ',01'l0 0 .11011! 1',033

P1l< TIC4 34
0,969 ' 1281', 8 F'1 '

3,634 f/J .• IIl6!! e ', 100 r:! 0,01'!1'!
e ',lllelll 0.001'] 1 ',105

P1l< TicJ
1242.,2 0;12"' 0,969 F"1

3,634 0.068 Ill ', 700 F"2 i!,elll0
1!1,£101!1 0.000 1 '. 153

P11< rtc7
1277,3 0ti20 0,978 0,11!38 F"1

3,631!1 Ill ', 701il F"2 lll,01'l0
l'l,0elll 0,000 1', e55

figure 5:

An example of printed output (digital information just before
it is output to the DAC and/or digital synthesizer). Note the
begin time of each note (first number after TIC reference;

Paae 1-21

. 2,eelll. f,iiieiii. e:m3i
4,1'llil9 1'!,101'! lll,0Biil

. 2,11l0lil • . . • s6·, ?se
4,e12 e,lll011l e,B01!1 e,ee0 e,ellllil

f,iiii0 . e'.03i • sf. is2
4',11l35 "''· 0011l "' ',110e l'l,BU

. • . f,iiil0 • • si ',4e2
4,046 e,000 e,01'l0 0,00e

2,00" . f,Qilie . "''.03i •
4',e19 e,000 e.eme "·""'"

. 2,e0111 . . f,iiif0 . ,
4,081'! lll,G!00 lil,l'lllll!l l'l,lilBI'l l'l,lilBe

. 2,eelll • . f,Qie0 . e',l'l32 ,
4,113 e,000 e,lllle e.0BIIJ 0,e01'l

f,iu0 . • sa·. 113 2,B01il
4,114 1!1,000 0,0e0 0,1ill!l0

. 2,00" . . f,0i0 .
4,117 B,0011l e,BIIll!l 1!1,1!11!10 0,0BB

. 2,0e111 .
4,11S B,0011l 0,BIIJB B,011llll 1'l,ee0

2,1!11!1"
4:,152 e ',000

. f.iiill0
0,1il0lil

'
"'. 1!11!10

•
lll,BU

f.0ai • 032 • sf, 396
4,1'.5B Ill ', 000 e ',eia e,l'll'll!l a,eu

2,1!10111 f,iilliii • . ,
4,181 e'.0ii0 e.ua e,eu e,eu

i.e., .926 followed by .927 etc.) and durations (the very next
number shown: .034 - 34 thousands of a second) in this
section of a complex tone.

Obviously the structure of each single tiny pitch cannot be separately

suggesting months of labor per second of sound. Therefore,

a type of stochastic procedure was employed allowing the computer to

select randomly within a very defined parametric control the variables of
4

 401

B.3. Loading MIDI library and MIDI data

1. (defvar *this-path* (directory-namestring *load-truename*) "Holds path of
this file.")

2.
3. (defun library-loader (lib-path &optional file-name)
4. "Creates relative paths."
5. (load (concatenate 'string *this-path* lib-path file-name)))
6.
7. (defun midi-library-loader ()
8. (library-loader "Library/" "MIDI-Input.lisp"))
9.
10. ;; load MIDI library
11. (midi-library-loader)
12.
13. (defun score-loader-midi (lib-path &optional midi-name)
14. "Loads MIDI data through a relative path."
15. (load-midi (concatenate 'string *this-path* lib-path midi-name)))
16.

This Common Lisp code snippet is used in a lot of the code examples in the text,

where the (score-loader-midi) function is used. The settings will work for Clozure

Common Lisp, or CCL64, on OS X.651 The first line creates a variable to hold and

capture the relative path of where the file lives, so that subfolders can be easily

recognized even when the folder in which the file lives has been moved to a different

location on the computer. The (library-loader) function builds relative paths from

supplied text strings in lines 3-5. The (midi-library-loader) function builds the

relative path to the MIDI input library via the (library-loader) function, in this case

by supplying the “Library/” folder as part of the relative path, and by supplying the

name of the “MIDI-input.lisp” library in lines 7-8. Line 11 shoes a call to the

(midi-library-loader) function so that the library is ready to use immediately in

order to avoid warnings in the REPL. Finally, lines 13-15 define the (score-loader-

651 The easiest way to install CCL is to install it from Apple’s App Store, if you are running OSX.

For further information on how to install CCL from source, or other systems visit:
http://ccl.clozure.com/download.html.

 402

midi) function, which loads the actual MIDI file into a program in form of the event

structure described in Cope’s VM.

 403

B.4. MIDI-Input.lisp

1. ;;; ==== MIDI Input Library ====================== ;;;
2. ;;;
3. ;;; Authors: Paul Pelton, Soren Goodman, David Cope, Peter Elsea
4. ;;; Alterations by Reiner Kramer:
5. ;;; Truncated to only import MIDI files
6. ;;;
7. ;;; Purpose: Loads Bytecode MIDI data from a midi file, and
8. ;;; translates it into a list of "Cope Events," for:
9. ;;; example:
10. ;;;
11. ;;; ((0 60 1500 1 90) (500 64 1000 1 90) (1000 67 500 1 90))
12. ;;;
13. ;;; A C-Major Arpeggio. The list is organized in the
14. ;;; following fashion:
15. ;;; 1. Start (ms)
16. ;;; 2. Pitch (60 = Middle, C = PC, 0 = C4)
17. ;;; 3. End (ms)
18. ;;; 4. MIDI Channel
19. ;;; 5. Velocity (Intensity between 0-127)
20.
21. ;;;
22. ;;; This library was provided to the participants of WACM 2012
23. ;;;
24. ;;; Peter Elsea's Notes:
25. ;;;
26. ;;; It always gives a list of note events
27. ;;; Tempo events are collected and used to calculate times in ms
28. ;;; Text Meta events are colleccted into *sequence-strings*
29. ;;; Sysex is discarded
30. ;;; other events are switched with special variables
31. ;;; the function load-midifile requires a valid path as a string.
32. ;;;
33. ;;; pqe 6-04-08
34. ;;;
35. ;;; == ;;;
36.
37. (defvar *work-dir* (concatenate 'string (namestring (user-homedir-

pathname)) "desktop/")) ; default is desktop - moved here from MIDI-Save -
RK

38. (defvar *chunk-type* ()) ; only two types are defined so far
39. (defvar *chunk-length* 0) ; number of bytes in chunk
40. (defvar *midi-file-format* 0) ; type 0 is single track, type 1 is

multitrack, type 2 is indepentent loops
41. (defvar *midi-file-ntrks* 0) ; number of tracks in file
42. (defvar *midi-file-granularity* 24) ; number of ticks per quarter note -

- set by file header
43. (defvar *track-time* 0) ; unconverted track time, in ticks
44. (defvar *running-status* 0) ; running status is used
45. (defvar *track-end* t) ; flag for finding ends of tracks

(rather than byte coounting) EOT sets this nil
46. (defvar *map-track-to-channel* nil)
47. (defvar *running-track-number* 0)
48. (defvar *include-pgm* nil) ;program changes switch
49. (defvar *include-ctl* nil) ;control changes switch
50. (defvar *include-bend* nil) ;pitch bend switch
51. (defvar *include-channel-pressure* nil) ; channel pressure switch

 404

52. (defvar *include-polyphonic-aftertouch* nil) ;polyphonic aftertouch
switch

53. (defvar *leave-time-in-ticks* nil) ;switch style of time reporting
54.
55. ;; A place to put metadata -- later version can be more elegant
56. (defvar *sequence-strings* (make-array 1 :initial-contents #("sequence-

strings") :fill-pointer t :adjustable t))
57.
58. ;; a place to put tempos. all tracks must refer to this when converting

from ticks to time in ms
59. ;; format of each entry is (time-in-ticks time-in-ms usec/qn) default is

500000 usec/qn or 120
60. (defvar *sequence-tempo-map* (make-array 1 :element-type 'list :initial-

element '(0 0 500000) :fill-pointer t :adjustable t))
61. (defvar *sequence-meter-map* (make-array 1 :element-type 'list :initial-

element '(0 4 4) :fill-pointer t :adjustable t))
62.
63. ;; a place to put note data
64. ;; *sequence-notes* format is (time-ms note-number duration channel

velocity)
65. ;; This is an array to simplify setting durations when note off is

detected.
66. (defvar *sequence-notes* (make-array 0 :element-type 'list :initial-

element '(0 0 0 0 0) :fill-pointer t :adjustable t))
67.
68. ; helper for header reading
69. (defun get-type (input-stream)
70. (let ((type-string (make-string 4)))
71. (loop for i from 0 to 3
72. do (setf (char type-string i) (code-char(read-byte input-stream))))
73. type-string))
74.
75. ; general 32 bit retreiver
76. (defun get-word (input-stream)
77. (let ((value 0))
78. (loop for i from 0 to 3
79. do (setq value (+ (* value 256) (read-byte input-stream))))
80. value))
81.
82. ; general 16 bit retriever
83. (defun get-short (input-stream)
84. (+ (* (read-byte input-stream) 256) (read-byte input-stream)))
85.
86. ; division is weird- this is a try at making sense out of it
87. ; granularity is ticks per beat (quarter note)
88. ;or a frame rate FSP and ticks per frame-- pqe
89. (defun convert-granularity (division)
90. (let ((high-byte (ash division -8))(low-byte (logand #XFF)))
91. (case high-byte
92. (#XE2 (* 30 low-byte))
93. (#XE3 (* 30 low-byte))
94. (#XE7 (* 25 low-byte))
95. (#XE8 (* 24 low-byte))
96. (t division))))
97.
98. ; read the file header
99. (defun get-header (input-stream)
100. (setq *chunk-type* (get-type input-stream))

 405

101. (setq *chunk-length* (get-word input-stream))
102. (setq *midi-file-format* (get-short input-stream))
103. (setq *midi-file-ntrks* (get-short input-stream))
104. (setq *midi-file-granularity*(convert-granularity (get-short input-

stream))))
105.
106. ; read a track header
107. (defun get-track-header (input-stream)
108. (setq *chunk-type* (get-type input-stream))
109. (setq *chunk-length* (get-word input-stream)))
110.
111. ; time is listed as ticks in variable length quantities
112. (defun convert-vlq (arg-list &optional (accum 0))
113. (if (> (first arg-list) 127)
114. (convert-vlq (rest arg-list) (+ (- (first arg-list) 128) (* accum

128)))
115. (+ (first arg-list) (* accum 128))))
116.
117. ; all events are seperated by a delta time
118. (defun get-vlq (input-stream)
119. (let ((new-byte (read-byte input-stream)))
120. (if (< new-byte 128) (list new-byte)
121. (cons new-byte (get-vlq input-stream)))))
122.
123. ; times are between events, so *track-time* must be accumulated across

each track
124. (defun set-track-time (input-stream)
125. (incf *track-time* (convert-vlq (get-vlq input-stream))))
126.
127. ; read arbitrary bytes into a list
128. (defun gather-bytes (input-stream how-many)
129. (if (zerop how-many) ()
130. (cons (read-byte input-stream) (gather-bytes input-stream (1- how-

many)))))
131.
132. ; reads a length, then gathers that many
133. (defun get-metadata (input-stream)
134. (gather-bytes input-stream (read-byte input-stream)))
135.
136. ; test function for tempo searches
137. (defun first>= (data alist)
138. (>= data (first alist)))
139.
140. ;; Stuff the tempo map. format of each entry is (time-in-ticks time-in-ms

usec/qn)
141. ;; tempo and granualrity are need to convert ticks to ms
142. ;; storing the time of the tempo change in both formats simplifies the

calculations
143. (defun ADD-TEMPO (the-data)
144. (let* ((us-qn (+ (ash (first the-data) 16)(ash (second the-data) 8)

(third the-data)))
145. (last-tempo-entry (elt *sequence-tempo-map* (- (length

sequence-tempo-map)1)))
146. (last-tempo-time (second last-tempo-entry))
147. (last-tempo (third last-tempo-entry))
148. (ticks (- *track-time* (first last-tempo-entry))))
149. (vector-push-extend
150. (list *track-time*

 406

151. (if *leave-time-in-ticks* *track-time*
152. (+ last-tempo-time
153. (/(* ticks last-tempo)(* *midi-file-granularity*

1000)))) us-qn)
154. *sequence-tempo-map*)))
155.
156. (defun add-meter (the-data)
157. (vector-push-extend
158. (list *track-time*
159. (first the-data)
160. (expt 2 (second the-data)))
161. *sequence-meter-map*))
162.
163. ;; the time conversion function
164. ;; search the tempo map from the end to find tempo in effect at the time
165.
166. (defun ticks-ms (ticks)
167. (if *leave-time-in-ticks* ticks
168. (let* ((current-tempo-entry (find ticks *sequence-tempo-map* :test

#'first>= :from-end t))
169. (current-tempo-time (second current-tempo-entry))
170. (current-tempo (third current-tempo-entry))
171. (delta-ticks (- ticks (first current-tempo-entry))))
172. (float (+ current-tempo-time (/(* delta-ticks current-tempo)(*

midi-file-granularity 1000)))))))
173.
174. ;; most meta-data is text
175. (defun list-to-string (ascii)
176. (if (null ascii) #\.
177. (format nil "~A~A" (code-char (car ascii)) (list-to-string (cdr

ascii)))))
178.
179. ;; meta data is mostly in the way, but tempos and end of track are vital
180. (defun parse-metadata (the-data)
181. (case (car the-data)
182. (0 ()) ; sequence number
183. ((1 2 3 4 5 6 7 8 9 10) (vector-push-extend (list-to-string (cdr

the-data)) *sequence-strings*)); text
184. (#X20 ()) ; MIDI Channel prefix
185. (#X2F (setq *track-end* nil)) ; End of track
186. (#X51 (add-tempo (cdr the-data))) ; Set tempo usec/qn in *sequence-

tempo-map*
187. (#X54 ()) ; SMPTE offset H:M:S:F:F/100
188. (#X58 (add-meter (cdr the-data))) ; Time Signature nnn dd cc bb
189. (#X59 ()) ; Key Signature
190. (#X7F ()) ; Program specific
191. (t ()))) ; unknown
192.
193. ;; Other events to parse
194. ;; note ons are keepers
195. (defun handle-note (status nn vel)
196. (vector-push-extend
197. (list (ticks-ms *track-time*) nn 0
198. (if *map-track-to-channel*
199. *running-track-number*
200. (+ (logand status #X0F) 1)) vel)
201. *sequence-notes*))
202.

 407

203. ; test function for note off, which must search for matching note on
204. (defun match-note (status-nn target)
205. (if *map-track-to-channel*
206. (and (= (second status-nn) (second target)) (zerop (third target)))
207. (and (= (second status-nn) (second target))(= (first status-nn)

(fourth target))(zerop (third target)))))
208.
209. ;; search for note on this belongs to and set duration
210. ;; this doesn't handle overlapping notes of the same pitch well but

whatcha gonna do?
211. ;; note number is &rest because we don't get a velocity with running

status
212. ;; note off velocity is discarded anyhow
213. (defun handle-off (status &rest nn)
214. (let* ((channel (+ (logand status #X0F) 1))
215. (where (position (list channel (first nn)) *sequence-notes* :test

#'match-note :from-end t))
216. (the-note)
217. (duration))
218. (if (null where) () ; no matchng note on
219. (progn
220. (setf the-note (elt *sequence-notes* where))
221. (setf duration (- (ticks-ms *track-time*) (first the-note)))
222. (setf (third (elt *sequence-notes* where)) duration)))))
223.
224. ;; pqe- added ctls etc if requested 6/02/10
225. (defun handle-polyphonic-aftertouch (status nn pressure)
226. (if *include-polyphonic-aftertouch*
227. (vector-push-extend
228. (list (ticks-ms *track-time*) nn 0
229. (if *map-track-to-channel*
230. *running-track-number*
231. (+ (logand status #X0F) 1)) (+ 3000 pressure))
232. *sequence-notes*)
233. (list status nn pressure)))
234.
235. (defun handle-control (status cn value)
236. (if *include-ctl*
237. (vector-push-extend
238. (list (ticks-ms *track-time*) cn 0
239. (if *map-track-to-channel*
240. *running-track-number*
241. (+ (logand status #X0F) 1)) (+ 500 value))
242. *sequence-notes*)
243. (list status cn value)))
244.
245. (defun handle-program (status pn)
246. (if *include-pgm*
247. (vector-push-extend
248. (list (ticks-ms *track-time*) pn 0
249. (if *map-track-to-channel*
250. *running-track-number*
251. (+ (logand status #X0F) 1)) 255)
252. *sequence-notes*)
253. (list status pn)))
254.
255. (defun handle-channel-pressure (status pressure)
256. (if *include-channel-pressure*

 408

257. (vector-push-extend
258. (list (ticks-ms *track-time*) pressure 0
259. (if *map-track-to-channel*
260. *running-track-number*
261. (+ (logand status #X0F) 1)) 2000)
262. *sequence-notes*)
263. (list status pressure)))
264.
265. (defun handle-bend (status lsb msb)
266. (if *include-bend*
267. (vector-push-extend
268. (list (ticks-ms *track-time*) msb 0
269. (if *map-track-to-channel*
270. *running-track-number*
271. (+ (logand status #X0F) 1)) (+ 1000 lsb))
272. *sequence-notes*)
273. (list status lsb msb)))
274.
275. (defun STRIP-SYSEX (input-stream)
276. "just delete sysex for now"
277. (if (= (read-byte input-stream) #XF7) ()
278. (strip-sysex input-stream)))
279.
280. ;;; this is the grand track data handler
281. (defun parse-events (status-byte data-byte input-stream)
282. (let ((vel))
283. (cond
284. ((< status-byte #X90) (handle-off status-byte data-byte (read-byte

input-stream)))
285. ((< status-byte #XA0) (if (zerop (setq vel (read-byte input-

stream)))
286. (handle-off status-byte data-byte)
287. (handle-note status-byte data-byte vel)))
288. ((< status-byte #XB0) (handle-polyphonic-aftertouch status-byte

data-byte (read-byte input-stream)))
289. ((< status-byte #XC0) (handle-control status-byte data-byte (read-

byte input-stream)))
290. ((< status-byte #XD0) (handle-program status-byte data-byte))
291. ((< status-byte #XE0) (handle-channel-pressure status-byte data-byte

))
292. ((< status-byte #XF0) (handle-bend status-byte data-byte (read-byte

input-stream)))
293. ((= status-byte #XF0) (strip-sysex input-stream))
294. ((= status-byte #XFF) (parse-metadata (cons data-byte (get-metadata

input-stream))))
295. (t ()))))
296.
297. ;;; this layer deals with running status
298. (defun read-and-parse-event (input-stream)
299. (let ((first-byte (read-byte input-stream)))
300. (if (>= first-byte #X80) (parse-events (setf *running-status* first-

byte) (read-byte input-stream) input-stream)
301. (parse-events *running-status* first-byte input-stream))))
302.
303. ;;;; call this once per track
304. (defun read-track (input-stream)
305. (get-track-header input-stream)
306. (if (zerop *chunk-length*) ()

 409

307. (if (not (equal *chunk-type* "MTrk")) (gather-bytes input-stream
chunk-length) ; discard alien chunks

308. (do ((*track-end* t)(*track-time* 0)(*running-status* 0))
309. ((null *track-end*)())
310. (set-track-time input-stream)
311. (read-and-parse-event input-stream)))))
312.
313. ;;;; initialize all those specials
314. (defun setup ()
315. (setf *sequence-strings* (make-array 1 :initial-contents #("sequence-

strings") :fill-pointer t :adjustable t))
316. (setq *sequence-tempo-map* (make-array 1 :element-type 'list :initial-

element '(0 0 500000) :fill-pointer t :adjustable t))
317. (setq *sequence-meter-map* (make-array 1 :element-type 'list :initial-

element '(0 4 4) :fill-pointer t :adjustable t))
318. (setq *sequence-notes* (make-array 0 :element-type 'list :initial-

element '(0 0 0 0 0) :fill-pointer t :adjustable t)))
319.
320. ;; test function for sorting by time (& channel pqe 6/02/10)
321. (defun earlier (alist blist)
322. (if (= (first alist) (first blist))
323. (< (fourth alist) (fourth blist))
324. (< (first alist) (first blist))))
325.
326. ;;;;;;;; Ta-Da ;;;;;;;;;;;;;;;
327. (defun load-midi (fstring)
328. (with-open-file (input-stream fstring :element-type '(unsigned-byte 8)

:if-does-not-exist nil)
329. (setup)
330. (get-header input-stream)
331. (do ((track-index 0 (+ track-index 1)))
332. ((>= track-index *midi-file-ntrks*) ())
333. (setq *running-track-number* track-index)
334. (read-track input-stream))
335. (setq *sequence-notes* (sort *sequence-notes* #'earlier))
336. (loop for notes across *sequence-notes* collect (mapcar #'round

notes))))
337.
338. ; test with a short file
339. ; this is the path format for mac
340. ; if you put your stuff directly in documents, your path may be
341. ; "/Users/name/your/directory/midifile.mid"
342. ; (load-midi "/Users/name/your/directory/midifile.mid")
343.
344. ;; calling (get-tempo-list)
345. ;; returned ((0 120) (0 120) (17000 114) (23973 110) (28328 123))
346. ;; functions for tempo analysis -- after loading *sequence-tempo-map*

will contain an array of
347. ;; tempo changes (including a default for files that have none)
348. ;; GET-TEMPO-LIST formats this as a list of times and tempo changes.
349.
350. (defun read-tempo-map (tempo-map)
351. (loop for tempo across tempo-map
352. collect (list (floor (second tempo))
353. (floor(/ 60000000 (third tempo))))))
354.
355. (defun get-tempo-list () (read-tempo-map *sequence-tempo-map*))
356.

 410

357. ;;;;; The MIDI loader requires a full pathname as an argument
358. ;; (load-midi "/Users/name/your/directory/midifile.mid")
359. ;; this will get a file from *work-dir*
360. (defun get-midi (fname)
361. (load-midi (make-pathname :directory *work-dir* :name fname)))
362.
363. ;(get-midi "midifile.mid")

 411

B.5. ATN Generator from Computers and Musical Style

1. ;;; ----- A simple ATN generator ----- ;;;
2.
3. (defparameter *rs* (make-random-state t) "Create proper random numbers.")
4. (defparameter count-down 1)
5.
6. ;; ----- Syntax Database ----- ;;
7.
8. (setf (get 'articles 'syntax) '(adjectives subjects1 subjects2))
9. (setf (get 'adjectives 'syntax) '(subjects1 subjects2))
10. (setf (get 'subjects1 'syntax) '(composers1))
11. (setf (get 'subjects2 'syntax) '(composers2))
12. (setf (get 'composers1 'syntax) '(verbs1))
13. (setf (get 'composers2 'syntax) '(verbs2))
14. (setf (get 'verbs1 'syntax) '(conjunctions))
15. (setf (get 'verbs2 'syntax) '(conjunctions))
16. (setf (get 'conjunctions 'syntax)
17. '(list 'descriptors (if (evenp count-down)
18. 'objects1
19. 'objects2)))
20. (setf (get 'descriptors 'syntax)
21. '(list (if (evenp count-down)
22. 'objects1
23. 'objects2)))
24. (setf (get 'objects1 'syntax) '(conjunctions))
25. (setf (get 'objects2 'syntax) '(conjunctions))
26.
27. ;; ----- Meaning Database ----- ;;
28.
29. (setf (get 'articles 'meaning) '((the) (this) (that)))
30. (setf (get 'adjectives 'meaning) '((dark) (beautiful) (lyrical)))
31. (setf (get 'subjects1 'meaning) '((sonata) (symphony) (concerto)))
32. (setf (get 'subjects2 'meaning) '((aria) (opera) (song)))
33. (setf (get 'composers1 'meaning) '((by mozart) (by beethoven) (by

haydn)))
34. (setf (get 'composers2 'meaning) '((by bellini) (by verdi) (by puccini)))
35. (setf (get 'verbs1 'meaning) '((was easy to play) (was hard to play)))
36. (setf (get 'verbs2 'meaning) '((was hard to sing) (was a breeze to

sing)))
37. (setf (get 'conjunctions 'meaning) '((and)))
38. (setf (get 'descriptors 'meaning) '((also) (very) (yet)))
39. (setf (get 'objects1 'meaning) '((lyrical) (sweet)))
40. (setf (get 'objects2 'meaning) '((profound) (deep)))
41.
42. ;; ----- Functions ----- ;;
43.
44. (defun choose-one (choices)
45. "Randomly chooses an item from a list."
46. (elt choices (random (length choices) *rs*)))
47.
48. (defun generate-atn (beginning)
49. "Generates an ATN."
50. (if (zerop count-down)
51. (list 'objects1)
52. (and
53. (if (equal beginning 'conjunctions)
54. (setq count-down (1- count-down))

 412

55. t)
56. (cons
57. beginning
58. (generate-atn
59. (choose-one
60. (if (equal beginning 'conjunctions)
61. (eval (get beginning 'syntax))
62. (if (equal beginning 'descriptors)
63. (eval (get beginning 'syntax))
64. (get beginning 'syntax)))))))))
65.
66. (defun construct-sentence ()
67. "Create a new syntactically correct sentence."
68. (setq count-down (choose-one '(1 2)))
69. (apply (function append)
70. (mapcar
71. (lambda (x) (choose-one (get x 'meaning)))
72. (generate-atn 'articles))))
73.
74. (construct-sentence)
75.

 413

BIBLIOGRAPHY

"Acrostic, Adj.1 and N.", Oxford English Dictionary. OED Online. Oxford University
Press. http://www.oed.com/view/Entry/1867?rskey=3gSbqk&result=1
(accessed March 12, 2014).

"Chapter 2. Obtaining, Installing, and Running Clozure Cl", Clozure Associates

http://ccl.clozure.com/manual/chapter2.html (accessed October 1, 2014).

"Clojure" http://clojure.org/ (accessed November 2, 2014).

"Clozure CL", Apple, Inc. https://itunes.apple.com/us/app/clozure-cl/id489900618

(accessed October 1, 2014).

"Graphviz - Graph Visualization Software" http://www.graphviz.org/ (accessed May 7,

2014).

"Lilypond" http://www.lilypond.org/ (accessed October 31, 2014).

"Mlpy - Machine Learning Python" http://mlpy.sourceforge.net/ (accessed November 2,

2014).

"Musescore" http://musescore.org/ (accessed October 31, 2014).

"Pybrain" http://www.pybrain.org/ (accessed November 2, 2014).

"The R Project for Statistical Computing" http://www.r-project.org/ (accessed November

2, 2014).

"Scikit-Learn" http://scikit-learn.org/stable/ (accessed November 2, 2014).

"Semantic Network", Wikipedia http://en.wikipedia.org/wiki/Semantic_network (accessed

September 30, 2014).

"Front Matter." The Musical Times and Singing Class Circular 12, no. 266 (1865): 21-24.

"Function Terpri, Fresh-Line", MIT

http://www.ai.mit.edu/projects/iiip/doc/CommonLISP/HyperSpec/Body/fun_terpric
m_fresh-line.html (accessed October 10, 2014).

"Macro with-Output-to-String", MIT

http://www.ai.mit.edu/projects/iiip/doc/CommonLISP/HyperSpec/Body/mac_with-
output-to-string.html (accessed October 10, 2014).

 414

"Table of Contents." Music Perception: An Interdisciplinary Journal 31, no. 1 (2013): ii.

"Table of Contents." Music Perception: An Interdisciplinary Journal 31, no. 3 (2014): ii.

Abram, Richard. "14 Canons (Bwv 1087); Concerto in F Major (F 10); Four Little Duets

(Wq 115); Sonata in G Major (Op. 15, No. 5) by Johann Sebastian Bach; Wilhelm
Friedemann Bach; Carl Philipp Emanuel Bach; Johann Christian Bach; Rolf
Junghanns; Bradford Tracey." Early Music 8, no. 4 (1980): 572-573.

Adams, J. N. The Regional Diversification of Latin 200 Bc-Ad 600. New York:

Cambridge University Press, 2008.

Agee, Richard J. "Costanzo Festa's 'Gradus Ad Parnassum'." Early Music History 15,

(1996): 1-58.

Alphonce, Bo H. "Music Analysis by Computer: A Field for Theory Formation."

Computer Music Journal 4, no. 2 (1980): 26-35.

Apel, Willi. The Notation of Polyphonic Music 900-1600. Fourth ed. Cambridge

Massachusets: The Mediaeval Academy of America, 1949.

______. Harvard Dictionary of Music. Second ed. Cambridge, Massachusetts: Harvard

University Press 1972.

______, Harvard Dictionary of Music. Cambridge, Massachusetts:Harvard University

Press 1972.

Apel, Willi and Archibald T. Davidson. Historical Anthology of Music. Vol. 1. 2 vols.

Cambridge, Massachusetts: Harvard University Press, 1977.

Ariza, Christopher. "Two Pioneering Projects from the Early History of Computer-Aided

Algorithmic Composition." Computer Music Journal 35, no. 3 (2011): 40-56.

Babb, Warren and Claude V. Palisca. Hucbald, Guido, and John on Music: Three

Medieval Treatises. New Haven: Yale University Press, 1978.

Babbitt, Milton. "Set Structure as a Compositional Determinant." Journal of Music

Theory 5, no. 1 (1961): 72-94.

______. "Twelve-Tone Rhythmic Structure in the Electronic Medium." Perspectives of

New Music 1, no. 1 (1962): 49-79.

______. "The Use of Computers in Musicological Research." Perspectives of New

Music 3, no. 2 (1965): 74-83.

 415

______. "Contemporary Music Composition and Music Theory as Contemporary

Intellectual History." In The Collected Essays of Milton Babbitt, edited by Stephen
Peles, Stephen Dembski, Andrew Mead and Joseph N. Straus, 270-307.
Princeton, New Jersey: Princeton University Press, 2012.

Bach, Carl Philipp Emanuel. "Einfall, Einen Doppelten Contrapunct in Der Octave Von

Sechs Tacten Zu Machen, Ohne Die Regeln Davon Zu Wissen." In Historisch-
Kritische Beyträge Zur Aufnahme Der Musik, edited by Friederich Wilhelm
Marpurg, Vol. 3, St. 2, 167-181. Berlin: G. A. Lange, 1757.

Baltzer, Rebecca A., "Johannes De Garlandia", Grove Music Online. Oxford Music

Online. Oxford University Press.
http://www.oxfordmusiconline.com/subscriber/article/grove/music/14358
(accessed January 31, 2014).

Barbin, Évelyne, Jacques Borowczyk, Jean-Luc Chabert, Ahmed Djebbar, Michel

Guillemot, Jean-Claude Martzloff and Anne Michel-Pajus. A History of
Algorithms. Translated by Chris Weeks, Edited by Jean-Luc Chabert. New York:
Springer Verlag, 1999.

Barbour, J. Murray. "The Schillinger System of Musical Composition." Notes 3, no. 3

(1946): 274-283.

______. Tuning and Temperament. Mineola, New York: Dover, 2004.

Barski, Conrad. Land of Lisp: Learn to Program in Lisp, One Game at a Time! San

Francisco: No Starch Press, 2011.

Bartel, Dietrich. Musica Poetica: Musical-Rhetorical Figures in German Baroque Music.

Lincoln, NE: University of Nebraska Press, 1997.

Benson, David J. Music: A Mathematical Offering. New York: Cambridge University

Press, 2006.

Bent, Margaret, "Isorhythm", Grove Music Online. Oxford Music Online. Oxford

University Press.
http://www.oxfordmusiconline.com/subscriber/article/grove/music/13950
(accessed October 28, 2012).

Bent, Margaret and Andrew Wathey, "Vitry, Philippe De", Grove Music Online. Oxford

Music Online. Oxford University Press.
http://www.oxfordmusiconline.com/subscriber/article/grove/music/29535
(accessed October 24, 2012).

 416

Berger, Anna Maria Busse. "The Evolution of Rhythmic Notation." In Western Music

Theory, edited by Thomas Christensen, 628-656. New York: Cambridge
University Press, 2002.

______. Medieval Music and the Art of Memory. Berkeley: University of California

Press, 2005.

Bird, Richard. Pearls of Functional Algorithm Design. New York: Cambridge University

Press, 2010.

Blackburn, Bonnie J. "Masses Based on Popular Songs and Solmization Syllables." In

The Josquin Companion, edited by Richard Sherr, 51-85, 2001.

Blankenburg, Walter. "Die Bachforschung Seit Etwa 1965. Ergebnisse, Probleme,

Aufgaben. Teil 3." Acta Musicologica 55, no. 1 (1983): 1-58.

Blom, Eric. Some Great Composers. New York: Oxford University Press, 1961.

Boden, Margaret A. "Computer Models of Creativity." In Handbook of Creativity, edited

by Robert J. Sternberg, 351-372. New York: Cambridge University Press, 1999.

______. "State of the Art: Computer Models of Creativity." The Psychologist 13, no. 2

(2000): 72-76.

______. The Creative Mind: Myths and Mechanisms. 2nd ed. New York: Routledge,

2005.

Bohn, James, "Illiac I", University of Illinois Urbana-Champaign

http://ems.music.uiuc.edu/history/illiac.html (accessed September 18, 2013).

Boroditsky, Lera. "How Language Shapes Thought." Scientific American, February

2011, 63-65.

Böß, Reinhard. Verschiedene Canones...Von J. S. Bach (Bwv1087). Munich: edition

text + kritik, 1996.

Bossuyt, Ignace. "O Socii Durate: A Musical Correspondence from the Time of Philip Ii."

Early Music 26, no. 3 (1998): 432-444.

Bowles, Edward. "Discussion." In Musicology and the Computer: Three Symposia,

edited by Barry S. Brook, 37-38. New York: The City University of New York
Press, 1970.

 417

Boyer, Carl B. and Uta C. Merzbach. A History of Mathematics. 3rd ed. Hoboken, New
Jersey: John Wiley & Sons, Inc., 2011.

Brewer, Charles E. The Instrumental Music of Schmeltzer, Biber, Muffat and Their

Contemporaries. Burlington: Ashgate, 2011.

Brown, Robert and François-René Rideau, "Google Common Lisp Style Guide", Google,

Inc. https://google-styleguide.googlecode.com/svn/trunk/lispguide.xml (accessed
October 2, 2014).

Buelow, George J., "Printz, Wolfgang Caspar", Grove Music Online. Oxford Music

Online. Oxford University Press.
http://www.oxfordmusiconline.com/subscriber/article/grove/music/22370
(accessed March 19, 2014).

Bumgardner, Jim. "Kircher’s Mechanical Composer: A Software Implementation." In

Bridges 2009: Mathematics, Music, Art, Architecture, Culture, edited by Craig S.
Kaplan and Reza Sarhangi, 21-28. Banff: Tarquin Books, 2009.

Burk, James N. and Wayne J. Schneider, "Schillinger, Joseph", Grove Music Online.

Oxford Music Online. Oxford University Press
http://www.oxfordmusiconline.com/subscriber/article/grove/music/24863
(accessed September 18, 2014).

Chabert, Jean-Luc. "Algorithms." In The Princeton Companion to Mathematics, edited

by Timothy Gowers, June Barrow-Green and Imre Leader, 106-117. Princeton,
New Jersey: Princeton University Press, 2008.

Chadabe, Joel. Electric Sound. Upper Saddle River, N. J.: Prentice Hall, 1997.

Christensen, Thomas, "Alembert, Jean Le Rond D’", Grove Music Online. Oxford Music

Online. Oxford University Press.
http://www.oxfordmusiconline.com/subscriber/article/grove/music/07068
(accessed October 12, 2012).

Cockrell, Dale, "Cope, David", Grove Music Online. Oxford Music Online. Oxford

University Press.
http://www.oxfordmusiconline.com/subscriber/article/grove/music/42662
(accessed July 15, 2013).

______, "Cope, David", Grove Music Online. Oxford Music Online. Oxford University

Press. http://www.oxfordmusiconline.com/subscriber/article/grove/music/42662
(accessed April 11, 2014).

 418

Cockrell, Dale and Hugh Davies, "Cope, David Howell", Grove Music Online. Oxford
Music Online. Oxford University Press.
http://www.oxfordmusiconline.com/subscriber/article/grove/music/L2232381
(accessed March 11, 2014).

Conway, Drew and John Myles White. Machine Learning for Hackers. Sebastopol:

O'Reilly, 2012.

Cope, D. H. Comes the Fiery Night. Charleston, SC: CreateSpace Independent

Publishing Platform, 2011.

______. My Gun Is Loaded. Charleston, SC: CreateSpace Independent Publishing

Platform, 2012.

______. Not by Death Alone: A Will Francis Mystery, Book 1. Vol. 1. 5 vols. Charleston,

SC: CreateSpace Independent Publishing Platform, 2012.

______. Death by Proxy. Vol. 2. 5 vols. Charleston, SC: CreateSpace Independent

Publishing Platform, 2013.

______. The Death of Karlin Mulrey. Charleston, SC: CreateSpace Independent

Publishing Platform, 2013.

______. Mind over Death. Vol. 3. 5 vols. Charleston, SC: CreateSpace Independent

Publishing Platform, 2013.

______. Of Blood and Tears. Charleston, SC: CreateSpace Independent Publishing

Platform, 2014.

Cope, David, "Bibliography", University of California, Santa Cruz

http://artsites.ucsc.edu/faculty/cope/bibliography.htm (accessed April 11, 2014).

______, "Biography", University of California, Santa Cruz

http://artsites.ucsc.edu/faculty/cope/biography.htm (accessed April 11, 2014).

______, "Music of Experiments in Musical Intelligence", University of California, Santa

Cruz http://artsites.ucsc.edu/faculty/cope/emi.htm (accessed September 22,
2014).

______, "Works", University of California, Santa Cruz

http://artsites.ucsc.edu/faculty/cope/works.htm (accessed April 19, 2014).

 419

______. Navajo Dedications. Bill Albin, Mark Benson, William Brice, Winford C.
Cummings, Sam Minge, Tim Paxton, Mark Schneider and Jerome Stanley.
Folkways Records FTS 33869. LP. 1976.

______. New Music Notation. Dubuque, IA: Kendall/Hunt Pub. Co., 1976.

______. "The Mechanics of Listening to Electronic Music." Music Educators Journal 64,

no. 2 (1977): 47-51.

______. New Music Composition. New York: Schirmer Books, 1977.

______. Visions. David Cope, Ken Durling and Santa Cruz Chamber Symphony.

Folkways Records FTS 33452. LP. 1979.

______. Liner notes to Visions. David Cope. Folkways Records FTS 33452. LP. 1979.

______. "An Expert System for Computer-Assisted Composition." Computer Music

Journal 11, no. 4 (1987): 30-46.

______. Computers and Musical Style. Vol. 6 Computer Music and Digital Audio Series.

Madison, WI: A-R Editions, 1991.

______. "Recombinant Music: Using the Computer to Explore Musical Style." Computer

27, no. 7 (1991): 22-28.

______. "A Computer Model of Music Composition." In Machine Models of Music, edited

by Stephan M. Schwanauer and David A. Levitt, 403-425. Cambridge, MA: MIT
Press, 1992.

______. "Computer Modeling of Musical Intelligence in Emi." Computer Music Journal

16, no. 2 (1992): 69-83.

______. "On Algorithmic Representation of Musical Style." In Understanding Music with

Ai: Perspectives on Music Cognition, edited by Mira Balaban, Kemal Ebcioğlu
and Otto E. Laske, 354-363. Cambridge, MA: AAAI Press/MIT Press, 1992.

______. Adagietto after Bach Barber: For String Orchestra. Los Angeles CA: Spectrum

Press, 1995.

______. Experiments in Musical Intelligence. Vol. 12 Computer Music and Digital Audio

Series. Madison, WI: A-R Editions, 1996.

______. "The Composer's Underscoring Environment: Cue." Computer Music Journal

21, no. 3 (1997): 20-37.

 420

______. Techniques of the Contemporary Composer. New York: Schirmer Books, 1997.

______. "Signatures and Earmarks: Computer Recognition of Patterns in Music." In

Melodic Similarity: Concepts, Procedures, and Applications, edited by Walter B.
Hewlett and Eleanor Selfridge-Field, 129-138. Cambridge, MA: MIT Press, 1998.

______. "Facing the Music: Perspectives on Machine-Composed Music." Leonardo

Music Journal 9, (1999): 79-87.

______. "One Approach to Musical Intelligence." Intelligent Systems and their

Applications, IEEE 14, no. 3 (1999): 21-25.

______. The Algorithmic Composer. Vol. 16 Computer Music and Digital Audio Series.

Madison, WI: A-R Editions, 2000.

______, "Well Programmed Clavier 48 Preludes and Fugues, Vol I", Spectrum Press

http://spectrumpress.blogspot.com/2013/12/well-programmed-clavier-48-
preludes-and.html (accessed May 9, 2014).

______. New Directions in Music. 7th ed. Prospect Heights, Ill.: Waveland Press, 2001.

______. Virtual Music: Computer Synthesis of Musical Style. Cambridge, MA: MIT

Press, 2001.

______. "Computer Analysis and Composition Using Atonal Voice-Leading

Techniques." Perspectives of New Music 40, no. 1 (2002): 121-146.

______. "Computer Analysis of Musical Allusions." Computer Music Journal 27, no. 1

(2003): 11-28.

______. "A Musical Learning Algorithm." Computer Music Journal 28, no. 3 (2004): 12-

27.

______. Computer Models of Musical Creativity. Cambridge, MA: MIT Press, 2005.

______. Hidden Structure: Music Analysis Using Computers. Vol. 23 The Computer

Music and Digital Audio Series. Middleton, Wis.: A-R Editions, 2008.

______. Tinman: A Life Explored. Bloomington, IN: iUniverse, Inc., 2008.

______. Liner notes to Emily Howell: From Darkness, Light. Erika Arul and Mary Jane

Cope. Centaur CRC 3023. CD. 2010.

 421

______. Ars Ingenero. Charleston, SC: CreateSpace Independent Publishing Platform,
2012.

______. A Musicianship Primer. Charleston, SC: CreateSpace Independent Publishing

Platform, 2012.

______. Taking Sides. Charleston, SC: CreateSpace Independent Publishing Platform,

2012.

______. Tinman Too: A Life Explored. Bloomington, IN: iUniverse, 2012.

______. Tinman Tre: A Life Explored. Bloomington, IN: iUniverse, 2013.

______. "The Well-Programmed Clavier: Style in Computer Music Composition." XRDS

19, no. 4 (2013): 16-20.

______. Experiments in Musical Intelligence. Vol. 12. 2nd ed. Computer Music and

Digital Audio Series. Madison, WI: A-R Editions, 2014.

Cormen, Thomas H. Algorithms Unlocked. Cambridge, MA: MIT Press, 2013.

Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest and Clifford Stein.

Introduction to Algorithms. 3rd ed. Cambridge, MA: MIT Press, 2009.

Crocker, Richard. "Musica Rhythmica and Musica Metrica in Antique and Mediecal

Theory." Journal of Music Theory 2, (1958): 12-15.

Cuervo, Adriana P. "Preserving the Electroacoustic Music Legacy: A Case Study of the

Sal-Mar Contruction at the University of Illinois." Notes, no. September (2011):
33-47.

Cuthbert, Michael Scott, "Examples and Demonstrations", Massachusetts Institute of

Technology http://web.mit.edu/music21/doc/about/examples.html (accessed
October 30, 2014).

______, "Music21: A Toolkit for Computer-Aided Musicology", Massachussetts Institute

of Technology http://web.mit.edu/music21/ (accessed March 30, 2014).

______, "What Is Music21?", Massachusetts Institute of Technology

http://web.mit.edu/music21/doc/about/what.html (accessed October 30, 2014).

d'Alembert, Jean le Rond, "Algorithme", University of Chicago

http://artflx.uchicago.edu/cgi-

 422

bin/philologic/getobject.pl?c.0:1216.encyclopedie0311 (accessed October 11,
2012).

d'Arezzo, Guido, "Micrologus", Indian University http://www.chmtl.indiana.edu/tml/9th-

11th/GUIMIC_TEXT.html (accessed October 28, 2012).

Damschroder, David and David Russell Williams. Music Theory from Zarlino to

Schenker: A Bibliography and Guide Harmonologia. Hillsdale, New York:
Pendragon, 1991.

Dannenberg, Roger B. "Book Review." Artificial Intelligence 170, no. 10 (2006): 1218-

1221.

Dodge, Charles and Thomas A. Jerse. Computer Music. 2nd ed. New York: Schirmer

Books, 1997.

Drabkin, William, "Retrograde", Grove Music Online. Oxford Music Online. Oxford

University Press.
http://www.oxfordmusiconline.com/subscriber/article/grove/music/23263
(accessed November 5, 2012).

Dreyfus, Laurence. Bach and the Patterns of Invention. 3rd ed. Cambridge, MA:

Harvard University Press, 2004.

Ebcioğlu, Kemal. "An Expert System for Harmonizing Four-Part Chorales." Computer

Music Journal 12, no. 3 (1988): 43-51.

Elders, Willem and L. Okken. "Das Symbol in Der Musik Von Josquin Des Prez." Acta

Musicologica 41, no. 3/4 (1969): 164-185.

Ernest, H. Sanders, M. Lefferts Peter, L. Perkins Leeman, Macey Patrick, Wolff

Christoph, Roche Jerome, Dixon Graham, R. Anthony James and Boyd Malcolm,
"Motet", Grove Music Online. Oxford Music Online. Oxford University Press.
http://www.oxfordmusiconline.com/subscriber/article/grove/music/40086pg1
(accessed October 28, 2012).

Essl, Karlheinz. "Algorithmic Composition." In Electronic Music, edited by Nick Collins

and Julio d'Escriván, 107-125. New York: Cambridge University Press, 2007.

Forkel, Johann Nikolaus. "Forkel's Biography of Bach." In The New Bach Reader, edited

by Hans T. David, Arthur Mendel and Christoph Wolff, 417-484. New York: W. W.
Norton, 1998.

 423

Forte, Allen. The Structure of Atonal Music. New Haven, CT: Yale University Press,
1977.

Friedmann, Michael L. Ear Training for Twentieth-Century Music. New Haven, CT: Yale

University Press, 1990.

Fuller, Sarah. "Organum-Discantus-Contrapunctus in the Middle Ages." In Western

Music Theory, edited by Thomas Christensen, 477-502. New York: Cambridge
University Press, 2002.

Garrett, Ron, "Lisping at Jpl" http://www.flownet.com/gat/jpl-lisp.html (accessed

01.30.2014).

Geck, Martin. Johann Sebastian Bach: Life and Work. Translated by John Hargraves.

San Diego, California: Harcourt, 2006.

Gojowy, Detlef and Andrey Yur'evich Kolesnikov, "Golïshev, Yefim", Grove Music

Online. Oxford Music Online. Oxford University Press.
http://www.oxfordmusiconline.com/subscriber/article/grove/music/11405
(accessed September 17, 2014).

Goldreich, Oded and Avi Wigderson. "Computational Complexity." In The Princeton

Companion to Mathematics, edited by Timothy Gowers, June Barrow-Green and
Imre Leader, 261-290. Princeton, New Jersey: Princeton University Press, 2008.

Gouk, Penelope. "The Role of Harmonics in the Scientific Revolution." In The

Cambridge History of Western Music Theory, edited by Thomas Christensen,
223-245. New York: Cambridge University Press, 2002.

Griffiths, Paul, "Aleatory", Grove Music Online. Oxford Music Online. Oxford University

Press. http://www.oxfordmusiconline.com/subscriber/article/grove/music/00509
(accessed September 18, 2014).

______, "Serialism", Grove Music Online. Oxford Music Online. Oxford University Press.

http://www.oxfordmusiconline.com/subscriber/article/grove/music/25459
(accessed September 17, 2014).

Grillner, Katja. "Human and Divine Perspectives in the Works of Salomon De Caus." In

Chora 3: Intervals in the Philosophy of Architecture, edited by Alberto Perez-
Gomez and Stephen Parcell, 79-102. Montreal: McGill-Queens University Press,
1999.

 424

Harrison, Daniel, "Tolling Time", Music Theory Online. Society of Music Theory.
http://www.mtosmt.org/issues/mto.00.6.4/mto.00.6.4.harrison_essay.html
(accessed March 23, 2014).

Hart, Vi. "Symmetry and Transformations in the Musical Plane." In Bridges 2009:

Mathematics, Music, Art, Architecture, Culture, edited by Craig S. Kaplan and
Reza Sarhangi, 169-176. Banff: Tarquin Books, 2009.

Hedges, Stephen A. "Dice Music in the Eighteenth Century." Music & Letters 59, no. 2

(1978): 180-187.

Hertz, Garnet and Jussi Parikka. "Zombie Media: Circuit Bending Media Archaeology

into an Art Method." Leonardo 45, no. 5 (2012): 424-430.

Hiller, Lejaren A. and Leonard M. Isaacson. Experimental Music. New York: McGraw

Hill Book Company, Inc., 1959.

Hillier, Paul. "Arvo Pärt: Magister Ludi." The Musical Times 130, no. 1753 (1989): 134-

137.

______. Arvo Pärt. New York, New York: Oxford University Press, 1997.

Hodges, Wilfrid. "The Geometry of Music." In Music and Mathematics: From Pythagoras

to Fractals, edited by John Fauvel, Raymond Flood and Robin Wilson, 91-111.
New York: Oxford University Press, 2003.

Hofstadter, Douglas R. Gödel, Escher, Bach: An Eternal Golden Braid. 20th Anniversary

Edition ed. New York: Random House, 1999.

Holland, John H. Hidden Order. New York: Helix Books, 1995.

Huron, David, "The Humdrum Toolkit: Software for Music Research", Ohio State

University http://www.musiccog.ohio-state.edu/Humdrum/ (accessed March 30,
2014).

______, "Sample Problems Using the Humdrum Toolkit", Ohio State University

http://www.musiccog.ohio-state.edu/Humdrum/sample.problems.html (accessed
March 30, 2014).

______. "On the Virtuous and the Vexations in an Age of Big Data." Music Perception:

An Interdisciplinary Journal 31, no. 1 (2013): 4-9.

Innocenti, Perla. "Preventing Digital Casualties: An Interdisciplinary Research for

Preserving Digital Art." Leonardo 45, no. 5 (2012): 472-473.

 425

Ippolito, Jon. "Ten Myths of Internet Art." Leonardo 35, no. 5 (2002): 485-487+489-498.

Johnson, Alvin. "The Masses of Cipriano De Rore." Journal of the American

Musicological Society 6, no. 3 (1953): 227-239.

Kepler, Johannes. Harmonices Mundi Libri V. Linz: G. Tampachius, 1619.

Kircher, Athanasius. Musurgia Universalis. Vol. 2. 2 vols. Rome: Typis Ludouici

Grignani, 1650.

Kirchmeyer, Helmut. "Vom Historischen Wesen Einer Rationalistischen Musik." In Die

Reihe - Rückblicke, edited by Herbert Eimert, 8. Vienna: Universal Edition, 1962.

Kirnberger, Johann Philipp. Der Allezeit Fertige Polonaisen- Und Menuettencomponist.

Berlin: George Ludewig Winter, 1757.

Knobloch, Eberhard. "The Sounding Algebra: Relations between Combinatorics and

Music from Mersenne to Euler." In Mathematics and Music, edited by Gerard
Assayag and Hans G. Feichtinger, 27-48. New York: Springer, 2002.

______. "Mathematics and the Divine: Athanasius Kircher." In Mathematics and the

Divine: A Historical Study, edited by Teun Koetsier and Luc Bergmans, 331-346.
Philadelphia: Elsevier Science, 2004.

Knuth, Donald E. . The Art of Computer Programming. Vol. Volume 1 - Fundamental

Algorithms. 4 vols. 2nd ed., Edited by Michael A. Harrison and Richard S. Varga.
Menlo Park, California: Addison-Wesley, 1969.

Kuivila, Ron and David Behrman. "Composing with Shifting Sand: A Conversation

between Ron Kuivila and David Behrman on Electronic Music and the
Ephemerality of Technology." Leonardo Music Journal 8, no. Ghosts and
Monsters: Technology and Personality in Contemporary Music (1998): 13-16.

Lansky, Paul, George Perle, Dave Headlam and Robert Hasegawa, "Twelve-Note

Composition", Grove Music Online. Oxford Music Online. Oxford University
Press. http://www.oxfordmusiconline.com/subscriber/article/grove/music/44582
(accessed September 17, 2014).

Lantz, Brett. Machine Learning with R. Birmingham, U. K.: Packt Publishing, 2013.

Large, Edward W. and John F. Kolen. "Resonance and the Perception of Musical

Meter." In Musical Networks: Parallel Distributed Perception and Performance,

 426

edited by Niall Griffiths and Peter M. Todd, 65-96. Cambridge, MA: MIT Press,
1999.

Large, Edward W., Caroline Palmer and Jordan B. Pollack. "Reduced Memory

Representations for Music." In Musical Networks: Parallel Distributed Perception
and Performance, edited by Niall Griffiths and Peter M. Todd, 279-312.
Cambridge, MA: MIT Press, 1999.

Laske, Otto E. "In Search of a Generative Grammar in Music." In Machine Models of

Music, edited by Stephan M. Schwanauer and David A. Levitt, 215-240.
Cambridge, MA: MIT Press, 1993.

Ledbetter, David, "Style Brisé", Grove Music Online. Oxford Music Online. Oxford

University Press.
http://www.oxfordmusiconline.com/subscriber/article/grove/music/27042
(accessed September 4, 2014).

______. Bach's "Well-Tempered Clavier". New Haven: Yale University Press, 2002.

Leoni, Stefano A. E. "Le Diverse Et Artificiose Machine ... To Make Music." In Yearbook

of the Artificial Nature, Culture & Technology, edited by Massimo Negrotti and
Fumihiko Satofuka, 4, 61-73. New York: Peter Lang, 2006.

Lester, Joel. "Composition Made Easy: Bontempi's Nova Methodus of 1660." Theoria,

no. 7 (1993): 87-102.

Lewin, David. Generalized Musical Intervals and Transformations. New York: Oxford

University Press, 2011.

Li, Tao, Mitsunori Ogihara and George Tzanetakis, eds. Music Data Mining. New York:

CRC Press, 2012.

Lichtenfeld, Monika, "Hauer, Josef Matthias", Grove Music Online. Oxford Music Online.

Oxford University Press.
http://www.oxfordmusiconline.com/subscriber/article/grove/music/12544
(accessed September 17, 2014).

Link, Stan. "The Work of Reproduction in the Mechanical Aging of an Art: Listening to

Noise." Computer Music Journal 25, no. 1 (2001): 34-47.

Lockwood, Lewis, "Soggetto Cavato", Grove Music Online. Oxford Music Online. Oxford

University Press.
http://www.oxfordmusiconline.com/subscriber/article/grove/music/26100.

 427

Loy, Gareth. "Composing with Computers: A Survey of Some Compositional Formailsms
and Music Programming Languages." In Current Directions in Computer Music
Research, edited by Max V. Mathews and John R. Pierce, 291-396. Cambridge,
MA: MIT Press, 1989.

Loy, Gareth Musimathics. Vol. 1. Cambridge, MA: MIT Press, 2006.

Mann, Alfred. "Schubert's Lesson with Sechter." 19th-Century Music 6, no. 2 (1982):

159-165.

Manning, Peter. Electronic and Computer Music. New York: Oxford University Press,

2004.

Manzo, V. J. . Max/Msp/Jitter for Music. New York: Oxford University Press, 2011.

Marchese, Francis T. "Conserving Digital Art for Deep Time." Leonardo 44, no. 4

(2011): 302-308.

Marshall, Jon. Liner notes to Navajo Dedications. David Cope. Folkways Records FTS

33869. LP. 1976.

Mathiesen, Thomas J. "Greek Music Theory." In Western Music Theory, edited by

Thomas Christensen, 109-135. New York: Cambridge University Press, 2002.

McCarthy, John, Paul W. Abrahams, Daniel J. Edwards, Timothy P. Hart and Michael I

Levin. Lisp 1.5 Programmer's Manual. 2nd ed. Cambridge, MA: MIT Press, 1985.

Meehan, James R. "An Artificial Intelligence Approach to Tonal Music Theory."

Computer Music Journal 4, no. 2 (1980): 60-65.

Melton, Laurabelle, "Emily Brook Howell", Mount Holyoke College

http://www.mtholyoke.edu/~lbmelton/emily/ (accessed April 12, 2014).

Meyer, Leonard B. Style and Music: Theory, History, and Ideology. Chicago: University

of Chicago Press, 1989.

Minsky, Marvin. "Music, Mind, and Meaning." Computer Music Journal 5, no. 3 (1981):

28-44.

Mitchell, Jonathan, "Musical DNA", WNYC http://www.radiolab.org/2007/sep/24/musical-

dna/ (accessed January 2, 2012).

Morgan, Robert P. Twentieth-Century Music. New York: W. W. Norton & Company,

1991.

 428

Morton, Brian. "Falser Words Were Never Spoken." The New York Times, August 30,

2011, A23.

Mozart, Wolfgang Amadeus. Musikalisches Würfelspiel. Bonn: N. Simrock, 1793.

Mozer, Michael C. "Neural Network Music Composition by Prediction: Exploring the

Benefits of Psychoacoustic Constraints and Mutli-Scale Processing." In Musical
Networks: Parallel Distributed Perception and Performance, edited by Niall
Griffiths and Peter M. Todd, 227-260. Cambridge, MA: MIT Press, 1999.

Muscutt, Keith and David Cope. "Composing with Algorithms: An Interview with David

Cope." Computer Music Journal 31, no. 3 (2007): 10-22.

Nierhaus, Gerhard. Algorithmic Composition. New York: Springer Verlag, 2009.

Norvig, Peter. Paradigms of Artificial Intelligence Programming: Case Studies in

Common Lisp. San Francisco: Morgan Kaufmann Publishers, 1992.

Ord-Hume, Arthur W. J. G., "Apollonicon", Grove Music Online. Oxford Music Online.

Oxford University Press.
http://www.oxfordmusiconline.com/subscriber/article/grove/music/01093
(accessed April 7, 2014).

______, "Componium", Grove Music Online. Oxford Music Online. Oxford University

Press. http://www.oxfordmusiconline.com/subscriber/article/grove/music/06211
(accessed April 7, 2014).

Owen, Barbara and Arthur W. J. G. Ord-Hume, "Orchestrion", Grove Music Online.

Oxford Music Online. Oxford University Press.
http://www.oxfordmusiconline.com/subscriber/article/grove/music/20409
(accessed April 7, 2014).

______, "Panharmonicon", Grove Music Online. Oxford Music Online. Oxford Unversity

Press. http://www.oxfordmusiconline.com/subscriber/article/grove/music/20808
(accessed April 7, 2014).

Palisca, Claude V. and Dolores Pesce, "Guido of Arezzo [Aretinus]", Grove Music

Online. Oxford Music Online. Oxford University Press
http://www.oxfordmusiconline.com/subscriber/article/grove/music/11968
(accessed February 1, 2014).

 429

Puckette, Miller. "Preface." In The Om Composer's Book, edited by Carlos Agon, Gérard
Assayag and Jean Bresson, 1, ix-xiv. Paris: Editions DELATOUR
FRANCE/Ircam-Centre Pompidou, 2006.

Pustejovsky, James and Amber Stubbs. Natural Language Annotation for Machine

Learning. Sebastopol: O'Reilly, 2013.

Rahn, John. "On Some Computational Models of Music Theory." Computer Music

Journal 4, no. 2 (1980): 66-72.

______. Basic Atonal Theory. Upper Saddle River, New Jersey: Prentice Hall Press,

1981.

Ratner, Leonard. "Ars Combinatoria Chance and Choice in Eighteenth-Century Music."

In Studies in Eighteenth Century Music Essays Presented to Karl Geiringer on
the Occasion of His 70th Birthday, edited by H. C. Robbins. New York: Oxford
University Press, 1970.

______. "Ars Combinatoria, Chance and Choice in Eighteenth-Century Music." In

Studies in Eighteenth-Century Music; a Tribute to Karl Geiringer on His
Seventieth Birthday, edited by Karl Geiringer, H. C. Robbins Landon and Roger
E. Chapeman, 343-363. New York: Oxford University Press, 1970.

Raz, Guy and David Cope, "Virtual Composer Creates New Music", NPR

http://www.npr.org/templates/story/story.php?storyId=113719483 (accessed
January 2, 2012).

Riepel, Joseph. "Grundregeln Zur Tonordnung." In Anfangsgründe Zur Musicalischen

Setzkunst, 2. Ulm: Christian Ulrich Wagner, 1755.

Rinehart, Richard. "The Media Art Notation System: Documenting and Preserving

Digital/Media Art." Leonardo 40, no. 2 (2007): 181-187.

Rings, Steven. Tonality and Transformation. New York: Oxford University Press, 2011.

Roads, Curtis. "Artificial Intelligence and Music." Computer Music Journal 4, no. 2

(1980): 13-25.

______. The Computer Music Tutorial. Cambridge, MA: MIT Press, 1996.

Roads, Curtis and Morton Subotnick. "Interview with Morton Subotnick." Computer

Music Journal 12, no. 1 (1988): 9-18.

 430

Roaf, Daniel and Arthur White. "Ringing the Changes: Bells and Mathematics." In Music
and Mathematics: From Pythagoras to Fractals, edited by John Fauvel, Raymond
Flood and Robin Wilson, 113-130. New York: Oxford University Press, 2010.

Roeder, John. "Transformational Aspects of Arvo Pärt's Tintinnabuli Music." Journal of

Music Theory 55, no. 1 (2011): 1-41.

Rosen, Kenneth. Elementary Number Theory and Its Applications. 5th ed. New York:

Addison-Wesley, 2005.

Rowe, Robert. "Interactive Music Systems in Ensemble Performance." In Readings in

Artificial Intelligence, edited by Eduardo R. Miranda, 145-161. Amsterdam:
Harwood Academic Publishers, 2000.

______. Machine Musicianship. Cambridge, MA: MIT Press, 2001.

Russell, Stuart J. and Peter Norvig. Artificial Intelligence: A Modern Approach. 3rd ed.

Upper Saddle River: Prentice Hall, 2010.

Sams, Eric, "Cryptography, Musical", Grove Music Online. Oxford Music Online. Oxford

University Press.
http://www.oxfordmusiconline.com/subscriber/article/grove/music/06915
(accessed April 7, 2014).

______. "Brahms and His Musical Love Letters." The Musical Times 112, no. 1538

(1971): 329-330.

Scholes, Percy A. "Composition Systems and Mechanisms." In The Oxford Companion

to Music, edited by John Owen Ward, 225-226. London: Oxford University Press,
1995.

Schott, Gaspar. Organum Mathematicum. Ghent: Sumptibus Johannis Andreae Endteri

& Wolfgangi Jun. Haeredum Excudebat Jobus Hertz, 1668.

Schuler, Nico Stephan. "Methods of Computer-Assisted Music Analysis: History,

Classification, and Evaluation." Michigan State University, 2000.

Schwanauer, Stephan M. and David A. Levitt, eds. Machine Models of Music.

Cambridge, MA: MIT Press, 1993.

Seibel, Peter. Practical Common Lisp. New York: Apress, 2005.

Sherr, Richard. "'Illibata Dei Virgo Nutrix' and Josquin's Roman Style." Journal of the

American Musicological Society 41, no. 3 (1988): 434-464.

 431

Shiflet, Angela B. "Musical Notes." The College Mathematics Journal 19, no. 4 (1988):

345-347.

Shipway, William. The Campanologia: Or, Universal Instructor in the Art or Ringing.

London: Sherwood, Neely, and Jones, 1816.

Simoni, Mary, "Algorithmic Composition: A Gentle Introduction to Music Composition

Using Common Lisp and Common Music", MPublishing, University of Michigan
Library http://hdl.handle.net/2027/spo.bbv9810.0001.001 (accessed January 31,
2014).

Simoni, Mary and Roger B. Dannenberg. Algorithmic Composition: A Guide to

Composing Music with Nyquist. Ann Arbor: The University of Michigan Press,
2013.

Skiena, Steven S. The Algorithm Design Manual. 2nd ed. London: Springer, 2008.

Slawson, A. Wayne. "Computer Applications in Music by Gerald Lefkoff." Journal of

Music Theory 12, no. 1 (1968): 105-111.

Smoliar, Stephen W. "A Computer Aid for Schenkerian Analysis." Computer Music

Journal 4, no. 2 (1980): 41-59.

Stedman, Fabian. Campanologia Improved: Or, the Art of Ringing Made Easy. Fifth ed.

London: L. Hawes, W. Clarke, and R. Collins, and S. Crowder, 1766.

Steiner, Christopher. Automate This. New York, New York: Penguin Group, 2012.

Straus, Joseph N. Introduction to Post-Tonal Theory. 3rd ed. Upper Saddle River, N.J:

Prentice Hall, 2005.

Strunk, Oliver. "Anonymous (9th Century)." In Source Readings in Music History, edited

by Leo Treitler, 189. New York: W. W. Norton & Company, 1998.

______. "Aristedes Quintilianus." In Source Readings in Music History, edited by Leo

Treitler, 47. New York: W. W. Norton & Company, 1998.

Swedin, Eric G. and David L. Ferro. Computers: The Life Story of a Technology.

Baltimore: Johns Hopkins University Press, 2007.

Tanimoto, Steven L. The Elements of Artificial Intelligence Using Common Lisp. New

York: Computer Science Press, 1990.

 432

Taylor, Ian and Mike Greenhough. "Modelling Pitch Perception with Adaptive
Resonance Theory Artificial Neural Networks." In Musical Networks: Parallel
Distributed Perception and Performance, edited by Niall Griffiths and Peter M.
Todd, 3-22. Cambridge, MA: MIT Press, 1999.

Temperley, David. "A Bayesian Approach to Key-Finding." In Second International

Conference, ICMAI, edited by Christina Anagnostopoulou, Miguel Ferrand and
Alan Smaill, 195-206. Edinburgh, Scotland, UK: Springer, 2002.

______. The Cognition of Basic Musical Structures. Cambridge, MA: MIT Press, 2004.

______. Music and Probability. Cambridge, MA: MIT Press, 2007.

Thayer, Alexander Wheelock and Dixie Harvey, "Maelzel, Johann Nepomuk", Grove

Music Online. Oxford Music Online. Oxford University Press.
http://www.oxfordmusiconline.com/subscriber/article/grove/music/17414
(accessed April 7, 2014).

Toiviainen, Petri. "Symbolic Ai Versus Connectionism in Music Research." In Readings

in Artificial Intelligence, edited by Eduardo R. Miranda, 47-67. Amsterdam:
Harwood Academic Publishers, 2000.

Tokun, Elena, "Formal Algorithms of Tintinnabuli in Arvo Pärt's Music", Arvo Pärt Centre

http://vana.arvopart.ee/en/Selected-texts/formal-algorithms-of-tintinnabuli-in-arvo-
paerts-music/Page-1 (accessed September 18, 2014).

Touretzky, David S. Common Lisp: A Gentle Introduction to Symbolic Computation.

Menlo Park, California: The Benjamin/Cummings Publishing Company,Inc., 1990.

Toussaint, Godfried T. "The Euclidean Algorithm Generates Traditional Musical

Rhythms." In Proceedings of BRIDGES: Mathematical Connections in Art, Music,
and Science, 47-56. Banff, Alberta, Canada, 2005.

Trask, R. L. , A Dictionary of Grammatical Terms in Linguistics. New York:Routledge,

1996.

Treitler, Leo. "Regarding Meter and Rhythm in the Ars Antiqua." The Musical Quarterly

65, no. 4 (1979): 524-558.

Troeger, Richard. Playing Bach on the Keyboard: A Practical Guide. Prompton Place,

NJ: Amadeus Press, 2003.

Trowell, Brian. "Proportions in the Music of Dunstable." Proceedings of the Royal

Musical Association 105, (1978-1979): 100-141.

 433

Turing, A. M. "Computing Machinery and Intelligence." Mind 59, no. 236 (1950): 433-

460.

Tymoczko, Dmitri. A Geometry of Music: Harmony and Counterpoint in the Extended

Common Practice. New York: Oxford University Press, 2011.

Wali, Akhil. Clojure for Machine Learning. Birmingham, U. K.: Packt Publishing, 2014.

Wason, Robert. "Musica Practica: Music Theory as Pedagogy." In Western Music

Theory, edited by Thomas Christensen, 46-77. New York: Cambridge University
Press, 2002.

Wiggins, Geraint A. "Computer Models of Musical Creativity: A Review of Computer

Models of Musical Creativity by David Cope." Literary and Linguistic Computing
23, no. 1 (2008): 109-116.

Wiggins, Geraint A., Marcus T. Pearce and Daniel Müllensiefen. "Computational

Modeling of Music Cognition and Musical Creativity." In Computer Music, edited
by Roger T. Dean, 383-420. New York: Oxford University Press, 2009.

Williamson, Marianne. A Return to Love: Reflections on the Principles of a Course in

Miracles. New York, New York: HarperCollins, 1992.

Wilson, Wilfrid G. and Steve Coleman, "Change Ringing", Grove Music Online. Oxford

Music Online. Oxford University Press. (accessed March 23, 2014).

Wolff, Christoph. Bach: Essays on His Life and Music. Cambridge, Massachusetts:

Harvard University Press, 1994.

______. Johann Sebastian Bach: The Learned Musician. New York: W. W. Norton &

Company, 2001.

Yates, Frances. The Rosicrucian Enlightenment. New York: Routledge, 1999.

Zielinski, Siegfried. Archäologie Der Medien: Zur Tiefenzeit Des Technischen Hörens

Und Sehens. Berlin: Rowohlt, 2002.

